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Abstract The solution of eigenvalue problems for partial differential operators by
using boundary integral equation methods usually involves some Newton potentials
which may be resolved by using a multiple reciprocity approach. Here we propose
an alternative approach which is in some sense equivalent to the above. Instead of a
linear eigenvalue problem for the partial differential operator we consider a nonlin-
ear eigenvalue problem for an associated boundary integral operator. This nonlinear
eigenvalue problem can be solved by using some appropriate iterative scheme, here
we will consider a Newton scheme. We will discuss the convergence and the boundary
element discretization of this algorithm, and give some numerical results.

Mathematics Subject Classification (2000) 65N25 · 65N38

1 Introduction

As a model problem we consider the interior Dirichlet eigenvalue problem of the
Laplace operator,

−�uλ(x) = λuλ(x) for x ∈ �, uλ(x) = 0 for x ∈ � = ∂�, (1.1)

where � ⊂ R
3 is a bounded Lipschitz domain. The variational formulation of (1.1)

reads as follows: find uλ ∈ H1
0 (�) such that
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∫

�

∇uλ(x) · ∇v(x)dx = λ

∫

�

uλ(x)v(x)dx (1.2)

is satisfied for all v ∈ H1
0 (�). It is well known that the eigenvalues are countable,

and that there is a set of eigenfunctions {uλk } which forms a complete orthonormal
system in L2(�) and in H1

0 (�), respectively. Moreover, all eigenvalues λk have a
finite multiplicity, and we have 0 < λ1 ≤ λ2 ≤ . . . as well as λk → ∞ as k → ∞.

A finite element approximation of the variational formulation (1.2) results in the
linear algebraic eigenvalue problem

Khuλk
= λk Mhuλk

(1.3)

where Kh is the finite element stiffness matrix, and Mh is the related mass matrix.
For a numerical analysis of this approach, and for appropriate eigenvalue solvers for
(1.3), see, for example, [2,6,12,19].

Instead of a finite element approach, which always requires a discretization of
the computational domain �, we will use boundary integral formulations and related
boundary element methods [20,23] to solve the eigenvalue problem (1.1). Then, only
a discretization of the boundary � = ∂� is required, and when using fast boundary
element methods [17] the computational complexity is lower than in a finite element
approach.

Considering the eigenvalue problem (1.1) as a Poisson equation with a certain
right hand side λuλ, we obtain a boundary–domain integral formulation [8,11] to be
solved. By using the so-called Multiple Reciprocity Method (MRM) [8] it is possible
to approximate the volume integrals by some boundary integrals. Then, a polynomial
eigenvalue problem has to be solved. Since our approach is in some sense equivalent
with the latter, we first describe the multiple reciprocity method.

By using the fundamental solution of the Laplace operator,

U∗(x, y) = 1

4π

1

|x − y| for x, y ∈ R
3,

the solution of the eigenvalue problem (1.1) is given by the representation formula

uλ(x) =
∫

�

U∗(x, y)tλ(y)dsy + λ

∫

�

U∗(x, y)uλ(y)dy for x ∈ � (1.4)

where tλ(x) = nx · ∇uλ(x), x ∈ �, is the associated normal derivative of the eigenso-
lution uλ. The basic idea of the multiple reciprocity method is to rewrite the volume
integral in the representation formula (1.4) by using integration by parts recursively.
The fundamental solution of the Laplace operator can be written as

U∗(x, y)= 1

4π

1

|x−y| =�y

(
1

8π
|x − y|

)
= �yU∗

1 (x, y), U∗
1 (x, y) = 1

8π
|x − y|.
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Hence, by using Green’s second formula, we obtain

∫

�

U∗(x, y)uλ(y)dy =
∫

�

�yU∗
1 (x, y)uλ(y)dy

=
∫

�

U∗
1 (x, y)�yuλ(y)dy −

∫

�

U∗
1 (x, y)

∂

∂ny
uλ(y)dsy

+
∫

�

uλ(y)
∂

∂ny
U∗

1 (x, y)dsy

= −λ
∫

�

U∗
1 (x, y)uλ(y)dy −

∫

�

U∗
1 (x, y)tλ(y)dsy

when uλ is a solution of the eigenvalue problem (1.1). The representation formula
(1.4) is therefore equivalent to

uλ(x) =
∫

�

[
U∗(x, y)− λU∗

1 (x, y)
]

tλ(y)dsy − λ2
∫

�

U∗
1 (x, y)uλ(y)dy, x ∈ �.

By rewriting the volume integral in the same way as above recursively, we get for
x ∈ � the representation formula

uλ(x)= 1

4π

∫

�

1

|x − y|

[
n∑

k=0

(−1)kλk 1

(2k)! |x − y|2k

]
tλ(y)dsy + Rn(x, uλ, λ) (1.5)

where the remainder Rn(x, uλ, λ) is given by

Rn(x, uλ, λ) = (−1)nλn+1 1

(2n)!
1

4π

∫

�

|x − y|2n−1uλ(y)dy.

