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	Abstract: It is investigated in this paper on the transition matrix formulation for the analysis of responses of an elastic half-space with a buried pipeline subjected to obliquely incident waves. The basis functions are constructed using the moving P-, SV-, and SH-wave source potentials to represent the scattered and refracted wave fields in a series form. The associated T-matrix expression of the elastic inclusion is derived using Betti’s third identity. Typical numerical results by obliquely incident plane waves are obtained for verification purpose.
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1 Introduction

The transition matrix (T-matrix) theory for the scattering of acoustic waves by a single scatterer in an infinite medium was first proposed by Waterman [1, 2]. Initially, the theory was derived using Helmholtz integral formula. Pao [3, 4] has shown that the derivation can be greatly simplified if Green’s identity is applied to the acoustic wave problem as well as Betti’s third identity is applied to the elastic wave problem. Since then, there have been numerous publications on the applications and extensions to electromagnetic and elastic wave propagation problems. Detailed references for electromagnetic and elastic wave propagation problems can be found in Varatharajula and Pao [5] and Varadan and Varadan, [6]). Yeh and Pao [7] have recently proposed the T-matrix formulation for the scattering of acoustic waves by a multiple layered inclusion in an infinite medium. Chai et al. [8] have successfully employed the cylindrical wave functions as basis functions for SH-wave scattering in a two-dimensional alluvial valley to study its resonant phenomenon according to the property of the T-matrix. However, it should be noted that only Neuman’s boundary condition can be satisfied by the angular part of the cylindrical wave function. 

As to research on dynamic responses of a buried layered inclusion (tunnel or pipeline) in an elastic semi-infinity medium subjected to incident plane waves, Lee and Trifunac [9] have studied the scattering of two-dimensional anti-plane problem using the method of series expansion. The cylindrical pipeline subjected to incident SH-waves was also analyzed and discussed. El-Akily and Datta [10] have used the Flugge shell theory to simplify the behavior of the cylindrical pipeline, and expand the scattering fields of the exterior region by circular cylindrical wave functions. Wong et al. [11] combined the finite element method with the wave function expansion to analyze the responses of a buried pipeline with non-circular cross-sections. Luco and de Barros [12] adopted the indirect boundary integral method to construct the scattering field and combined it with the Donell shell theory to study the responses of a cylindrical pipeline subjected to obliquely incident plane waves. Yeh et al. [13] have recently proposed a hybrid method for analyzing the dynamic responses of shells buried in an elastic half-plane. More recently, Chen et al. [14, 15] used the boundary integral method with degenerating kernel of fundamental solutions to transform the improper boundary integrals to a series of sums for the study of the exterior radiation and scattering problems with circular boundaries.

In this paper, Yeh and Pao’s [7] concept is extended to analyze the scattering of elastic waves by a lined pipeline subjected to obliquely incident waves in an elastic half-space. The basis functions and their regular parts are constructed using moving P-, SV- and SH-wave source potentials, Betti’s third identity and orthogonality conditions for the elastic half-space. The T-matrix relating the coefficient of the scattered waves to those of the free field is developed among the basis functions. Although the theory presented herein is only for a buried pipeline in an elastic half-space, the extension theory for the multiple layered inclusion is straightforward and easy to derive. Finally, numerical results for the stress and displacement components of a buried pipeline within the elastic half-space with different obliquely incident waves are calculated.
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Figure 1  Configuration and coordinate system. (a) section view (b) plan view.
2 Statement of Problems and Basis Functions
Considering a layered elastic inclusion (pipeline) embedded in an elastic half-space D given in Fig. 1, the interface between the elastic half-space and the inclusion surface is denoted as S1. The elastic inclusion is divided into two parts denoted as D1 and D2 with an interface S2. For the half-space D, the density and Lame' constants are
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. The elastic half-space is subjected to obliquely incident plane waves with harmonics to the time variable 
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 is assumed throughout this paper for the waves with specified circular frequency ( and wave-number ky which is the y-component wave-number of the incident waves. The wave-number ky for different types of incident waves are listed in the follows  
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Incident S-wave: 
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Incident Rayleigh wave: 
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 is with respect to the Rayleigh wave velocity 
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As the incident wave impinges on the elastic inclusion, one part is transmitted into domains 
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 and 
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, and the other is reflected back into the half-space. Hence the wave field in the half-space comprises the free field 
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. Then the total displacement field for the half-space can be expressed as
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The scattered field can be represented by suitable independent sets of basis functions satisfying the free-surface and radiation conditions at infinity. The basis functions adopted in this study are singular solutions of the responses of a half-space subjected to moving P-, SV- and SH-wave source potentials and their high-order terms, and are expressed in integral forms. The detailed derivation of those basis functions is available in [16]. The scattered wave field of the exterior region is expressed as
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where 
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 and h denotes the wave fields generated by moving P-, SV- and SH-wave source potentials, respectively. The subscript m ranges from 0 to N in which N is the approximated order. Similarly, the displacement field of the free field can be expanded into a series of regular basis function as 
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where 
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where 
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where 
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For 
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(SV-wave source potential), components of 
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For 
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where 
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where 
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 are Chebyshev polynomials of the first and second kinds, respectively. The basis functions 
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In which 
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 is the surface of volume 
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where 
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 can be any arbitrary closed bounded surface that outside the domain surface 
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where 
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 can be any arbitrary closed surface inside domain 
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 as described by Figure 2.
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Figure 2  Domains and relative surfaces of this problem.
3. Transition Matrix Formulism

If the elastic half-space is assumed to be continuous with the elastic inclusion, the continuity conditions on the interface 
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where 
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In the case that domain 
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 is a cavity, then the boundary conditions are 
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In this study, domain 
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 is presumed to be a cavity. This is simply because to represent a buried lined pipeline or a pipeline by assuming domain 
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 as a cavity is more meaningful and has more applications than as an elastic medium. 

