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Abstract

This paper presents a model for the investigation of buckling, flutter and vibration analyses of beams using the inte-
gral equation formulation. A mathematical formulation based on Euler–Bernoulli beam theory is presented for beams
with variable sections on elastic foundations and subjected to lateral excitation, conservative and non-conservative
loads. Using the boundary element method and radial basis functions, the equation of motion is reduced to an algebraic
system related to internal and boundary unknowns. Eigenvalue problems related to buckling and vibrations are formu-
lated and numerically solved. Buckling loads, natural frequencies and associated eigenmodes are computed. The cor-
responding slope, bending and shear forces can be directly obtained. The load-frequency dependence is investigated
for various elastic foundations and the divergence critical loads are evidenced. Under non-conservative loads, a
dynamic stability analysis is illustrated numerically based on the coalescence of eigenfrequencies. The flutter load
and instability regions with respect to the elastic concentrated and distributed foundations are identified. Using the
eigenmodes, numerically computed, non-linear vibrations of beams are investigated based on one mode analysis.
The presented model is quite general and the obtained numerical results are in agreement with available data.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Slender structural components such as beams and
columns constitute basic parts of many complex engi-
neering structures. Buckling, flutter and vibrations are
the main forms of instability of these structures. The
accurate prediction of static and dynamic critical loads
and responses are very significant in practice and it relies
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on a better design of light weight structures which can be
safely used in the pre-buckling and post buckling ranges.
Amongst the numerical methods available for thin struc-
ture problems, the finite element method is undoubtedly
the most versatile. The only problem with this method is
that its formulation is quite laborious and it takes a large
amount of computer storage. A powerful alternative
method based on integral equations is the Boundary Ele-
ment Method. One of the main reason of the rapid
development of the BEM is a possibility of reduced
dimensionality of the problem, which leads to a reduced
set of equations and a smaller amount of data required
for the computation. Using the fundamental solution
ed.
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corresponding to the exact solution of a part of the
problem, the inappropriate terms are moved to the
right-hand side of the governing equation and consid-
ered as a fictitious source density. For buckling and
vibrations of beams under elastic foundations, domain
integrals are necessary in the formulation. Thus, the
main advantage of dimensionality reduction is elimi-
nated. But, the use of dual reciprocity method (DRM),
introduced by Nardini and Brebbia [1], permits to com-
bine the dimensionality reduction advantage with a sim-
ple fundamental solution and to formulate the problem
on boundary unknowns only. A comprehensive litera-
ture review of the DRM and multiple reciprocity
method (MRM) as applied to elastodynamics can be
found in the review paper of Beskos [2]. Details and
applications to various engineering problems are clearly
presented in the book of Partridge et al. [3]. The eigen-
value analyses of Helmhotz equation using the DRM
and MRM have been discussed by Kamiya et al. [4].
Combining the MRM and singular value decomposition
method, the rod vibration problem has been analyzed by
Chang et al. [5]. The solution of plate bending problems
by MRM has been formulated by Sladek and Sladek [6].
Using DRM and differential quadrature method, the
longitudinal vibrations of plates and membranes are
investigated by Tanaka and Chen [7]. For bending prob-
lems of inhomogeneous Euler–Bernoulli beams, an
investigation is carried out by Rong et al. [8]. Based
on Timoshenko beams theory and a quadrature method,
the dynamic behaviors of beams have been analyzed by
Schanz and Antes [9]. An extension to beams with arbi-
trary cross-section has been developed by Sapountzakis
[10] and to the non-linear dynamic analysis of beams
with variable cross-section has been done by Katsikad-
elis and Tsiatas [11]. Vibrations of beams with variable
sections using BEM and radial basis functions are ana-
lyzed in [12]. However, no general modeling based on
integral equation formulations concerning buckling,
vibration and flutter analyses of beams has been estab-
lished in previous works. This paper intends to provide
a compact formulation for these behaviors and to
numerically investigate the static and dynamic instabili-
ties of beams.
The force acting on a beam can be divided into con-