In the approach of the multiple reciprocity method (MRM) the remainder Rn is
neglected [7,8]. Then, due to the homogeneous Dirichlet boundary condition in (1.1),
the polynomial eigenvalue problem

1

4π

∫

�

1

|x − y|

[
n∑

k=0

(−1)k λ̃k 1

(2k)! |x − y|2k

]
t̃λ(y)dsy = 0 for x ∈ � (1.6)

is to be solved. In particular when taking the limit for n → ∞ this results in the
nonlinear eigenvalue problem

1

4π

∫

�

cos(
√
λ|x − y|)

|x − y| tλ(y)dsy = 0 for x ∈ �. (1.7)
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Let us now describe an alternative approach to derive the nonlinear eigenvalue problem
(1.7). For λ = κ2 > 0 we can write the interior Dirichlet eigenvalue problem (1.1) as
a Helmholtz equation with homogeneous Dirichlet boundary conditions,

−�uκ(x)− κ2uκ(x) = 0 for x ∈ �, uκ(x) = 0 for x ∈ �. (1.8)

Solutions of the boundary value problem (1.8) are given by the representation formula

uκ(x) =
∫

�

U∗
κ (x, y)t (y)dsy for x ∈ � (1.9)

where the fundamental solution of the Helmholtz operator is given by

U∗
κ (x, y) = 1

4π

eiκ|x−y|

|x − y| for x, y ∈ R
3. (1.10)

Applying the interior trace operator to the representation formula (1.9), we obtain
a boundary integral equation to find wave numbers κ ∈ R+ and related nontrivial
eigensolutions t ∈ H−1/2(�) such that

∫

�

U∗
κ (x, y)t (y)dsy = 0 for x ∈ �. (1.11)

Since the eigenfunctions uλ of the eigenvalue problem (1.1) and therefore the solutions
uκ of the boundary value problem (1.8) are real valued, instead of (1.11) we have to
find nontrivial solutions (t, κ) ∈ H−1/2(�)× R satisfying

1

4π

∫

�

cos(κ|x − y|)
|x − y| t (y)dsy = 0 for x ∈ � (1.12)

and

1

4π

∫

�

sin(κ|x − y|)
|x − y| t (y)dsy = 0 for x ∈ �. (1.13)

Note that (1.12) corresponds to (1.7).
Summarizing the above we conclude that for any solution (uλ, λ) ∈ H1

0 (�) × R

of the eigenvalue problem (1.1) the nonlinear eigenvalue problem (1.12) is satisfied
where the wave number is κ = √

λ and t (x) = nx · ∇uλ(x), x ∈ �, is the correspond-
ing normal derivative. On the other hand, if (t, κ) ∈ H−1/2(�) × R is a solution of
the nonlinear eigenvalue problem (1.12), the function

uκ(x) = 1

4π

∫

�

cos(κ|x − y|)
|x − y| t (y)dsy for x ∈ �
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A boundary element method for the Dirichlet eigenvalue problem of the Laplace operator 285

solves the eigenvalue problem (1.1). Hence, the linear eigenvalue problem (1.1) is
equivalent to the nonlinear eigenvalue problem (1.12). A boundary element approxi-
mation of the eigenvalue problem (1.11) would lead to a polynomial eigenvalue prob-
lem, see [10] for a collocation approach. Here we will first consider a Newton scheme
to solve (1.12) and then we will apply a Galerkin boundary element discretization.

In Sect. 2, we consider an iterative solution approach for the nonlinear eigenvalue
problem (1.12), which is an analogon of the inverse iteration for linear and for nonlin-
ear matrix eigenvalue problems, see, e.g., [16,18,24]. In fact, we will apply a Newton
scheme to solve the nonlinear equation where we introduce an appropriate scaling con-
dition in H−1/2(�). In particular we will prove the invertibility of the related Fréchet
derivative. However, our theoretical approach is restricted to simple eigenvalues only.
A Galerkin boundary element method to solve the nonlinear eigenvalue problem is
formulated and analyzed in Sect. 3, where we also prove optimal convergence for
the approximate solutions. Numerical results given in Sect. 4 confirm not only the
theoretical results, the experiments indicate that our approach also works for multiple
eigenvalues.

2 Application of Newton’s method

The nonlinear eigenvalue problem (1.12) can be written as

(Vκ t)(x) = 1

4π

∫

�

cos(κ|x − y|)
|x − y| t (y)dsy = 0 for x ∈ � (2.1)

where for fixed κ the operator Vκ : H−1/2(�) → H1/2(�) is linear and bounded, see,
e.g., [15,20,23]. To normalize the eigensolutions t ∈ H−1/2(�) of (2.1) we introduce
a scaling condition by using an equivalent norm in H−1/2(�),

‖t‖2
V = 〈V t, t〉� = 1

4π

∫

�

t (x)
∫

�

1

|x − y| t (y)dsydsx = 1, (2.2)

where V : H−1/2(�) → H1/2(�) is the single layer potential of the Laplace operator.
Note that we have, see for example [23],

〈V t, t〉� ≥ cV
1 ‖t‖2

H−1/2(�)
, ‖V t‖H1/2(�) ≤ cV

2 ‖t‖H−1/2(�) for all t ∈ H−1/2(�).

Now we have to find solutions (t, κ) ∈ H−1/2(�) × R of the nonlinear eigenvalue
problem

F1(t, κ) = (Vκ t)(x) = 0 for x ∈ �, F2(t, κ) = 〈V t, t〉� − 1 = 0. (2.3)
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Let us define the operator F : H−1/2(�)× R → H1/2(�)× R as

F(t, κ) =
(

F1(t, κ)

F2(t, κ)

)
=

⎛
⎜⎝

1

4π

∫

�

cos(κ|x − y|)
|x − y| t (y)dsy

〈V t, t〉� − 1

⎞
⎟⎠ . (2.4)

Then, to obtain eigensolutions of the scaled eigenvalue problem (2.3) we have to find
solutions (t, κ) ∈ H−1/2(�)× R of the nonlinear equation

F(t, κ) = 0 (2.5)

which is to be solved by applying Newton’s method. For the Fréchet derivative of
F(t, κ) we obtain

F′(t, κ) =
(

Vκ −Aκ t
2〈V t, ·〉� 0

)
: H−1/2(�)× R → H1/2(�)× R (2.6)

where

(Aκ t)(x) = 1

4π

∫

�

sin(κ|x − y|)t (y)dsy for x ∈ �.

