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Abstract

In this paper, the application of the method of fundamental solutions to the Cauchy problem associated with two-

dimensional Helmholtz-type equations is investigated. The resulting system of linear algebraic equations is ill-condi-

tioned and therefore its solution is regularized by employing the first-order Tikhonov functional, while the choice of

the regularization parameter is based on the L-curve method. Numerical results are presented for both smooth and

piecewise smooth geometries. The convergence and the stability of the method with respect to increasing the number

of source points and the distance between the source points and the boundary of the solution domain, and decreasing

the amount of noise added into the input data, respectively, are analysed.
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1. Introduction

The method of fundamental solutions (MFS) was

originally introduced by Kupradze and Aleksidze [1],

whilst its numerical formulation was first given by Ma-

thon and Johnston [2]. The main idea of the MFS con-

sists in approximating the solution of the problem by a

linear combination of fundamental solutions with respect

to some singularities/source points which are located out-

side the domain. Then the original problem is reduced to
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determining the unknown coefficients of the fundamental

solutions and the coordinates of the source points by

requiring the approximation to satisfy the boundary con-

ditions and hence solving a nonlinear problem. If the

source points are a priori fixed then the coefficients of

the MFS approximation are determined by solving a lin-

ear problem. An excellent survey of the MFS and related

methods over the past three decades has been presented

by Fairweather and Karageorghis [3].

The advantages of the MFS over domain discretisa-

tion methods, such as the finite-difference (FDM) and

the finite element methods (FEM), are very well-docu-

mented, see e.g. Fairweather and Karageorghis [3]. In

addition, the MFS has all the advantages of boundary

methods, such as the boundary element method
ed.
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(BEM), as well as several advantages over other bound-

ary methods. For example, the MFS does not require an

elaborate discretisation of the boundary, integrations

over the boundary are avoided, the solution in the inte-

rior of the domain is evaluated without extra quadra-

tures, its implementation is very easy and only little

data preparation is required. The most arguable issue

regarding the MFS is still the location of the source

points. However, this problem can be overcome by

employing a nonlinear least-squares minimisation proce-

dure. Alternatively, the source points can be prescribed a

priori, see [4–6], and the post-processing analysis of the

errors can indicate their optimal location.

The MFS has been successfully applied to solving a

wide variety of boundary value problems. Karageorghis

and Fairweather [7] have solved numerically the bihar-

monic equation using the MFS and later their method

has been modified in order to take into account the pres-

ence of boundary singularities in both the Laplace and

the biharmonic equations by Poullikkas et al. [8]. Fur-

thermore, Poullikkas et al. [9] have investigated the

numerical solutions of the inhomogeneous harmonic

and biharmonic equations by reducing these problems

to the homogeneous corresponding cases and subtracting

a particular solution of the governing equation. The

MFS has been formulated for three-dimensional Signo-

rini boundary value problems and it has been tested on

a three-dimensional electropainting problem related to

the coating of vehicle roofs in Poullikkas et al. [10].

Whilst Karageorghis and Fairweather [11] have studied

the use of the MFS for the approximate solution of

three-dimensional isotropic materials with axisymmetri-

cal geometry and both axisymmetrical and arbitrary

boundary conditions. The application of the MFS to

two-dimensional problems of steady-state heat conduc-

tion and elastostatics in isotropic and anisotropic bima-

terials has been addressed by Berger and Karageorghis

[12,13]. Karageorghis [14] has investigated the calcula-

tion of the eigenvalues of the Helmholtz equation subject

to homogeneous Dirichlet boundary conditions for cir-

cular and rectangular geometries by employing the

MFS, whilst Poullikkas et al. [15] have successfully ap-

plied the MFS for solving three-dimensional elastostatics

problems. The MFS, in conjunction with singular value

decomposition, has been employed by Ramachandran

[16] in order to obtain numerical solutions of the Laplace

and the Helmholtz equations. Recently, Balakrishnan

et al. [17] have proposed an operator splitting-radial

basis function method as a generic solution procedure

for transient nonlinear Poisson problems by combining

the concepts of operator splitting, radial basis function

interpolation, particular solutions and the MFS.