servative and non-conservative forces. Generally, the
instability of a beam under a conservative force is char-
acterized by the divergence which occurs when one of
the natural frequencies falls to zero. This critical solu-
tion corresponds to buckling load and can be directly
investigated with static analysis. The buckling analysis
of beams has been studied by many authors and is trea-
ted in almost any textbook on mechanics of solids [13].
For a non-conservative system, it has been shown by
Ziegler [14] that the usual Euler method and minimum
potential energy methods (static methods) are inade-
quate to predict their instability and that a dynamic
method must be employed. The instability analysis of
beams under non-conservative force characterized by
the flutter which occurs when two of the natural fre-
quencies coincide became complex conjugate can be
done only dynamically. The presence of non-conserva-
tive loads makes the system of equations mathematically
non-self-adjoint and the corresponding eigenvalue prob-
lem is dictated by a non-symmetric matrix. This problem
has been studied by many authors and various numeri-
cal procedures have been set up for its solution. A com-
prehensive discussion of this subject based on analytical
procedures can be found in the books [15–17]. More re-
cently, the flutter and divergence instability of beams
and plates subjected to non-conservative loads are ana-
lyzed by Zuo and Schreyer [18] by solving the resulting
characteristic equations. Similarly, the flutter and inter-
nal damping effects on the dynamic stability of rods with
intermediate spring support and with relocatable lamped
mass under follower loads have been largely investigated
by Lee [19–21]. The influence of the tangency coefficient
of follower load and the elastically restrained boundary
conditions on the elastic instability of beams has been
discussed by Lee and Hsu [22]. Enhancing flutter and
buckling capacity of beams by using piezoelectric layer
is presented by Wang and Quek [23]. Based on the finite
element method, the stability and instability of cantile-
ver elastic beams subjected to a follower force have been
investigated by Gasparini et al. [24] and by Ryu and
Sugiyama [25]. Using the static approach, the divergence
instability of thin walled beams in pre-buckling and
post-buckling ranges has been recently analyzed by
Mohri et al. [26]. Based on the Ramm finite elements
and a perturbation method, the load-frequency depen-
dence has been investigated for arches and shells with
large rotations by Boutyour et al. [27]. The critical loads
and the stability and instability regions are evidenced for
largely deformed shells with the smaller eigenfrequen-
cies. The divergence and flutter instability are generally
analyzed by analytical method or by finite element meth-
ods. To the best knowledge of the authors, there is no
available compact formulation and results based on
the integral equation formulation for buckling, flutter
and vibration analyses of thin structures.
In this paper, a mathematical modeling based on the

integral equations for buckling, flutter and vibration
analyses of beams is presented. The Euler–Bernoulli
beam theory is used and the governing equation is for-
mulated for beams on elastic foundation and subjected
to conservative and non-conservative loads. The radial
basis functions are used and the required matrices are
explicitly presented for various boundary conditions
and loads. The eigenvalue problems corresponding to
buckling, vibration and flutter are explicitly formulated.
The displacement, slope, bending and shear forces can
be directly obtained. The buckling and vibration modes
and the load-frequency dependence are presented for
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various boundary conditions and elastic foundations.
For axial tangential follower forces, the flutter load is
evidenced for uniform and concentrated elastic founda-
tions based on the coalescence criterion. The flutter load
variations with respect to the position and amplitude of
the foundation and the flutter zone are investigated. The
non-linear vibration analyses of beams based on one
mode numerically computed are elaborated. Some
benchmark tests are investigated ratifying the effective-
ness of the presented methodological approach.
2. Basic beam equations

Let us consider a slender beam of length L with a
variable cross-section. The Euler–Bernoulli beam for-
mulation based on the assumption that both shear
deformation and rotational inertia of the cross-section
are negligible is used. The axial displacement will be ne-
glected and the equation of motion is formulated using
the transverse displacement only. Based on the integral
equation formulation, buckling, flutter and transverse
vibrations of beams will be formulated. The governing
partial differential equation of motion of beams on elas-
tic foundations and subjected to axial compression and
lateral excitation (Fig. 1) is formulated by

o2

oz2
EIðzÞ o

2V ðz; tÞ
oz2

� �
þ qðzÞSðzÞ o

2V ðz; tÞ
ot2

þ k
o2V ðz; tÞ

oz2

þ jðzÞV ðz; tÞ ¼ pðz; tÞ ð1Þ

where V is the transverse displacement, E, I, S and q are
Young�s modulus, inertia, the area and the mass density
respectively. j(z) is the elastic foundation, k is the axial
compression, p(z, t) is the lateral excitation and z is the
axial coordinate. Assuming harmonic motion, the free
vibration problem of axially loaded beam is given by

o
2

oz2
EIðzÞ o

2V
oz2

� �
� qSðzÞx2V þ k

o
2V
oz2

þ jðzÞV ¼ 0 ð2Þ

For homogeneous beams with a variable section, the
parameters E, I, S and q can be assumed in the following
form:

EIðzÞ ¼ Eð0ÞIð0ÞK1ðzÞ
qSðzÞ ¼ qð0ÞSð0ÞK2ðzÞ

ð3Þ
z r p(z,t) 

z : Field s : Source
point point

(Moving) (Marked)

Fig. 1. C–S beam subjected to axial force k, elast
where K1 and K2 are functions of the axial coordinate z.
Using non-dimensional parameters, Eq. (2) can be read
as

o2

ox2
K1ðxÞ

o2W
ox2

� �
� x�2K2ðxÞW þ k� o

2W
ox2

þ j�ðxÞW ¼ 0

ð4Þ

where

x�2 ¼ q
Sð0ÞL4x2

EIð0Þ ; k� ¼ k
L2

EIð0Þ ; j� ¼ j
L3

EIð0Þ ;

W ¼ V
R
; R ¼

ffiffiffi
I
S

r
and x ¼ z

L

in which R is the radius of gyration of the beam and
0 6 x 6 1.
Eq. (4) may be solved by the finite element method or

analytically for standard boundary conditions. The aim
of this paper is the development of an integral equation
formulation for numerical solution of (4) and the inves-
tigation of the static and dynamic instability analyses of
beams based on the resulting formulation.
3. Integral equation formulation

The fundamental solution of (4) is hard to be explic-
itly determined due to variable coefficients K1(x) and
K2(x) even if only buckling (x� = 0) or free vibration
(k� = 0) problem is considered. For simplified cases, Bes-
sel functions may be used but will lead to some numer-
ical difficulties at standard integral equation formulation
of solving the resulting boundary value problem [3–5].
As the domain integrals are inevitable due to the excita-
tion and load, a simple fundamental solution will be
used and the resulting domain integrals will be treated
by the dual reciprocity method. Let us denote W� the
fundamental solution of the following problem:

o2

ox2
K1ðxÞ

o2W �ðx; sÞ
ox2

� �
¼ dðx; sÞ ð5Þ

where d is the Dirac function and s is the source point.
This fundamental solution will be used and the differen-
tial Eq. (4) will be transformed into an integral equation.
Following the boundary element method procedure
 λ
)(zκ

←

ic foundation j and lateral excitation p(z,t).
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[1–12], the resulting integral equation will be reduced to
algebraic equation.
As well known in the bending problem of beams, the

following variables have physical meanings and may be
also known at boundaries:

hðxÞ ¼ oW
ox

; MðxÞ ¼ �K1ðxÞ
o2W
ox2

and QðxÞ ¼ oM
ox
ð6Þ

where h(x) is the slope,M(x) is the bending moment and
Q(x) is the shear force related to the derivatives of the
deflectionW. Multiplying Eq. (4) byW � and integrating
from 0 to 1, one obtains:Z 1

0

o2

ox2
K1ðxÞ

o2W
ox2

ðxÞ
� �

W �ðs; xÞdx

¼ x�2
Z 1

0

K2ðxÞW ðxÞW �ðs; xÞdx

� k�
Z 1

0

o2W
ox2

ðxÞW �ðs; xÞdx

�
Z 1

0

j�ðxÞW ðxÞW �ðs; xÞdx ð7Þ

Integrating by parts four times, the first term of (7)
becomesZ 1

0

o2

ox2
K1ðxÞ

o2W
ox2

ðxÞ
� �

W �ðs;xÞdx¼W ðsÞþAðsÞ

AðsÞ¼ �W �ðs;xÞQðxÞþoW �

ox
ðs;xÞMðxÞ

�

þK1
o
2W �

ox2
ðs;xÞhðxÞ� o

ox
K1

o
2W �

ox2

� �
ðs;xÞW ðxÞ

�1
0

8>>>>>>>>>>><>>>>>>>>>>>:
ð8Þ

In the right-hand side of Eq. (7), three domain inte-
grals have to be evaluated. Making use of radial basis
functions, thus avoiding the additional task of domain
integration, these domain integrals are transformed into
boundary values. Let us assume that for these integrals,
the function W(x) is assumed to be:

W ðxÞ ¼
Xnþ2
j¼1

ajfjðxÞ ð9Þ

where fj are radial basis functions, �n� is the number of
interior points, aj are unknown coefficients [3,4]. Given
fj defines two other functions gj and hj which satisfy
the following equations:

d4gj
dx4

ðxÞ ¼ fjðxÞ and
d4hj
dx4

ðxÞ ¼ K2ðxÞfjðxÞ ð10Þ
More details aboutW�, fj, gj and hj, used in this anal-
ysis, are given in the Appendix A. Making use of these
transformations, it is now possible to evaluate the inte-
gral formulation (7) using boundary values only. Based
on the decomposition (9) and Eq. (10), the three domain
integral in the r.h.s. of (7) are transformed into bound-
ary values as follows:Z 1

0

K2ðxÞW ðxÞW �ðs; xÞdx ¼
Xnþ2
j¼1

ajBjðsÞ

BjðsÞ ¼ hjðsÞ þ W �ðs; xÞd
3hj
dx3

ðxÞ
�

� oW �

ox
ðs; xÞ d

2hj
dx2

ðxÞ þ o2W �

ox2
ðs; xÞdhj

dx
ðxÞ

�o3W �

ox3
ðs; xÞhjðxÞ

�1
0

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð11aÞ

Z 1

0

o2W
ox2

ðxÞW �ðs; xÞdx ¼
Xnþ2
j¼1

ajCjðsÞ

CjðsÞ ¼
d2gj
dx2

ðsÞ þ W �ðs; xÞ
d5gj
dx5

ðxÞ
"

� oW �

ox
ðs; xÞ

d4gj
dx4

ðxÞ þ o
2W �

ox2
ðs; xÞ

d3gj
dx3

ðxÞ

�o3W �

ox3
ðs; xÞ

d2gj
dx2

ðxÞ
#1
0

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
ð11bÞ

For a uniform elastic foundation j�

Z 1

0

j�ðxÞW ðxÞW �ðs; xÞdx ¼ j�
Xnþ2
j¼1

ajDjðsÞ

DjðsÞ ¼ gjðsÞ þ W �ðs; xÞ
d3gj
dx3

ðxÞ
"

� oW �

ox
ðs; xÞ

d2gj
dx2

ðxÞ þ o2W �

ox2
ðs; xÞ

dgj
dx

ðxÞ

�o3W �

ox3
ðs; xÞgjðxÞ

#1
0

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
ð11cÞ

For a concentrated elastic foundation j� at pointZ 1

0

j�ðxÞW ðxÞW �ðs; xÞdx ¼ j�
Xnþ2
j¼1

ajDjðsÞ

DjðsÞ ¼ 0 j 6¼ L;

DLðsÞ ¼ W ðxLÞW �ðs; xLÞ; aL ¼ 1

8>>>><>>>>: ð11dÞ

Based on Eqs. (8) and (11), the integral formulation (7)
is reduced to the following algebraic equation at interior
points:
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W ðsÞ þ AðsÞ ¼ x�2
Xnþ2
j¼1

ajBjðsÞ þ k�
Xnþ2
j¼1

ajCjðsÞ

þ j�
Xnþ2
j¼1

ajDjðsÞ ð12Þ

where A, B, C and D will be explicitly given later.
The boundary conditions of the beam may be classi-

fied as simply-supported, clamped, free or more general
as elastically supported edges. In order to present a gen-
eral formulation for various boundary conditions, more
equations than (12) related to h, M and Q are needed.
They are obtained by derivatives of Eq. (12) according
to the variable �s�. For a compact equation representa-
tion, the following notations are introduced:

bEðsÞ ¼ oE
os

ðsÞ; bbE ðsÞ ¼ K1ðsÞ
obE
os

ðsÞ and

bbbE ðsÞ ¼ o
bbE
os

ðsÞ ð13Þ

where E may be A, B, C or E = D.
Finally, one obtains for a uniform elastic foundation

the following algebraic system:

W ðsÞ þ AðsÞ ¼ x�2Pnþ2
j¼1

ajBjðsÞ þ k�Pnþ2
j¼1

ajCjðsÞ

þj�Pnþ2
j¼1

ajDjðsÞ

hðsÞ þ bAðsÞ ¼ x�2Pnþ2
j¼1

aj
bBjðsÞ þ k�Pnþ2

j¼1
aj
bCjðsÞ

þj�Pnþ2
j¼1

aj
bDjðsÞ

�MðsÞ þ bbAðsÞ ¼ x�2Pnþ2
j¼1

aj
bbBjðsÞ þ k�Pnþ2

j¼1
aj
bbC jðsÞ

þj�Pnþ2
j¼1

aj
bbDjðsÞ

�QðsÞ þ
bbbA ðsÞ ¼ x�2Pnþ2

j¼1
aj

bbbB jðsÞ þ k�Pnþ2
j¼1

aj

bbbC jðsÞ

þj�Pnþ2
j¼1

aj

bbbD jðsÞ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
ð14a–dÞ

These equations give analytical solution representations
with respect to the interior variable s. For a numerical
solution, a discretization of (14) and the consideration
of boundary conditions are needed.
4. Matrix formulations