As for the Laplace single layer potential, see for example [15,23], we conclude that
the boundary integral operator Aκ : H−1/2(�) → H1/2(�) is bounded, i.e. for all
κ ∈ R we have

‖Aκ t‖H1/2(�) ≤ cAκ‖t‖H−1/2(�) for all t ∈ H−1/2(�). (2.7)

When applying a Newton scheme to find solutions (t∗, κ∗) ∈ H−1/2(�) × R of the
nonlinear equation (2.5), the new iterates (tn+1, κn+1) ∈ H−1/2(�)×R are the unique
solutions of the linear operator equation

F′(tn, κn)

(
tn+1 − tn
κn+1 − κn

)
+ F(tn, κn) = 0 (2.8)

where for the previous iterates we assume (tn, κn) ∈ U�(t∗, κ∗) where � > 0 is
sufficiently small, i.e.

‖t∗ − tn‖2
H−1/2(�)

+ |κ∗ − κn|2 ≤ �2. (2.9)

Note that the linearized equation (2.8) is equivalent to a saddle point problem to find
(tn+1, κn+1) ∈ H−1/2(�)× R such that
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A boundary element method for the Dirichlet eigenvalue problem of the Laplace operator 287

〈Vκn tn+1, w〉� − κn+1〈Aκn tn, w〉� = −κn〈Aκn tn, w〉�,
2〈V tn, tn+1〉� = 〈V tn, tn〉� + 1

(2.10)

is satisfied for all w ∈ H−1/2(�).
The local convergence of the Newton method (2.8) to solve the nonlinear eigen-

value problem (2.3) is guaranteed if the Fréchet derivative F′(t∗, κ∗) is invertible for
the solution (t∗, κ∗) of F(t, κ) = 0. For this we first show that the Fréchet derivative
F′(t, κ) satisfies a Gårdings inequality.

Lemma 2.1 The Fréchet derivative F′(t, κ) : H−1/2(�) × R → H1/2(�) × R is
coercive for all (t, κ) ∈ H−1/2(�)× R, i.e. there exists a compact operator

C(t, κ) : H−1/2(�)× R → H1/2(�)× R

such that the following Gårdings inequality is satisfied,

〈(F′(t, κ)+ C(t, κ))(w, α), (w, α)〉 ≥ c
[
‖w‖2

H−1/2(�)
+ |α|2

]
(2.11)

for all (w, α) ∈ H−1/2(�)× R.

Proof For

C(t, κ)
(
w

α

)
:=

(
C1(w, α)

C2(w, α)

)
=

(
(V − Vκ)w + αAκ t

−2〈w, t〉� + α

)

we obtain

F′(t, κ)+ C(t, κ) =
(

V 0
0 1

)

and therefore Gårdings inequality (2.11) is fulfilled since the Laplace single layer
potential V is H−1/2(�)–elliptic. It remains to show that C(t, κ) is compact.

We first note that the operator V −Vκ : H−1/2(�) → H1/2(�) is compact, see, e.g.,
[20]. For a fixed t ∈ H−1/2(�) also the operator αAκ t : R → H1/2(�) is compact.
Hence,

C1(w, α) = (V − Vκ)w + αAκ t, C1 : H−1/2(�)× R → H1/2(�)

is compact. Finally, the operator C2 : H−1/2(�) × R → R is compact since every
linear and bounded operator which maps into a finite dimensional space is compact.

��
Since for all (t, κ) ∈ H−1/2(�)×R the Fréchet derivative F′(t, κ) satisfies a Gårdings
inequality, it is sufficient to investigate the injectivity of F′(t∗, κ∗).
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Lemma 2.2 Let (t∗, κ∗) ∈ H−1/2(�)× R be a solution of F(t, κ) = 0. Assume

(A1) κ∗ is a geometric simple eigenvalue of Vκ t = 0,
(A2) Aκ∗ t∗ /∈ R(Vκ∗).
Then F′(t∗, κ∗) is injective.

Proof Consider

F′(t∗, κ∗)(w, α) =
(

Vκ∗w − αAκ∗ t∗
2〈V t∗, w〉�

)
=

(
0
0

)
(2.12)

for some (w, α) ∈ H−1/2(�)× R. In particular we have

Vκ∗w = αAκ∗ t∗.

From the assumption (A2), Aκ∗ t∗ /∈ R(Vκ∗), it follows that α = 0, and therefore
Vκ∗w = 0. Hence we obtain that w = ωt∗ for some ω ∈ R, since we assume in (A1)
that κ∗ is a simple eigenvalue of Vκ t = 0. Then we conclude, by using (2.12),

0 = 2〈V t∗, w〉� = 2〈V t∗, ωt∗〉� = 2ω〈V t∗, t∗〉�,

which implies that ω = 0, since V is H−1/2(�)-elliptic. Hence,w ≡ 0. Thus we have
(w, α) = (0, 0), which proves the assertion. ��
Remark 2.3 In the theory of nonlinear eigenvalue problems with holomorphic param-
eter dependence, see, e.g., [9,14], the assumption (A2) is equivalent to the property that
the algebraic multiplicity of the eigenvalue is the same as the geometric multiplicity.
For the Dirichlet Laplacian eigenvalue problem this assumption is fulfilled [1]. So far
it is not proven if this property holds also for the equivalent eigenvalue problem of the
associated boundary integral operator. However, numerical experiments indicate, by
using results of Karma [9], that the assumption (A2) is fulfilled also for the boundary
integral eigenvalue problem.