Helmholtz-type equations arise naturally in many

physical applications related to wave propagation and

vibration phenomena. They are often used to describe

the vibration of a structure [18], the acoustic cavity
problem [19], the radiation wave [20], the scattering of

a wave [21] and the heat conduction in fins [22]. The

knowledge of the Dirichlet, Neumann or mixed bound-

ary conditions on the entire boundary of the solution

domain gives rise to direct problems for Helmholtz-type

equations which have been extensively studied in the lit-

erature, see for example [23–25]. Unfortunately, many

engineering problems do not belong to this category.

In particular, the boundary conditions are often incom-

plete, either in the form of underspecified and overspec-

ified boundary conditions on different parts of the

boundary or the solution is prescribed at some internal

points in the domain. These are inverse problems, and

it is well-known that they are generally ill-posed, i.e.

the existence, uniqueness and stability of their solutions

are not always guaranteed, see e.g. Hadamard [26].

A classical example of an inverse problem for Helm-

holtz-type equations is the Cauchy problem in which

boundary conditions for both the solution and its normal

derivative are prescribed only on a part of the boundary

of the solution domain, whilst no information is avail-

able on the remaining part of the boundary. Unlike in

direct problems, the uniqueness of the Cauchy problem

is guaranteed without the necessity of removing the

eigenvalues for the Laplacian. A BEM-based acoustic

holography technique using the singular value decompo-

sition (SVD) for the reconstruction of sound fields gener-

ated by irregularly shaped sources has been developed by

Bai [27]. The vibrational velocity, sound pressure and

acoustic power on the vibrating boundary comprising

an enclosed space have been reconstructed by Kim and

Ih [28] who have used the SVD in order to obtain the in-

verse solution in the least-squares sense and to express

the acoustic modal expansion between the measurement

and source field. Wang and Wu [29] have developed a

method employing the spherical wave expansion theory

and a least-squares minimisation to reconstruct the

acoustic pressure field from a vibrating object and their

method has been extended to the reconstruction of acous-

tic pressure fields inside the cavity of a vibrating object by

Wu and Yu [30]. DeLillo et al. [31] have detected the

source of acoustical noise inside the cabin of a midsize

aircraft from measurements of the acoustical pressure

field inside the cabin by solving a linear Fredholm inte-

gral equation of the first kind. Recently, Marin et al.

[32,33] have solved the Cauchy problem for Helmholtz-

type equations by employing the BEM in conjunction

with an alternating iterative algorithm and the conjugate

gradient method, respectively.

To our knowledge, the application of the MFS to the

Cauchy problem associated with Helmholtz-type equa-

tions has not been investigated yet. The MFS discretised

system of equations is ill-conditioned and hence it is

solved by employing the first-order Tikhonov regulari-

zation method, see e.g. Tikhonov and Arsenin [34],

whilst the choice of the regularization parameter is based
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on the L-curve criterion, see Hansen [35]. Three exam-

ples for the two-dimensional Helmholtz and modified

Helmholtz equations in both smooth and piecewise

smooth domains are investigated. In addition, the con-

vergence and stability of the method with respect to

the location and the number of source points and the

amount of noise added into the Cauchy input data,

respectively, are analysed.
2. Mathematical formulation

Consider an open bounded domain X � R2 and as-

sume that X is bounded by a piecewise smooth boundary

C � oX, such that C ¼ C1 [ C2, where C1, C2 5 ; and

C1 \ C2 = ;. Referring to heat transfer for the sake of

the physical explanation, we assume that the tempera-

ture field T(x) satisfies the Helmholtz-type equation in

the domain X, namely

ðDþ k2ÞT ðxÞ ¼ 0; x 2 X; ð1Þ

where k ¼ aþ ib 2 C; i ¼
ffiffiffiffiffiffiffi
�1

p
. For example, when

a ¼ 0 and b 2 R, the partial differential Eq. (1) models

the heat conduction in a fin [22] where T is the dimen-

sionless local fin temperature, b2 ¼ h=ðektÞ, h is the sur-

face heat transfer coefficient (W/(m2 K)), ek is the

thermal conductivity of the fin (W/(m K)) and t is the

half-fin thickness (m).

