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Abstract The study of defected axisymmetric structures is among important industrial applications. 
Detection of such defects, and or the evaluation of intrinsic parameter leads to a better design of 
those mechanical parts. The first part of the conducting research concerns the evaluation of the 
stress intensity factors (SIF) in axisymmetric elastic structures with internal or circumferential 
edge crack using the dual boundary element method (DBEM). Its application to axisymmetric 
problems requires a stress (hypersingular) boundary integral equation together with the displace-
ment (standard) boundary integral equation, one applied to each side of the crack. This process 
requires a great algebraic handling due to the complexity of the axisymmetric kernels. Crack 
surfaces are discretized with discontinuous quadratic boundary elements to satisfy the existence 
of the finite-part integrals and the continuity of the unit outward normal at corners. SIF evaluation 
is done using displacements extrapolation at the crack tip. Examples of axisymmetric geometries 
are analyzed and obtained results are compared to others researchers. 

Keywords: Boundary Element Method, Cauchy Principal Value, Hadamard Finite-Part, Fracture 
Mechanics, Hypersingular Integrals, Linear Elasticity. 

1. Introduction 

The boundary element method has been successfully applied to axisymmetric 
elasticity during several years, starting with the works of Kermanidis [1], Mayr [2] 
and Cruse et al. [3]. Dual integral equations were introduced by Watson [4], in a 
formulation based on the normal derivative of the displacement equation in plain 
strain. Hong and Chen [5] presented a general formulation, which incorporates the 
displacement and the traction boundary integral equations. An effective numerical 
implementation of the two dimensional DBEM for solving general linear elastic 
fracture mechanics problems with finite-parts defined was presented by Portela  
et al. [6]. An axisymmetric hypersingular boundary integral formulation for elasticity 
problems was developed in De Lacerda and Wrobel [7, 8]. Hypersingular boundary 
integral equations (HBIE) are derived from a differentiated version of the standard 
BIE, considering the asymptotic behaviour of their singular and hypersingular 
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kernels with evaluation of stress intensity factors in, and propagation of cracks inside 
cylinder. The strongly singular and hypersingular equations in this formulation are 
regularized by De Lacerda and Wrobel by employing the singularity subtraction 
technique. Mukherjee [9] has revisited the same problem and interpreted the HBIE 
in a finite part sense [10]. The DBEM is a well-established method for the analysis 
of crack problems [11–14]. Its application to axisymmetric geometries requires the 
use of the stress boundary integral equation together with the displacement boundary 
integral equation. 

2. Standard and hypersingular boundary integral equations  
for axisymmetric elastic solid 

Axisymmetric geometry is obtained by a 2п rotation of a two-dimensional body 
about z-axis. Under an axisymmetric loading, displacements and stresses are 
independent of the hoop direction. As consequence of this axisymmetry, a 3-D 
domain is reduced to a 2-D one, and directions r and z are sufficient to define the 
problem. In the absence of body forces, the axisymmetric elasticity equation for an 
internal point of a linear elastic solid Ω with boundary Г has the following form: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) Γ⋅∫−Γ⋅∫=
ΓΓ

d Qu QPT Qd Qt QPU QPu jijjiji ,, αα  (1) 

With i, j= r, z, α(Q)=2пr(Q). 

P is the internal source point where the ring unit load is applied; Q is the 
integrating field point. r(Q): is the radial distance from the field point to the axis of 
symmetry and ur, uz and tr, tz are the radial and axial displacements and tractions 
respectively. Uij and Tij are the axisymmetric displacement and traction kernels, 
which are functions of the complete elliptic integrals of the first and second kind 
K and E [15]. Details on the singular behaviour of U and T are presented in 
reference [7]. When the source point is on Г and out of the axis of symmetry, U is 
a combination of regular and weak-singular (O ln r ) terms, whereas T includes 
regular, weak, and strong singular terms (O 1r − ). The case where P is on the axis 
of symmetry is still discussed in [7], but not reported here, since we consider an 
axial hollow geometry. For a source point P on the boundary Г, the displacement 
boundary integral equation (Eq. 1), in a limiting process, can be written for a 
smooth boundary: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) Γ⋅∫−Γ⋅∫=
ΓΓ