Corollary 2.4 Let (t∗, κ∗) be a solution of F(t, κ) = 0 and (A1) and (A2) be satisfied.
Then F′(t∗, κ∗) is invertible. Since F′(t, κ) is continuous in (t, κ) ∈ H−1/2(�) × R

it follows that also F′(t, κ) is invertible for all (t, κ) ∈ H−1/2(�) × R ∩ U�(t∗, κ∗)
for some � > 0.

Summarizing the above we now can formulate the main result of this section.

Theorem 2.5 Let (t∗, κ∗) be a solution of F(t, κ) = 0 and (A1) and (A2) be satisfied.
Then F′(t∗, κ∗) is invertible and Newton’s method converges for all initial values in
a sufficiently small neighborhood U�(t∗, κ∗) to (t∗, κ∗).

Remark 2.6 For multiple eigenvalues κ∗, the Fréchet derivative F′(t∗, κ∗) is not
invertible, because F′(t∗, κ∗) is not injective. Nevertheless, Newton’s method may
still converge [4,5]. The convergence rate may then be smaller and the convergence
domain is not a small neighborhood of the solution but rather a restricted region which
avoids the set on which F′ is singular.
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3 A boundary element method

Let us recall the variational formulation (2.10) to find (tn+1, κn+1) ∈ H−1/2(�)× R

such that

〈Vκn tn+1, w〉� − κn+1〈Aκn tn, w〉� = −κn〈Aκn tn, w〉�,
2〈V tn, tn+1〉� = 〈V tn, tn〉� + 1

(3.1)

is satisfied for allw ∈ H−1/2(�). For a Galerkin discretization of (3.1) we first define
trial spaces S0

h(�) of piecewise constant basis functions ψk which are defined with
respect to a globally quasi–uniform boundary element mesh of mesh size h. Then the
Galerkin discretization of (3.1) reads as follows: find (tn+1,h, κn+1,h) ∈ S0

h(�) × R

such that

〈Vκn tn+1,h, wh〉� − κn+1,h〈Aκn tn, wh〉� = −κn〈Aκn tn, wh〉�,
2〈V tn, tn+1,h〉� = 〈V tn, tn〉� + 1

(3.2)

is satisfied for all wh ∈ S0
h(�).

Theorem 3.1 Let (t∗, κ∗) be a solution of F(t, κ) = 0 and let the assumptions (A1)
and (A2) be satisfied. Let (tn, κn) ∈ U�(t∗, κ∗) be satisfied where � is appropriately
chosen as discussed in Corollary 2.4. Then, for a sufficiently small mesh size h <

h0, the Galerkin variational problem (3.2) has a unique solution (tn+1,h, κn+1,h) ∈
S0

h(�)× R satisfying the error estimate

‖tn+1−tn+1,h‖2
H−1/2(�)

+|κn+1−κn+1,h |2 ≤ c inf
wh∈S0

h (�)

‖tn+1−wh‖2
H−1/2(�)

. (3.3)

Proof Since the Fréchet derivative F′(tn, κn) is injective and satisfies a Gårding’s
inequality, the proof follows by applying standard arguments, see, e.g., [23]. ��

In practical computations we have to replace in (3.2) (tn, κn) ∈ H−1/2(�)× R by
previously computed approximations (t̂n,h, κ̂n,h) ∈ S0

h(�)× R. In particular we have
to find (t̂n+1,h, κ̂n+1,h) ∈ S0

h(�)× R such that

〈Vκ̂n,h t̂n+1,h, wh〉� − κ̂n+1,h〈Aκ̂n,h t̂n,h, wh〉� = −κ̂n,h〈Aκ̂n,h t̂n,h, wh〉�,
2〈V t̂n,h, t̂n+1,h〉� = 〈V t̂n,h, t̂n,h〉� + 1

(3.4)

is satisfied for all wh ∈ S0
h(�). To analyze the perturbed variational problem (3.4)

we also need to consider the continuous variational problem to find (t̂n+1, κ̂n+1) ∈
H−1/2(�)× R such that

123



290 O. Steinbach, G. Unger

〈Vκ̂n,h t̂n+1, w〉� − κ̂n+1〈Aκ̂n,h t̂n,h, w〉� = −κ̂n,h〈Aκ̂n,h t̂n,h, w〉�,
2〈V t̂n,h, t̂n+1〉� = 〈V t̂n,h, t̂n,h〉� + 1

(3.5)

is satisfied for all w ∈ H−1/2(�). Note that (3.4) is the Galerkin discretization of
(3.5).