Let n(x) be the outward unit normal vector at C and

U(x) � ($T Æn)(x) be the flux at a point x 2 C. In the di-

rect problem formulation, the knowledge of the temper-

ature and/or flux on the whole boundary C gives the

corresponding Dirichlet, Neumann, or mixed boundary

conditions which enables us to determine the tempera-

ture distribution in the domain X. If it is possible to

measure both the temperature and the flux on a part

of the boundary C, say C1, then this leads to the math-

ematical formulation of an inverse problem consisting

of Eq. (1) and the boundary conditions

T ðxÞ ¼ eT ðxÞ; UðxÞ ¼ eUðxÞ; x 2 C1; ð2Þ

where eT and eU are prescribed functions and C1 � C,
meas(C1) > 0. In the above formulation of the boundary

conditions (2), it can be seen that the boundary C1 is

overspecified by prescribing both the temperature T jC1

and the flux UjC1
, whilst the boundary C2 is underspeci-

fied since both the temperature T jC2
and the flux UjC2

are

unknown and have to be determined. It should be noted

that the problem studied in this paper is of practical

importance. For example, the Cauchy problem (1) and

(2), where k 2 C n R, represents the mathematical model

for the heat conduction in plate finned-tube heat

exchangers [22] for which the temperature and the flux

can be measured at some points on the fin, whilst both

the temperature and the flux are unknown at the fin base

or, equivalently, in the tubes.
This problem, termed the Cauchy problem, is much

more difficult to solve both analytically and numerically

than the direct problem, since the solution does not sat-

isfy the general conditions of well-posedness. Whilst the

Dirichlet, Neumann or mixed direct problems associated

to Eq. (1) do not always have a unique solution due to

the eigensolutions, see Chen and Zhou [36], the solution

of the Cauchy problem given by Eqs. (1) and (2) is

unique based on the analytical continuation property.

However, it is well-known that if this solution exists then

it is unstable with respect to small perturbations in the

data on C2, see e.g. Hadamard [26]. Thus the problem

under investigation is ill-posed and we cannot use a di-

rect approach, such as the Gauss elimination method,

in order to solve the system of linear equations which

arises from the discretisation of the partial differential

equations (1) and the boundary conditions (2). There-

fore, regularization methods are required in order to

solve accurately the Cauchy problem associated with

Helmholtz-type equations.
3. Method of fundamental solutions and regularization

The fundamental solutionsFH andFMH of the Helm-

holtz ðk 2 RÞ and the modifiedHelmholtz ðk 2 C n RÞ Eq.
(1), respectively, in the two-dimensional case are given by,

see e.g. Fairweather and Karageorghis [3],

FHðx; yÞ ¼
i

4
H ð1Þ

0 ðkrðx; yÞÞ; x 2 X; y 2 R2 n X; ð3Þ

FMHðx; yÞ ¼
1

2p
K0ðkrðx; yÞÞ; x 2 X; y 2 R2 n X; ð4Þ

where rðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � y1Þ

2 þ ðx2 � y2Þ
2

q
represents the

distance between the domain point x = (x1,x2) and the

source point y = (y1,y2), H
ð1Þ
0 is the Hankel function of

the first kind of order zero and K0 is the modified Bessel

function of the second kind of order zero.

The main idea of the MFS consists of the approxima-

tion of the temperature in the solution domain by a lin-

ear combination of fundamental solutions with respect

to M source points yj in the form

T ðxÞ � TM ða;Y ; xÞ ¼
XM
j¼1

ajFðx; yjÞ; x 2 X; ð5Þ

where F ¼ FH in the case of the Helmholtz equation,

F ¼ FMH in the case of the modified Helmholtz equa-

tion, a = (a1, . . . ,aM) and Y is a 2M-vector containing

the coordinates of the source points yj, j = 1, . . . ,M. Then

the flux can be approximated on the boundary C by

UðxÞ � UM ða;Y ; n; xÞ ¼
XM
j¼1

ajGðx; yj; nÞ; x 2 C; ð6Þ
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where Gðx; y; nÞ ¼ rxFðx; yÞ � nðxÞ and GH in the case

of the Helmholtz equation and GMH in the case of the

modified Helmholtz equation are given by

GHðx; y; nÞ ¼ � ððx� yÞ � nðxÞÞki
4rðx; yÞ H ð1Þ

1 ðkrðx; yÞÞ;

x 2 C; y 2 R2 n X; ð7Þ

GMHðx; y; nÞ ¼ � ððx� yÞ � nðxÞÞk
2prðx; yÞ K1ðkrðx; yÞÞ;

x 2 C; y 2 R2 n X: ð8Þ

Here H ð1Þ
1 is the Hankel function of the first kind of

order one and K1 is the modified Bessel function of the

second kind of order one.