If the volume in Eq. (11) is the domain bounded by surfaces 
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Substituting Eqs. (2) and (3) into the right-hand side of Eq. (21), and applying the orthogonality condition of Eq. (12), Eq.(21) can then be reduced to the following form
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 EMBED Equation.3  [image: image124.wmf]                   (22)

From the continuity conditions of Eq.(18), the coefficient vector 
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where 
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For the same domain bounded by surfaces 
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Substituting the expansion form of Eq. (3) of free-field displacement into the right-hand side of Eq. (26) and using the orthogonality condition, Eq.(26) can be reduced to the following form 
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where the matrix 
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 is defined as 
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In addition, from the continuity conditions of Eq.(18), the matrix 
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 is reduced to 
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In which 
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Now, For volume V in Eq. (11) enclosed by surfaces 
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Applying the orthogonality condition of Eq.(15), Eq.(32) can be reduced to


[image: image151.wmf](

)

(

)

(

)

(

)

2

11

11

nn

S

dS

bb

++

éù

×-×

ëû

ò

tutu



 EMBED Equation.3  [image: image152.wmf](

)

(

)

(

)

(

)

(

)

1111

2

_

,

ˆ

ˆ

mnnm

m

S

m

bdS

abba

a

a

éù

=×-×

ëû

å

ò

tutu



 EMBED Equation.3  [image: image153.wmf](

)

(

)

12

,

mnm

m

Eb

aba

a

=-

å

        (33)

where matrix 
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and Eq.(33) can be rewritten as 
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If domain 
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 is a cavity, from the boundary conditions of Eq. (20), we can obtain the relation between coefficients 
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where 
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Now, for the domain enclosed by surfaces 
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From the boundary conditions of Eq.(20), Eq.(38) becomes
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where 
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In summary, the relations between the unknown coefficients 
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 in Eqs. (23), (29), (36) and (39) can be expressed in matrix forms as the follows 
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Then the relation between the coefficient vector 
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where 
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This is the T-matrix relating the coefficient of the scattered waves to that of the free field for the elastic half-space with layered inclusions. 
4 Numerical Examples
The problems of a cylindrical pipeline with 
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 buried at different depths and subjected to incident plane waves are investigated in the follows. 
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 are the outer and inner radius of the pipeline, respectively. For all cases included in this study, the Poisson ratio for the pipeline and for the elastic half-space were assumed to be 0.2 and 1/3, respectively. The ratio of density of the pipeline to the half-space was taken as 
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. The ratio of shear modulus was set to 
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. The excitation frequency of incident wave was normalized as 
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 to be consistent with other studies. Basis functions of the half-space are calculated by the method of steepest descend [16]. The choice of approximate order N of wave series are based on the convergence of calculated results. In all numerical examples of this study, N=5 is enough to have a satisfactory results as compared with those results with more high order terms. For the calculations of surface integrals in Equations (24), (31), (34), (37), and (40) are accomplished by Simpson’s rule with integration points M =61. 
To verify the validity and accuracy of the T-matrix formulation in this study, the plane strain cases
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 were first studied and the results obtained were compared with those obtained by Yeh et al. [17]. Figures 3 and 4 show the calculated displacement amplitudes and hoop stresses along the inner surface of the cylindrical pipeline buried at different depths respectively subjected to incident P-wave and SV-wave (
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). The results determined by the least square method (Yeh et al., [17]) are denoted by circles in these figures, and it can be seen that the agreement is excellent. For the responses of a buried pipeline subjected to obliquely incident waves, Figs. 5 and 6 show the displacements and stresses along the inner surface of the cylindrical pipeline subjected to obliquely incident P-wave and SH-wave (
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. In these figures, the displacement 
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) is normalized with respect to the amplitude 
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 of incident wave, and the stress fields are normalized with respect to the factor 
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. The responses in Figs. 5 and 6 should be symmetric with respect to the vertical z-axis (
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o

q

=

 and 
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) because the wave is propagating in the direction of the axis of the pipeline. The effect of the embedment depth of the pipeline on the response can also be found in Figs. 5 and 6. Obviously, the embedment depth has a significant effect on the response and, particularly, on the case of incident P-wave.
5 Conclusions

The T-matrix, which relates the unknown scattering coefficients to the free-field coefficients, can be derived directly by the orthogonality conditions as well as the continuity conditions in the interface between the buried two-layered scatterer and the surrounding half-space. The basis functions and their regular parts are constructed in a systematic manner for the problems of obliquely incident waves. The results for wave scattering of a buried pipeline subjected to incident plane waves were calculated and verified. Although only a limited number of numerical results are presented in this paper, applications of the proposed method may be extended to problems of wave scattering in multiple layered scatter, embedded cavities, surface scatter and other problems of oblique incidence. In addition to elastic waves, the proposed T-matrix method could also be applicable to coupled field problems, such as thermoelasticity and poroelasticity.
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Figure 3 Dynamic responses for (a) horizontal displacements, (b) vertical displacements, and (c) hoop stresses along inner surface of a buried tunnel subjected to incident P-wave with 
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Figure 4 Dynamic responses for (a) horizontal displacements, (b) vertical displacements, and (c) hoop stresses along inner surface of a buried pipeline subjected to incident SV-wave with 
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Figure 5  Dynamic responses for (a)-(c) displacement amplitude, and (d)-(f) stress amplitudes along inner surface of a buried pipeline subjected to obliquely incident P-wave with 
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Figure 6  Dynamic responses for (a)-(c) displacement amplitude, and (d)-(f) stress amplitudes along inner surface of a buried pipeline subjected to obliquely incident SH-wave with 
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