Theorem 3.2 Let (t∗, κ∗) be a solution of F(t, κ) = 0 and let the assumptions (A1)
and (A2) be satisfied. Let (t̂n,h, κ̂n,h) ∈ S0

h(�)× R ∩ U�(t∗, κ∗) be satisfied where �
is appropriately chosen as discussed in Corollary 2.4. Then, for a sufficiently small
mesh size h < h0, the Galerkin variational problem (3.4) has a unique solution
(t̂n+1,h, κ̂n+1,h) ∈ S0

h(�)× R satisfying the error estimate

‖tn+1 − t̂n+1,h‖2
H−1/2(�)

+ |κn+1 − κ̂n+1,h |2

≤ c

[
‖tn − t̂n,h‖2

H−1/2(�)
+ |κn − κ̂n,h |2 + inf

wh∈S0
h (�)

‖tn+1 − wh‖2
H−1/2(�)

]
(3.6)

where the constant c depends on (t∗, κ∗), and on �.

Proof Since (3.4) is the Galerkin formulation of the variational problem (3.5), the
application of Theorem 3.1 gives the error estimate

‖t̂n+1 − t̂n+1,h‖2
H−1/2(�)

+ |κ̂n+1 − κ̂n+1,h |2 ≤ c inf
wh∈S0

h (�)

‖t̂n+1 − wh‖2
H−1/2(�)

and therefore, by using the triangle inequality twice,

‖tn+1 − t̂n+1,h‖2
H−1/2(�)

+ |κn+1 − κ̂n+1,h |2

≤ 2(1+c)

[
‖tn+1− t̂n+1‖2

H−1/2(�)
+|κn+1 − κ̂n+1|2

+ inf
wh∈S0

h (�)

‖tn+1−wh‖2
H−1/2(�)

]

where the constant c is given as in (3.3).
Recall that the variational formulation (3.1) is equivalent to the Newton equa-

tion (2.8),

F′(tn, κn)

(
tn+1 − tn
κn+1 − κn

)
+ F(tn, κn) = 0.

In the same way we can write the variational problem (3.5) as

F′(t̂n,h, κ̂n,h)

(
t̂n+1 − t̂n,h
κ̂n+1 − κ̂n,h

)
+ F(t̂n,h, κ̂n,h) = 0.
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Hence,

F′(tn, κn)

(
tn+1 − t̂n+1
κn+1 − κ̂n+1

)
= F′(tn, κn)

(
tn+1 − tn
κn+1 − κn

)
+ F′(tn, κn)

(
tn − t̂n,h
κn − κ̂n,h

)

+ [
F′(tn, κn)− F′(t̂n,h, κ̂n,h)

] (
t̂n,h − t̂n+1
κ̂n,h − κ̂n+1

)

+ F′(t̂n,h, κ̂n,h)

(
t̂n,h − t̂n+1
κ̂n,h − κ̂n+1

)

= F(t̂n,h, κ̂n,h)− F(tn, κn)+ F′(tn, κn)

(
tn − t̂n,h
κn − κ̂n,h

)

+ [
F′(tn, κn)− F′(t̂n,h, κ̂n,h)

] (
t̂n,h − t̂n+1
κ̂n,h − κ̂n+1

)
.

Since F′(tn, κn) : H−1/2(�) × R → H1/2(�) × R is assumed to be invertible, see
Corollary 2.4, we therefore have

(
tn+1 − t̂n+1
κn+1 − κ̂n+1

)
= [F′(tn, κn)]−1 [

F(t̂n,h, κ̂n,h)− F(tn, κn)
] +

(
tn − t̂n,h
κn − κ̂n,h

)

+ [F′(tn, κn)]−1 [
F′(tn, κn)− F′(t̂n,h, κ̂n,h)

] (
t̂n,h − t̂n+1
κ̂n,h − κ̂n+1

)

and thus

‖(tn+1 − t̂n+1, κn+1 − κ̂n+1)‖H−1/2(�)×R ≤ ‖(tn − t̂n,h, κn − κ̂n,h)‖H−1/2(�)×R

+ cF ′
∥∥[

F(t̂n,h, κ̂n,h)− F(tn, κn)
]∥∥

H1/2(�)×R

+ cF ′

∥∥∥∥
[
F′(tn, κn)− F′(t̂n,h, κ̂n,h)

] (
t̂n,h − t̂n+1
κ̂n,h − κ̂n+1

)∥∥∥∥
H1/2(�)×R

,

where cF ′ is the boundedness constant of [F′(tn, κn)]−1, and where cF ′ depends only
on t∗, κ∗, and on ρ. The second term can be written by using the definition (2.4) of
F as

∥∥[
F(t̂n,h, κ̂n,h)− F(tn, κn)

]∥∥2
H1/2(�)×R

= ‖F1(t̂h,h, κ̂n,h)−F1(tn, κn)‖2
H1/2(�)

+ |F2(t̂n,h, κ̂n,h)− F2(tn, κn)|2
= ‖Vκ̂n,h t̂n,h − Vκn tn‖2

H1/2(�)
+ |〈V t̂n,h, t̂n,h〉� − 〈V tn, tn〉�|2.
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With the mean value theorem we get

(Vκn − Vκ̂n,h )tn(x) = 1

4π

∫

�

cos(κn|x − y|)− cos(κ̂n,h |x − y|)
|x − y| tn(y)dsy

= (κ̂n,h − κn)
1

4π

∫

�

sin(κ∗
n |x − y|) tn(y)dsy

= (κ̂n,h − κn)(Aκ∗
n
tn)(x)

and therefore we obtain, by using (2.7),

‖Vκ̂n,h t̂n,h − Vκn tn‖H1/2(�) = ‖Vκ̂n,h (t̂n,h − tn)− (Vκn − Vκ̂n,h )tn‖H1/2(�)

≤ ‖Vκ̂n,h (t̂n,h − tn)‖H1/2(�) + |κ̂n,h − κn| ‖Aκ∗
n
tn‖H1/2(�)

≤ cVκ̂n,h
‖tn − t̂n,h‖H−1/2(�)+cκn ,ρ |κ̂n,h −κn| ‖tn‖H−1/2(�).