If the solution domain is a disk of radius r, it was

shown in [37,38] that, when the collocation and source

points are placed uniformly on the boundary of the disk

and on a circle of radius R, R > r, respectively, then the

error in the MFS approximation for N collocation

points and N singularities satisfies supx2XjT ðxÞ �
TN ðxÞj ¼ Oððr=RÞN Þ, i.e. exponential convergence is

achieved. Furthermore, this result was generalised to

two-dimensional regions whose boundaries are analytic

Jordan curves by Katsurada [39,40]. It is worth mention-

ing that the functional approximation given by Eq. (5) is

also consistent, in the sense that this functional also

approximates accurately the exact solution of the prob-

lem not only on the boundary C, but also in the interior

of the solution domain X, see Kondepalli et al. [41] and

MacDonell [42]. Moreover, the MFS approximation (5)

is capable of reproducing various types of solutions to

Helmholtz-type equations, such as constant, linear, qua-

dratic, exponential, trigonometric functions, etc., see e.g.

Fairweather and Karageorghis [3] and Golberg and

Chen [6].

If N collocation points xl, l = 1, . . . ,N, are chosen on

the overspecified boundary C1 and the location of the

source points yj, j = 1, . . . ,M, is set then Eqs. (5) and

(6) recast as a system of 2N linear algebraic equations

with M unknowns which can be generically written as

AX ¼ F; ð9Þ

where the MFS matrixA, the unknown vector X and the

right-hand side vector F are given by

Al;j ¼ Fðxl; yjÞ; ANþl;j ¼ Gðxl; yjÞ; X j ¼ aj;

F l ¼ T ðxlÞ; F Nþl ¼ UðxlÞ;
l ¼ 1; . . . ;N ; j ¼ 1; . . . ;M : ð10Þ

It should be noted that in order to uniquely deter-

mine the solution X of the system of linear algebraic

Eq. (9), i.e. the coefficients aj, j = 1, . . . ,M, in the

approximations (5) and (6), the number N of boundary

collocation points and the number M of source points

must satisfy the inequality M 6 2N. However, the sys-
tem of linear algebraic Eq. (9) cannot be solved by di-

rect methods, such as the least-squares method, since

such an approach would produce a highly unstable

solution due to the large value of the condition number

of the matrix A which increases dramatically as the

number of boundary collocation points and source

points increases. Several regularization procedures have

been developed to solve such ill-conditioned systems,

see for example Hansen [43]. However, we only con-

sider the Tikhonov regularization method in our study.

For further details on this method see Tikhonov and

Arsenin [34].

It should be mentioned that for inverse problems, the

resulting systems of linear algebraic equations are ill-con-

ditioned, even if other well-known numerical methods

(FDM, FEM or BEM) are employed. Although the

MFS system of linear algebraic Eq. (9) is ill-conditioned

even when dealing with direct problems, the MFS has no

longer this disadvantage in comparison with other

numerical methods, in the sense that regularization is re-

quired for both direct and inverse problems in order to

solve the resulting MFS system. In addition, the MFS

preserves its advantages, such as the lack of any mesh,

the high accuracy of the numerical results, etc.

The Tikhonov regularized solution to the system of

linear algebraic Eq. (9) is sought as

Xk : TkðXkÞ ¼ min
X2RM

TkðXÞ; ð11Þ

where Tk represents the sth order Tikhonov functional

given by

Tkð�Þ : RM ! ½0;1Þ;
TkðXÞ ¼ kAX � Fk22 þ k2kRðsÞXk22; ð12Þ

the matrix RðsÞ 2 RðM�sÞ�M induces a Cs-constraint on

the solution X and k > 0 is the regularization parameter

to be chosen. For example, in the case of the zeroth-,

first- and second-order Tikhonov regularization method

the matrix RðsÞ, i.e. s = 0,1,2, is given by

Rð0Þ ¼

1 0 . . . 0

0 1 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . 1

266664
377775 2 RM�M ;

Rð1Þ ¼

�1 1 0 . . . 0

0 �1 1 . . . 0

..