d Qu QPT Qd Qt QPU QPu jijjiji ,,
2
1 αα  (2) 
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The first integral on the right-hand side of Eq. (2) is of Riemman type since the 
integrand has at most a logarithmic singularity, while the second one is evaluated 
as a Cauchy Principal Value integral, (the sign on the second integral indicates 
CPV). An alternative approach to the solution of axisymmetric elasticity problems 
comes from the Somigliana identity for stresses. Differentiating the displacement 
equation (Eq. 2) with respect to directions r and z, substituting into the linear strain-
displacement equations and applying Hook’s law, an integral equation for stresses 
at boundary points can be obtained: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) Γ⋅∫−Γ⋅∫=
ΓΓ

d Qu QP SQd Qt QPD QP kijkkijkij ,,
2
1 αασ  (3) 

With i, j, k = r, z. Kernels Dijk and Sijk, are linear combinations of derivatives of 
Uij and Tij, and consequently, complete elliptic functions K and E. The first 
integral on the right-hand side of Eq. (3) is evaluated in the CPV sense, while the 
second one is also improper and must be evaluated in the Hadamard Finite-Part 
sense, (the sign on the second integral indicates HFP). Multiplying both sides of 
Eq. (3) by the normal components at the source point nj(P) leads to the traction 
equation: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) Γ⋅∫−Γ⋅∫=
ΓΓ

d Qu QP SQnd Qt QPD QnPt kijkjkijkji ,,
2
1 αα  (4) 

3. The dual boundary element method 

The advantage of the DBEM in solving fracture mechanics problems comes from 
the fact that only boundaries are discretized, which considerably reduces the size 
of systems to be solved. Crack propagation analysis is integrated without difficulties 
since only crack increments are added to the mesh. Discontinuous quadratic elements 
are employed for the discretization of both geometries (non-crack boundaries, and 
the crack itself). Discontinuous elements have their edge nodes shifted towards the 
centre of the element in order to satisfy, smoothness at the boundary nodes, 
continuity of the displacement derivatives, and boundary curvature at these points. 
Every crack element has two sides on witch equations (2) and (4) are applied to 
the elements of each side. A discretized system of equations is obtained where 
integrals over each element are evaluated. 
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4. Numerical treatments 

The evaluation of different integrals that arise in Eqs. (2) and (4) depends on their 
singularity. For regular integrals, Gaussian quadrature is straightforward, whereas 
for singular ones, special treatments are required depending on the singularity 
type. For weak singular integrals, a local transformation with Gaussian quadrature 
is employed to improve the accuracy of their evaluation [16]. The singularity 
subtraction method [6] is used for improper integrals (strong singular and hyper-
singular). In the neighborhood of a collocation node, the regular part of the 
integrand is expressed as a Taylor’s expansion of sufficient terms to isolate the 
singularity. The original improper integral is thus transformed into a sum of regular 
integral and an integral of a singular function. Standard Gaussian quadrature is 
then used for numerical evaluation of the regular integral, while the singular 
function is evaluated analytically. Elliptic functions K and E are approximated by 
polynomial expressions [15]. 

4.1. The stress intensity factors evaluation 

Near the crack tip, the elastic field is defined by an infinite series expansion that 
can be decoupled into mode I and II components [17]. Considering only the first 
term of the expansion, the displacement field on the crack surfaces is identical to 
the plane strain one. In a polar coordinate system centred at the crack tip, one can 
write: 

2 1
4(1 )( ) ( )

2I
ru u K

G
νθ π θ π

π
−

= − = − =  (5) 

1 1
4(1 )( ) ( )

2II
ru u K

G
νθ π θ π

π
−

= − = − =  (6) 

where G is the shear modulus, and ν the Poisson’s ratio, KI and KII are the stress 
intensity factors for the deformation modes I and II respectively, they can be 
computed from Eqs. (5) and (6), when the displacements on the crack surfaces are 
known. 