Moreover,

|〈V t̂n,h, t̂n,h〉� − 〈V tn, tn〉�| = |〈V (t̂n,h − tn), t̂n,h〉� + 〈V tn, t̂n,h − tn〉�|
≤ cV

2 ‖tn − t̂n,h‖H−1/2(�)

[‖t̂n,h‖H−1/2(�)+‖tn‖H−1/2(�)

]
.

Hence we conclude

∥∥[
F(t̂n,h, κ̂n,h)− F(tn, κn)

]∥∥2
H1/2(�)×R

≤ c
[∥∥tn − t̂n,h

∥∥2
H−1/2(�)

+ |κn − κ̂n,h |2
]
,

where the constant c depends on (t∗, κ∗), and on �.
Finally, for (t, κ) ∈ H−1/2(�)× R we have

∥∥∥∥
[
F′(tn, κn)− F′(t̂n,h, κ̂n,h)

] (
t
κ

)∥∥∥∥
2

H1/2(�)×R

= ∥∥(Vκn − Vκ̂n,h )t + κ(Aκ̂n,h t̂n,h − Aκn tn)
∥∥2

H1/2(�)
+ 4|〈V (tn − t̂n,h), t〉�|2,

where we can bound

‖(Vκn − Vκ̂n,h )t‖H1/2(�)=|κ̂n,h −κn| ‖Aκ∗
n
t‖H1/2(�) ≤ cAκ∗n |κ̂n,h −κn| ‖t‖H−1/2(�),

|〈V (tn − t̂n,h), t〉�| ≤ cV
2 ‖t‖H−1/2(�)‖tn − t̂n,h‖H−1/2(�).

For the remaining term we first consider

‖Aκ̂n,h t̂n,h − Aκn tn‖H1/2(�) ≤ ‖Aκ̂n,h (t̂n,h − tn)‖H1/2(�) + ‖(Aκ̂n,h − Aκn )tn‖H1/2(�)

≤ cAκ̂n,h
‖t̂n,h − tn‖H−1/2(�) + ‖(Aκ̂n,h − Aκn )tn‖H1/2(�).

123



A boundary element method for the Dirichlet eigenvalue problem of the Laplace operator 293

Again by using the mean value theorem with respect to κn we have

(Aκ̂n,h − Aκn )tn(x) = 1

4π

∫

�

[
sin(κ̂n,h |x − y|)− sin(κn|x − y|)] tn(y)dsy

= (κ̂n,h − κn)
1

4π

∫

�

|x − y| cos(κ̃n|x − y|)tn(y)dsy

= (κ̂n,h − κn)(Bκ̃n tn)(x)

with κ̃n ∈ (κ̂n,h, κn), and where the operator Bκ̃n : H−1/2(�) → H1/2(�) is bounded.
This follows as for the Laplace single layer potential, we skip the details. Hence we
conclude

∥∥ [
F′(tn, κn)− F′(t̂n,h, κ̂n,h)

] (
t̂n,h − t̂n+1
κ̂n,h − κ̂n+1

) ∥∥2
H1/2(�)×R

≤ c
[
‖tn − t̂n,h‖2

H−1/2(�)
+ |κn − κ̂n,h |2

]

where the constant c depends on (t∗, κ∗), and on �. Therefore we can conclude

‖tn+1 − t̂n+1‖2
H−1/2(�)

+ |κn+1 − κ̂n+1|2 ≤ c
[
‖tn − t̂n,h‖2

H−1/2(�)
+ |κn − κ̂n,h |2

]
,

from which the assertion follows. ��

Corollary 3.3 Let (t∗, κ∗) be a solution of F(t, κ) = 0 and let the assumptions (A1)
and (A2) be satisfied. Let (t0,h, κ0,h) ∈ S0

h(�) × R ∩ U�(t∗, κ∗) be satisfied where
� is appropriately chosen as discussed in Corollary 2.4. Then, for a sufficiently
small mesh size h< h0, the Galerkin variational problem (3.4) has a unique solution
(t̂n+1,h, κ̂n+1,h) ∈ S0

h(�)× R satisfying the error estimate

‖tn+1 − t̂n+1,h‖2
H−1/2(�)

+ |κn+1 − κ̂n+1,h |2 ≤ c
[
�4 + h3

]
(3.7)

when assuming t∗ ∈ H1
pw(�). Note that the constant c depends on (t∗, κ∗), n, and on �.