. ..
. . .

. . .
. ..

.

0 0 . . . �1 1

266664
377775 2 RðM�1Þ�M ;

Rð2Þ ¼

1 �2 1 0 . . . 0

0 1 �2 1 . . . 0

..

. ..
. . .

. . .
. . .

. ..
.

0 0 . . . 1 �2 1

266664
377775 2 RðM�2Þ�M : ð13Þ
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Formally, the Tikhonov regularized solution Xk of

the problem (11) is given as the solution of the regular-

ized equation

ðATAþ k2RðsÞTRðsÞÞX ¼ ATF: ð14Þ
Regularization is necessary when solving ill-condi-

tioned systems of linear equations because the simple

least-squares solution, i.e. k = 0, is completely domi-

nated by contributions from data errors and rounding

errors. By adding regularization we are able to damp

out these contributions and maintain the norm

kRðsÞXk2 to be of reasonable size. If too much regulari-

zation, or damping, i.e. k2 is large, is imposed on the

solution then it will not fit the given data F properly

and the residual norm kAX � Fk2 will be too large. If

too little regularization is imposed on the solution, i.e.

k2 is small, then the fit will be good, but the solution will

be dominated by the contributions from the data errors,

and hence kRðsÞXk2 will be too large. It is quite natural

to plot the norm of the solution as a function of the

norm of the residual parametrised by the regularization

parameter k, i.e. fkAXk � Fk2; kRðsÞXkk2; k > 0g.
Hence, the L-curve is really a trade-off curve between

two quantities that both should be controlled and,

according to the L-curve criterion, the optimal value kopt
of the regularization parameter k is chosen at the ‘‘cor-

ner’’ of the L-curve, see Hansen [35,43]. To summarize,

the Tikhonov regularization method solves a minimisa-

tion problem using different smoothness constraints,

e.g. see expressions (13) for the matrix RðsÞ, in order to

provide a stable solution which fits the data and also

has a minimum structure.

4. Numerical results and discussion

The numerical results presented in this section for the

Cauchy problem associated with Helmholtz-type equa-

tions indicate that the proposed method is feasible and

efficient. In order to assess the performance of the

MFS in conjunction with the first-order Tikhonov regu-

larization method, we solve the Cauchy problem (1) and

(2) for three typical examples corresponding to Helm-

holtz-type equations in both smooth and piecewise

smooth geometries, see also Fig. 1.
Example 1 (modified Helmholtz equation in a smooth

domain). We consider the following analytical solutions

for the temperature:

T ðanÞðxÞ ¼ expðn1x1 þ n2x2Þ; x ¼ ðx1; x2Þ 2 X; ð15Þ

in the unit disk X ¼ fx ¼ ðx1; x2Þjx21 þ x22 < 1g, where

k = a + ib, a = 0, b = 2.0, n1 = 1.0 and n2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � n21

q
.

Here C1 = {x 2 Cj0 6 h(x) 6 p/4} and C2 = {x 2 Cjp/
4 < h(x) < 2p}, where h(x) is the angular polar coordi-

nate of x.
Example 2 (Helmholtz equation in a smooth

domain). We consider the following analytical solutions

for the temperature:
T ðanÞðxÞ ¼ cosðn1x1 þ n2x2Þ; x ¼ ðx1; x2Þ 2 X; ð16Þ

in the unit disk X ¼ fx ¼ ðx1; x2Þjx21 þ x22 < 1g, where

k = a + ib, a = 1.0, b = 0, n1 = 0.5 and n2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � n21

q
.

Here C1 = {x 2 Cj0 6 h(x) 6 p/2} and C2 = {x 2 Cjp/
2 < h(x) < 2p}.
Example 3 (Helmholtz equation in a piecewise smooth

domain). We consider the following analytical solutions

for the temperature:

T ðanÞðxÞ ¼ cosðn1x1 þ n2x2Þ; x ¼ ðx1; x2Þ 2 X; ð17Þ

in the square X = (�1,1) · (�1,1), where k = a + ib,

a = 2.0, b = 0, n1 = 1.0 and n2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � n21

q
. Here

C1 = {x 2 Cjx1 = ±1,�1 6 x2 6 1} [ {x 2 Cj�1 6 x1 6

1,x2 = 1} and C2 = {x 2 Cj�1 6 x1 < 1,x2 = �1}.