After discretization of Eq. (14), one can write
W i þ Ai ¼ x�2Pnþ2
j¼1

ajBij þ k�Pnþ2
j¼1

ajCij þ j�Pnþ2
j¼1

ajDij

hi þ bAi ¼ x�2Pnþ2
j¼1

aj
bBij þ k�Pnþ2

j¼1
aj
bCij þ j�Pnþ2

j¼1
aj
bDij

�Mi þ bbAi ¼ x�2Pnþ2
j¼1

aj
bbBij þ k�Pnþ2

j¼1
aj
bbC ij þ j�Pnþ2

j¼1
aj
bbDij

�Qi þ
bbbA i ¼ x�2Pnþ2

j¼1
aj

bbbB ij þ k�Pnþ2
j¼1

aj

bbbC ij þ j�Pnþ2
j¼1

aj

bbbD ij

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
ð15a–dÞ

in which i = 1 and i = n + 2 correspond to beam ends
and i = 2 to i = n + 1 correspond to interior points
which may correspond to uniform or non-uniform dis-
cretisation. Let us recall that we have (n + 4) unknowns,
(n) interior and four unknowns related to the assumed
boundary conditions. Eq. (15a) leads to (n + 2) equa-
tions and two extra equations are then needed. Eqs.
(15b) or (15c) may be used to complete the system for
S–S, S–C, C–C and other boundary conditions. A com-
bination of Eqs. (15a)–(15d) can also be used to solve
the system for more general boundary conditions.
The present formulation is quite general and is given

for beams with variable cross-sections. As the aim of this
paper is the development of a simple and general formu-
lation leading to a unique approach for buckling, flutter,
transverse vibrations and interaction with elastic foun-
dation, beams with constant sections are considered.
For the dynamic analyses of beams with variable
cross-sections, more theoretical developments with re-
spect to the associated fundamental solution and radials
basis functions are needed. For the sake of clearness, let
us rewrite (15) in a matrix form and give more details
about introduced matrices for specified boundary
conditions.
Assuming that the beam is clamped–simply-sup-

ported as presented in Fig. 2 (W1 = 0, h1 = 0, Wn+2 = 0
and Mn+2 = 0) and introducing the following notations:

A1ðsÞ ¼ � oW �

ox
ðs; 0ÞM1; A2ðsÞ ¼

j1� sj
2

hnþ2;

A3ðsÞ ¼ W �ðs; 0ÞQ1; A4ðsÞ ¼ �W �ðs; 1ÞQnþ2

fW g ¼ fW 2;W 3; . . . ;W n;W nþ1g and

fTg ¼ fM1; hnþ2;Q1;Qnþ2g

The vector {W} represents the deflection unknowns
at interior point and {T} represents the boundary un-
knowns. For the considered boundary conditions and
using previous notations, the algebraic system (15) can
be written in the following matrix form:

I A

O A0

� � fW g
fTg

� �
¼ x�2 B

B0

� �
þk� C

C0

� �
þj� D

D0

� �� �
F fW g

ð16Þ



1/(n+1)

1 1 3 n+1 n+2

Fig. 2. Uniform discretization of a simply-supported and
clamped beam. W1 =Wn+2 = 0, h1 = 0 and Mn+2 = 0.
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where I (n · n), and O (4 · n) are the identity and zero
matrix, respectively.