4.2. Crack propagation 

The crack growth direction is determined by the maximum principal stress criterion, 
which stipulates that the crack will grow perpendicularly to the principal stress 
direction at the crack tip. If KI and KII are known, this direction is calculated by the 
following expression: 
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( )1 212 8 /
4 I IItg k k k K Kθ − ⎡ ⎤= ± + =⎢ ⎥⎣ ⎦

 (7) 

where θ is measured from the crack axis in front of the crack tip. 

Once the growth direction is known, an increment of length δa is added to the 
crack at each tip. This procedure constitutes an extremely easy re-meshing approach, 
since the new increments contributes with a few extra rows and columns to the 
global system of equations, quickly assembled. 

5. Numerical applications 

5.1. Evaluation of the convergence of the method 

Different cases of axisymmetric cracks in a thick-walled cylinder are considered, 
using KSP code [19], with implementation of a new module for axisymmetric 
DBEM. The convergence of results using the crack displacement extrapolation is 
apparent from Fig. 1 as the number n of boundary elements increase. Less than 1% 
error was achieved with n = 32 for the two cases (internal and external circumferential 
crack) confirming the possibility to carry out good results using smutty meshes. 

 
Fig. 1. Evaluation of the error according to the full number of elements used to discretize the 
geometry 

5.2. Axially loaded thick-walled cylinder with circumferential crack 

Consider a thick-walled cylinder with internal radius Ri, external radius Re, height 
H and material properties E = 70,000 MPa and ν = 0.3, subjected to a tensile axial 
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stress σ = 1.0. The cylinder contains a circumferential crack (internal or external), 
with radius a perpendicular to the axis of symmetry at mid-height position. 

Normalized KI is computed for three values of the ratio Ri/Re and results are 
compared to those of the reference [18]. 

 
Fig. 2. Comparison of normalized stress intensity factor of an internal circumferential crack in a 
thick-walled cylinder 

 
Fig. 3. Comparison of normalized stress intensity factor of an external circumferential crack in a 
thick-walled cylinder 

A very close agreement can be seen for the two smaller values of the ratio, but 
the difference tends to increase as the thickness of the cylinder decreases for 
internal crack case (Figs. 2 and 3). 

 

440 



Numerical Simulation of the Behaviour of Cracks in Axisymmetric Structures 

 

5.3. Cone crack propagation 

In this example, simulation of the propagation of a centred internal cone crack, in 
a thick-walled cylinder is illustrated under different static loading conditions. Data 
for this example are: Ri/Re = 0.4, H = 4a, initial crack length a/t = 1/12 and the 
cone crack is at 45°, E = 70,000 and ν = 0.3. 

The boundary mesh includes 20 discontinuous quadratic elements at each 
segment. At the crack, 10 equal discontinuous quadratic elements were initially 
located on each side. At each increment, the crack grows by two elements (one at 
each tip) of the same type and size of those used for the initial crack. For each load 
case, a crack trajectory is obtained, for a total of 20 crack increments (Fig. 4a–c). 
Similar previous results could not be found in literature for comparison but the 
present results are regular with each applied load. 

  

Initial Crack 

(b)   Tensile radial load 

(a) Tensile axial load

(c)   Combined tensile axial and  compressive radial load 

Initial Crack 

Initial Crack

Final crack trajectory Amplified deformed shape 

z 

r  
Fig. 4. Crack propagation of a cone crack inside a thick-walled cylinder under three different 
loading conditions 
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6. Conclusions 

Cracked axisymmetric elastic solids have been analyzed using the dual boundary 
element method. The DBEM incorporates two independent boundary integral 
equations with their corresponding fundamental solutions. 

Monomial transformation was applied to weak singular integrals, to improve 
precision with a reduced number of Gauss points. Singularity subtraction technique 
was applied to strong singular and hypersingular kernels, to allow evaluation of 
the Hadamard and Cauchy principal Value integrals.The use of discontinuous 
quadratic boundary element ensure continuity of the strains at the collocation 
nodes and then, the existence of the finite-part integrals. Stress intensity factors for 
circumferential or internal cracks were evaluated using the displacement extrapolation 
technique, and results were compared to analytical solutions. Accurate results 
were obtained for all treated applications. 
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