It should be noted that for the examples considered,

the Cauchy data is available on a portion C1 of the

boundary C such that meas(C1) = meas(C)/4 in the case

of Example 1, meas(C1) = meas(C)/2 in the case of

Example 2 and meas(C1) = 3meas(C)/4 in the case of

Example 3. The Cauchy problems investigated in this

study have been solved using a uniform distribution of

both the boundary collocation points xl, l = 1, . . . ,N,

and the source points yj, j = 1, . . . ,M, with the mention

that the later were located on the boundary of the disk

B(0,R), where the radius R > 0 was chosen such that

X � Bð0;RÞ. Furthermore, the number of boundary col-

location points was set to N = 80 · meas(C1)/meas(C).

4.1. Stability of the method

In order to investigate the stability of the MFS, the

temperature T jC1
¼ T ðanÞjC1

has been perturbed aseT ¼ T þ dT , where dT is a Gaussian random variable

with mean zero and standard deviation r ¼
maxC1

jT jðpT=100Þ, generated by the NAG subroutine

G05DDF (which generates pseudo-random numbers

from a normal/Gaussian distribution with zero mean

and specified standard deviation), and pT% is the per-

centage of additive noise included in the input data

T jC1
in order to simulate the inherent measurement

errors.

Fig. 2 presents the L-curves obtained for the Cauchy

problem given by Example 2 using the first-order Tikho-

nov regularization method, i.e. s = 1 in (12), to solve the

MFS system of Eq. (9), M = 20 source points, R = 5.0

and with various levels of noise. From this figure it

can be seen that for each amount of noise considered,

the ‘‘corner’’ of the corresponding L-curve can be

clearly determined and this gives k = kopt = 3.16 · 10�4



Fig. 1. A schematic diagram of the domain X, the boundary conditions and the location of the sources (d) and the collocation points

(·), for the Cauchy problem corresponding to (a) Example 1, (b) Example 2, and (c) Example 3.
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and k = kopt = 1.0 · 10�3 for pT = 1 and pT 2 {3,5},

respectively.

As with every practical method, the L-curve has its

advantages and disadvantages. There are two main dis-

advantages or limitations of the L-curve criterion. The

first disadvantage is concerned with the reconstruction

of very smooth exact solutions, see Tikhonov et al.

[44]. For such solutions, Hanke [45] showed that the

L-curve criterion will fail, and the smoother the solution,

the worse the regularization parameter k computed by

the L-curve criterion. However, it is not clear how often

very smooth solutions arise in applications. The second

limitation of the L-curve criterion is related to its asymp-

totic behaviour as the problem size M increases. As

pointed out by Vogel [46], the regularization parameter

k computed by the L-curve criterion may not behave

consistently with the optimal parameter kopt as M in-

creases. However, this ideal situation in which the same

problem is discretised for increasing M may not arise so

often in practice. Often the problem size M is fixed by

the particular measurement setup given by N, and if a
larger M is required then a new experiment must be

undertaken since the inequality M 6 2N must be satis-

fied. Apart from these two limitations, the advantages

of the L-curve criterion are its robustness and ability

to treat perturbations consisting of correlated noise,

see for more details Hansen [35].

In order to analyse the accuracy of the numerical re-

sults obtained, we introduce the errors eT and eU given by

eT ðkÞ ¼
1

L

XL

l¼1

ðT ðanÞðxlÞ � T ðkÞðxlÞÞ2
( )1=2

;

eUðkÞ ¼
1

L

XL

l¼1

ðUðanÞðxlÞ � UðkÞðxlÞÞ2
( )1=2

; ð18Þ

where xl, l = 1, . . . ,L, are L = 80 · meas(C2)/meas(C)
uniformly distributed points on the underspecified

boundary C2, T
(an) and U(an) are the analytical tempera-

ture and flux on C2, respectively, and T(k) and U(k) are

the numerical temperature and flux on C2, respectively,

obtained for the value k of the regularization parameter.
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Fig. 2. The L-curves obtained for various levels of noise added

into the temperature data T jC1
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(––) and pT = 5% (� � �), with M = 10 source points, N = 40

boundary collocation points and R = 5.0 for the Example 2.
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Alternatively, one can analyse the relative errors ET and