A : matrix ðn� 4Þ; Aik ¼ AkðsiÞ; for k ¼ 1; 2; 3 or 4
si ¼ ði� 1Þ=ðnþ 1Þ and i ¼ 2 to nþ 1

A0 : matrix ð4� 4Þ; A01k ¼ Akð0Þ; A02k ¼ Ak ð1Þ;

A03k ¼ bbAkð0Þ; A04k ¼ bbAkð1Þ; for k ¼ 1 to 4

B : matrix ðn� ðnþ 2ÞÞ; Bij ¼ BjðsiÞ;
i ¼ 2 to nþ 1 and j ¼ 1 to nþ 2

B0 : matrix ð4� ðnþ 2ÞÞ; B01j ¼ Bjð0Þ; B02j ¼ Bjð1Þ;

B03j ¼ bbBjð0Þ; B04j ¼ bbBjð1Þ; j ¼ 1 to nþ 2

C : matrix ðn� ðnþ 2ÞÞ; Cij ¼ CjðsiÞ;
i ¼ 2 to nþ 1 and j ¼ 1 to nþ 2

C0 : matrix ð4� ðnþ 2ÞÞ; C01j ¼ Cð0Þ; C02j ¼ Cjð1Þ;

C03j ¼ bbC jð0Þ; C04j ¼ bbC jð1Þ; j ¼ 1 to nþ 2

D : matrix ðn� ðnþ 2ÞÞ; Dij ¼ DjðsiÞ;
i ¼ 2 to nþ 1 and j ¼ 1 to nþ 2

D0 : matrix ð4� ðnþ 2ÞÞ; D01j ¼ Djð0Þ; D02j ¼ Djð1Þ;

D03j ¼ bbC jð0Þ; D04j ¼ bbDjð1Þ; j ¼ 1 to nþ 2

F 1 : matrix ððnþ 2Þ � ðnþ 2ÞÞ of radial function matrix

F 1ij ¼ fj
ði� 1Þ
ðnþ 1Þ

� �
; i ¼ 1 to nþ 2 and j ¼ 1 to nþ 2

F : matrix ððnþ 2Þ � ðnÞÞ; F ij ¼ F 1�1iðjþ1Þ;

i ¼ 1 to nþ 2 and j ¼ 1 to n

because for clamped simply-supported boundary

conditions W 1 ¼ W nþ2 ¼ 0

Eq. (16) presents an algebraic system on the deflec-
tion at unknown interior points {W} and unknowns at
boundaries represented by {T}. This system is rewritten
as:
A0 Tf g ¼ x�2B0 þ k�C0 þ j�D0 � Oð ÞF Wf g
A Tf g ¼ x�2Bþ k�C þ j�D� Ið ÞF Wf g

(
ð17a; bÞ

Let us recall that the vectors {W} and {T} and the
previous matrices depend on the boundary conditions
considered. Matrices I and O may be also changed
according to boundary conditions and the same nota-
tions are kept for a general representation. In Appendix
B, details about vectors and matrices for simply-sup-
ported, clamped–clamped and clamped–free are given.
The solutions of the considered problems are obtained
by numerically solving Eq. (16). This system is reduced
to an eigenvalue problem in deflection vector only as
follows:

½X 
 � fW g ¼ ½Y 
 � fW g
X ¼ ðI � AA�1

0 OÞ � x�2ðAA�1
0 B0 � BÞF

Y ¼ ðk�ðC � AA�1
0 C0Þ þ j�ðD� AA�1

0 D0ÞÞF

8><>:
ð18a–cÞ

The unknowns at boundaries can be easily computed
by the following algebraic equation:

fTg ¼ A�1
0 ½ðx�2B0 þ k�C0 þ j�D0ÞF � O
fW g ð19Þ

This permits to break down the matrix problem (16) into
an eigenvalue problem and an algebraic one. Matrices
[X] and [Y] can be easily formulated for each considered
problem.
For specified boundary conditions, load and founda-

tions, matrices in (18) and (19) have first to be computed
following the developments presented in Appendix B.
For numerical solutions, a computing program in MAT-
LAB has been developed. The MATLAB environment is
exploited for a standard use of the presented formula-
tion. Formulations (18) and (19) are quite general and
allow one to investigate buckling, vibrations and combi-
nation of them leading to load-frequency dependence
for beams on various types of elastic foundations.