Proof Let us define the error en as

en := ‖tn − t̂n,h‖2
H−1/2(�)

+ |κn − κ̂n,h |2.
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Then, by using the error estimate (3.6), we conclude

en+1 ≤ c

[
en + inf

wh∈S0
h (�)

‖tn+1 − wh‖2
H−1/2(�)

]

≤ c

[
en + ‖t∗ − tn+1‖2

H−1/2(�)
+ inf
wh∈S0

h (�)

‖t∗ − wh‖2
H−1/2(�)

]

≤ c
[
en + c1�

4 + c2h3‖t∗‖2
H1

pw

]

≤ c̃
[
en + �4 + h3

]

when assuming t∗ ∈ H1
pw(�). Since for n = 0, we set (t̂0, κ̂0) = (t0, κ0) ∈ H−1/2(�)×

R, and we conclude

e1 ≤ c
[
�4 + h3

]

when assuming (t0, κ0) ∈ S0
h(�) × R ∩ U�(t∗, κ∗). Now the assertion follows by

induction. ��
When using the Aubin–Nitsche trick, see for example [23], it is possible to derive

error estimates in Sobolev spaces with lower Sobolev index. In particular we obtain
the error estimate

‖tn+1 − t̂n+1,h‖2
H−2(�)

+ |κn+1 − κ̂n+1,h |2 ≤ c
[
�4 + h6

]
(3.8)

when assuming t∗ ∈ H1
pw(�). Hence we can expect a cubic convergence rate for the

eigenvalues,

|κn+1 − κ̂n+1,h | ≤ c
[
�4 + h6

]1/2 = O(h3). (3.9)

4 Numerical results

In this section, we present some numerical results to investigate the behavior of the
nonlinear boundary element approach as presented in this paper. In addition, we com-
pare our approximations with the results of a finite element discretization using linear
tetrahedral elements. The FEM matrices are generated by Netgen/NGSolve [21] and
as eigenvalue solver we use LOBPCG [13] with a two-level preconditioner.

As a model problem we consider the interior Dirichlet eigenvalue problem (1.1)
where the domain � = (0, 1

2 )
3 is a cube. Hence the eigenvalues are given by

λk = 4π2
[
k2

1 + k2
2 + k2

3

]
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Table 1 BEM approximation of κ1 = 2
√

3π ≈ 10.8828, simple eigenvalue

L h N κBEM
1,N |κ1 − κBEM

1,N | eoc i t

2 2−3 384 10.8768 5.986e-03 – 7

3 2−4 1536 10.8821 6.962e-04 3.1 7

4 2−5 6144 10.8827 8.619e-05 3.0 8

and the associated eigenfunctions are

uk(x) = (sin 2πk1x1)(sin 2πk2x2)(sin 2πk3x3).

It turns out that the first eigenvalue (k1 = k2 = k3 = 1)

λ1 = 12π2, κ1 = 2
√

3π

is simple, while the second eigenvalue (k1 = 2, k2 = k3 = 1)

λ2 = 24π2, κ2 = 2
√

6π

is multiple.
For the boundary element discretization the boundary � = ∂� is decomposed into

N uniform triangular boundary elements with mesh size h. The numerical results to
approximate the simple eigenvalue κ1 = √

λ1 are given in Table 1 where i t denotes
the number of Newton iterations which are performed. As initial values we choose
for κ = 3.5 and for the eigenvector a random vector.Next we consider the case of a
multiple eigenvalue, the results to approximate κ2 = √

λ2 are given in Table 2. As
initial values we choose for κ = 13 and for the eigenvectors random vectors. Note
that the numerical results for the BEM approxiamtions of the eigenvalues confirm the
theoretical error estimate in (3.9). The numerical results of the finite element discret-
ization to approximate the first and second eigenvalue are listed in Tables 3 and 4,
where h is the mesh size of the uniform discretization, and M the number of interior
nodes which is equal to the number of degrees of freedom.

The numerical results reflect the different convergence rates of both methods. The
convergence rate for the finite element approximations is quadratic compared to the
cubic order of the boundary element approximations. Note that the BEM approxima-
tions of the coarsest mesh on level L = 2 with matrix size N = 384 are approximately
the same as the FEM approximations of the finest mesh on level L = 6 with matrix
size N = 250,047. The disadvantage of the boundary element approach is that in
one run of the algorithm just one eigenpair is approximated and that sufficiently good
initial values are needed for the convergence to a desired eigenpair.

As in other boundary element approaches [3], the problem of the so–called spu-
rious eigenvalues occurs. These spurious eigenvalues can be filtered out with an a
posteriori error control by using the complex valued fundamental solution (1.10) for
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Table 2 BEM approximation of κ2 = 2
√

6π ≈ 15.3906, multiple eigenvalue

L h N κBEM
21,N

|κ2 − κBEM
21,N

| eoc i t

2 2−3 384 15.373851 1.7e-02 – 8

3 2−4 1536 15.3887048 1.9e-03 3.1 8

4 2−5 6144 15.39037160 2.3e-04 3.1 9

L h N κBEM
22,N

|κ2 − κBEM
22,N

| eoc i t

2 2−3 384 15.37364 1.7e-02 – 10

3 2−4 1536 15.3887060 1.9e-03 3.1 10

4 2−5 6144 15.39037171 2.3e-04 3.1 10

L h N κBEM
23,N

|κ2 − κBEM
23,N

| eoc i t

2 2−3 384 15.373876 1.7e-02 – 9

3 2−4 1536 15.3887071 1.9e-03 3.1 9

4 2−5 6144 15.39037180 2.3e-04 3.1 9

Table 3 FEM approximation of
κ1 = 2

√
3π ≈ 10.8828, simple

eigenvalue

L h M κFEM
1,M |κ1 − κ FEM

1,M |

3 2−4 343 11.3693 4.9e-01

4 2−5 3375 11.0038 1.2e-01

5 2−6 29791 10.9132 3.0e-02

6 2−7 250047 10.8903 7.6e-03

Table 4 FEM approximation of κ2 = 2
√

6π ≈ 15.3906, multiple eigenvalue

L h M κFEM
21,M

|κ2 − κFEM
21,M

| κFEM
22,M

|κ2 − κFEM
22,M

| κFEM
23,M

|κ2 − κFEM
23,M

|

3 2−4 343 16.27 8.8e-01 16.28 8.9e-01 17.59 2.2

4 2−5 3375 15.60 2.1e-01 15.60 2.4e-01 16.12 7.3e-01

5 2−6 29791 15.44 5.1e-02 15.44 5.3e-02 15.63 2.4e-01

6 2−7 250047 15.40 1.3e-02 15.40 1.4e-02 15.47 8.0e-02

an eigensolution (t, κ),

1

4π

∫

�

eiκ|x−y|

|x − y| t (y)dsy = (Vκ t)(x)+ i
1

4π

∫

�

sin (κ|x − y|)
|x − y| t (y)dsy = 0.