EU defined by

ET ðkÞ¼
1

L

XL

l¼1

T ðanÞðxlÞ�T ðkÞðxlÞ
� �

max
C2

T ðanÞ�� ��� �2" )1=2

;

8<:
EUðkÞ¼

1

L

XL

l¼1

UðanÞðxlÞ�UðkÞðxlÞ
� �

max
C2

UðanÞ�� ��� �2" )1=2
8<: :
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into the temperature T jC1
, namely pT = 1% (h), pT = 3% (s) and pT = 5

points and R = 5.0 for the Example 2.
From expressions (18) and (19) it can be seen that the

absolute, eT and eU, and the relative, ET and EU, errors

differ only by a constant, i.e. eT ¼ ET �max
C2

jT ðanÞj and
eU ¼ EU �max

C2

jUðanÞj, and these errors have the same

behaviour as functions of the regularization parameter.

In addition, the relative errors given by Eq. (18) are

commonly used and presented in the MFS literature,

see [3–17], and therefore we restrict ourselves to analy-

sing these errors.

Fig. 3(a) and (b) illustrate the accuracy errors eT and

eU, respectively, given by relation (18), as functions of

the regularization parameter k, obtained with various

levels of noise added into the input temperature data

T jC1
for the Cauchy problem given by Example 2. From

these figures it can be seen that both errors eT and eU de-

crease as the level of noise pT added into the input tem-

perature data decreases for all the regularization

parameters k and eT < eU for all the regularization

parameters k and a fixed amount pT of noise added into

the input temperature data, i.e. the numerical results ob-

tained for the temperature are more accurate than those

retrieved for the flux on the underspecified boundary C2.

Furthermore, by comparing Figs. 2 and 3, it can be seen,

for various levels of noise, that the ‘‘corner’’ of the L-

curve occurs at about the same value of the regulariza-

tion parameter k where the minimum in the accuracy

errors eT and eU is attained. Hence the choice of the

optimal regularization parameter kopt according to the

L-curve criterion is fully justified. Similar results have

been obtained for the Cauchy problems given by

Examples 1 and 3 and therefore they are not presented

here.

Figs. 4–6 illustrate the analytical and the numerical

results for the temperature T and the flux U, obtained
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Fig. 4. (a) The analytical T(an) (—) and the numerical T(k) temperatures, and (b) the analytical U(an) (—) and the numerical U(k) fluxes,
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Example 1.
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on the underspecified boundary C2 using the optimal

regularization parameter k = kopt chosen according to

the L-curve criterion and various levels of noise added

into the input temperature data T jC1
, namely pT 2

{1,3,5}, for the Cauchy problems given by Examples

1–3, respectively. In order to get more insight into the

approximation provided by the MFS in the case of the

Cauchy problems under investigation, we also analyse
the local relative percentage errors ErrT and ErrU de-

fined as

ErrT ¼ jT ðanÞðxlÞ � T ðkÞðxlÞj
max
C2

jT ðanÞj
� 100;

ErrU ¼ jUðanÞðxlÞ � UðkÞðxlÞj
max
C2

jUðanÞj
� 100: ð20Þ
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0.5 0.6 0.7 0.8 0.9 1.0

/2

0.0

0.005

0.01

0.015

0.02

R
el

at
iv

e 
er

ro
r 

E
rr

T

pT = 1%

pT = 3%

pT = 5%

0.5 0.6 0.7 0.8 0.9 1.0

/2

0.0

0.01

0.02

0.03

0.04

0.05

R
el

at
iv

e 
er

ro
r 

E
rr

pT = 1%

pT = 3%

pT = 5%

(a) (b)

Fig. 7. The relative errors (a) ErrT, and (b) ErrU, retrieved on the underspecified boundary C2 with M = 20 source points, N = 40

boundary collocation points, R = 5.0, k = kopt and various levels of noise added into the temperature T jC1
, namely pT = 1% (–h–),

pT = 3% (–s–) and pT = 5% (–n–), for the Example 2.
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Fig. 7(a) and (b) present the local relative percentage

errors ErrT and ErrU given by relation (20), obtained on

the underspecified boundary C2 using the optimal regu-

larization parameter k = kopt chosen according to the L-

curve criterion and various levels of noise added into the

input temperature data T jC1
, namely pT 2 {1,3,5}, for

the Cauchy problem given by Example 2. It can be seen

from this figures that the MFS approximation provides

very accurate numerical results for both the temperature

and the flux on the underspecified boundary C2, in the

sense that the errors ErrT and ErrU are O(10�2). Fur-

thermore, both errors ErrT and ErrU decrease as the

level of noise pT added into the input temperature data

decreases and ErrT < ErrU for a fixed amount pT of addi-
tive noise, i.e. the numerical results retrieved for the tem-

perature are more accurate than those obtained for the

flux on the boundary C2. Similar results have been ob-

tained for the other examples and therefore they are

not presented herein. From Figs. 4–7 we can conclude

that the numerical solutions retrieved for all examples

investigated in this study are accurate and stable with re-

spect to the amount of noise pT added into the input

temperature data T jC1
.

4.2. Convergence of the method

In order to investigate the influence of the number M

of source points on the accuracy and stability of the
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numerical solutions for the temperature and the flux on

the underspecified boundary C2, we set R = 5.0 for the

Example 1 and pT = 5. In Fig. 8(a) and (b) we present

the accuracy errors eT and eU for the Example 1, respec-

tively, as functions of the number M of source points,

obtained using k = kopt given by the L-curve criterion.

It can be seen from these figures that both accuracy er-

rors tend to zero as the number M of source points in-

creases and, in addition, these errors do not decrease

substantially for M � 10. These results indicate the fact

that the MFS in conjunction with the first-order Tikho-

nov regularization method provides accurate and con-

vergent numerical solutions with respect to increasing
M
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Fig. 8. The accuracy errors (a) eT, and (b) eU, obtained with N = 20 bo
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Fig. 9. The accuracy errors (a) eT, and (b) eU, obtained with M = 60

pT = 5% for the Example 3, as functions of the distance R between th
the number of source points, with the mention that a

small number of source points is required in order for

a good accuracy of the numerical temperature and flux

on the boundary C2 to be achieved.

Next, we analyse the convergence of the numerical

method proposed with respect to the position of the

source points. To do so, we set M = 20 and pT = 5 for

the Cauchy problem given by Example 3, while at the

same time varying the radius R. Fig. 9(a) and (b) illus-

trate the accuracy errors eT and eU for the Example 3,

respectively, as functions of R, obtained using k = kopt
given by the L-curve criterion. From these figures it

can be seen that the larger is the distance from the source
M
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e source points and the boundary C of the solution domain X.
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points to the boundary C of the solution domain X, i.e.
the larger is R, the better the accuracy in the numerical

temperatures and fluxes. It should be noted that the value

R = 10 was found to be sufficiently large such that any

further increase in this distance between the source

points and the boundary C did not significantly improve

the accuracy of the numerical results for the Example 3.

Although not presented here, it is reported that similar

results have been obtained for all examples analysed in

this study and hence we can conclude that the numerical

method proposed is convergent with respect to increasing

the number of source points and the distance between the

source points and the boundary of the solution domain.
5. Conclusions

In this paper, the Cauchy problem associated with

two-dimensional Helmholtz-type equations has been

investigated by employing the MFS. The resulting ill-

conditioned system of linear algebraic equations has

been regularized by using the first-order Tikhonov regu-

larization method, while the choice of the optimal regu-

larization parameter was based on the L-curve criterion.

Three benchmark examples involving both the Helm-

holtz and the modified Helmholtz equations in smooth

and piecewise smooth geometries have been analysed.

The numerical results obtained show that the proposed

method is convergent with respect to increasing the

number of source points and the distance from the

source points to the boundary of the solution domain

and stable with respect to decreasing the amount of

noise added into the input data. Moreover, the method

is efficient, easy to adapt to three-dimensional Cauchy

problems associated with Helmholtz-type equations, as

well as to complex and irregular domains, but these

investigations are deferred to future work.
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