Then the residuum

1

4π

∫

�

eiκh |x−y|

|x − y| th(y)dsy
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for actual approximations of eigensolutions (th, κh) is significant smaller than for
spurious eigensolutions, and the residuum tends to zero for actual approximations of
the eigensolutions if h gets smaller. Note that no spurious eigenvalues occur when
an analogous algorithm is used which is based on the complex valued fundamental
solution (1.10). But then we have to use complex arithmetics so that the computational
complexity is more expensive as for the real-valued version.

5 Conclusions

In this paper we have presented and analyzed a boundary element method for the
solution of the interior Dirichlet eigenvalue problem for the Laplace operator. Hereby,
the linear eigenvalue problem for the partial differential operator is transformed into
a nonlinear eigenvalue problem for an associated boundary integral operator which is
solved via a Newton iteration. The discretization by using a Galerkin boundary ele-
ment method gives a cubic convergence of the approximated eigenvalues. When using
fast boundary element methods [17] an almost optimal computational complexity can
be obtained. For this, also efficient preconditioned iterative solution methods to solve
the Galerkin equation (3.4) are mandatory. As already mentioned in Remark 2.5, a
further analysis in the case of multiple eigenvalues is needed.

A crucial issue is to increase the robustness of the presented method. Techniques
which use Rayleigh functionals [16,22] are theoretically applicable to the boundary
integral eigenvalue problem. However, the required Rayleigh functionals are in our
case just locally defined and therefore the convergence regions for the eigenvalues are
still local. First numerical experiments where the safe-guarded iteration [16] is applied
to the boundary integral eigenvalue problem indicate no larger convergence regions
than for the proposed method. Therefore other techniques have to be considered and
analyzed in order to increase the robustness.

Finally, we mention that the proposed approach can be used to solve the interior
Neumann eigenvalue problem for the Laplace operator, and to solve related eigenvalue
problems in linear elastostatics.

Acknowledgments We would like to acknowledge the fruitful comments and remarks of the referees of
this article. Also, we thank S. Zaglmayr for the FEM computations.

References

1. Alt, H.W.: Lineare Funktionalanalysis: Eine anwendungsorientierte Einführung. Springer, Berlin
(2006)

2. Cai, Z., Mandel, J., McCormick, S.: Multigrid methods for nearly singular linear equations and eigen-
value problems. SIAM J. Numer. Anal. 34(1), 178–200 (1997)

3. Chen, J.T., Huang, C.X., Chen, K.H.: Determination of spurious eigenvalues and multiplicities of true
eigenvalues using the real-part dual BEM. Comput. Mech. 24(1), 41–51 (1999)

4. Decker, D.W., Kelley, C.T.: Newton’s method at singular points. I. SIAM J. Numer. Anal. 17(1), 66–70
(1980)

5. Decker, D.W., Kelley, C.T.: Convergence acceleration for Newton’s method at singular points. SIAM
J. Numer. Anal. 19(1), 219–229 (1982)

123



298 O. Steinbach, G. Unger

6. Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner Studienbücher
Mathematik. B. G. Teubner, Stuttgart (1996)

7. Kamiya, N., Andoh, E.: Robust boundary element scheme for Helmholtz eigenvalue equation. In
Boundary elements, XIII (Tulsa, OK, 1991), pp. 839–850. Comput. Mech., Southampton (1991)

8. Kamiya, N., Andoh, E., Nogae, K.: Eigenvalue analysis by the boundary element method: new devel-
opments. Eng. Anal. Bound. Elms. 12, 151–162 (1993)

9. Karma, O.: Approximation in eigenvalue problems for holomorphic Fredholm operator functions. II.
(Convergence rate). Numer. Funct. Anal. Optim. 17(3–4), 389–408 (1996)

10. Kirkup, S.M., Amini, S.: Solution of the Helmholtz eigenvalue problem via the boundary element
method. Internat. J. Numer. Methods Eng. 36, 321–330 (1993)

11. Kitahara, M.: Boundary Integral Equation Methods in Eigenvalue Problems of Elastodynamics
and Thin Plates, volume 10 of Studies in Applied Mechanics. Elsevier Scientific Publishing Co.,
Amsterdam (1985)

12. Knyazev, A.V.: Preconditioned eigensolvers—an oxymoron? Electron. Trans. Numer. Anal. 7, 104–123
(1998) (electronic). [Large scale eigenvalue problems (Argonne, IL, 1997)]

13. Knyazev, A.V.: Toward the optimal preconditioned eigensolver: locally optimal block preconditioned
conjugate gradient method. SIAM J. Sci. Comput. 23(2), 517–541 (2001) (electronic). [Copper Moun-
tain Conference (2000)]
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