4.1. Buckling problem

The buckling problem may be formulated by omit-
ting the frequency parameter in (18) and (19). The criti-
cal buckling loads and associated eigenmodes can be
determined for various types of boundary conditions
and elastic foundations j� by solving the following
eigenvalue problem:

½X 
fW g ¼ 1
k� fW g

X ¼ ðI � AA�1
0 OÞ � j�ðD� AA�1

0 D0ÞF
� ��1
�ðC � AA�1

0 C0ÞF

8>><>>: ð20a; bÞ

This allows the investigation of numerical critical
buckling loads and associated eigenmodes at interior
points. The corresponding slope, moment and shear
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force can be numerically computed using (15). The un-
knowns at boundaries are computed by the following
algebraic equation:

fTg ¼ A�1
0 ½ k�C0 þ j�D0ÞF � Oð 
fW g ð20cÞ
4.2. Linear vibration problem

The numerical solution of Eq. (18) permits, on one
hand, to study the linear vibration behaviors of beams
by omitting the load parameter. On the other hand,
the linear vibration analysis of beams under an axial
compression also can be investigated by numerically
solving the following eigenvalue problem for each fixed
load parameter:

½X 
fW g ¼ 1
x�2 fW g

X ¼ I � AA�1
0 Oþ k�ðC � AA�1

0 C0ÞF
�
þj�ðD� AA�1

0 D0ÞF
��1ðA�1

0 B0 � BÞF

8>><>>: ð21Þ

The unknowns at boundaries can be computed by the
algebraic Eq. (18). The load-frequency dependence can
be investigated and the divergence stability may be ana-
lyzed for various types of elastic foundations.

4.3. Flutter problem

Let recall that the matrix X is load dependent. With
adjusted matrices, in accordance with the considered
boundary conditions, Eq. (21) can be used for conserva-
tive and non-conservative loads. When the applied load
is a non-conservative follower force, the frequencies can
be either real or complex. Therefore, at divergence insta-
bility, the lowest frequency vanishes, as for the conserva-
tives system or two frequencies can approach each other,
coalesce and then become complex conjugate. This cor-
responds to flutter instability and the load at the two fre-
quencies coincide is defined as the flutter load. This
study is intended to extend the previous analysis based
on boundary integral formulation to the stability of a
cantilevered beam subjected to a tangential follower
force at the free end (Beck�s problem) under elastic foun-
dation. The assumed boundary conditions for a C–F
beam on an elastic foundation at the free end is:

W 1 ¼ 0; h1 ¼ 0; Mnþ2 ¼ 0 and Qnþ2 ¼ �j� � W nþ2

ð22Þ

The dynamic stability analysis can be performed by
Eq. (21) with adjusted matrices taking into account the
assumed boundary conditions as presented in Appendix
B. The load-frequency dependences and the flutter load
corresponding to coalescence of two natural frequencies
can be investigated. The mode, moment and shear force
corresponding to critical frequency or to the flutter load
can be directly computed. The control of the linear and
non-linear flutter may be performed based on the
numerically obtained modes and will be an extension
of this work.

4.4. Nonlinear vibration problem

One of the main objectives of the present work is to
establish a multi-modal formulation based on boundary
element method for non-linear vibration and post-buck-
ling analyses of beams. The numerical solution of the
linear vibration problem (21) permits one to get the nat-
ural frequencies and associated eigenmodes. Using the
obtained eigenmodes, a multimodal formulation can
be developed for beams with various boundary condi-
tions and elastic foundations. Based on harmonic bal-
ance method, a semi analytical method has been
presented for nonlinear free and forced vibrations of
beams [28,29]. In that work, analytical beam modes,
available for classical boundary conditions, are used.
In the present work, the numerically obtained modes
will be used and any boundary condition and elastic
foundation may be inserted. The nonlinear harmonic re-
sponse may be computed in the following form:

W ðx; tÞ ¼ cosðxtÞ
Xn
i¼1

aiwiðxÞ ð23Þ

where wi(x) are the computed eigenmodes and {A}
t =

{a1,a2, . . . ,an} is the corresponding amplitude vector.
Following the formulation presented in [28,29], the non-
linear forced vibration of beams can be analyzed using
the following a dimensional and multidimensional
formulation:

ð½K�
 � x�2½M�
ÞfAg þ 3
2
½B�ðAÞ
fAg ¼ fF �g ð24Þ

where [M�], [K�] and [B�(A)] are the mass matrix, the lin-
ear and nonlinear rigidity matrices respectively. {F�} is
the column vector of generalized transverse excitations.
The multimodal analysis will be investigated in the next
work. In this work, we limit ourselves to one mode anal-
ysis and the response is assumed to be

V ðz; tÞ ¼ Ra1w1ðxÞ cosðxtÞ

in which R is the radius of gyration and a1 the amplitude
corresponding to the first mode. The 1-D nonlinear fre-
quency response function is then given by [28]

x�

x�
L

� �2
¼ 1þ 3

2

b�1111
k�11

a21 �
1

k�11

f �
1

a1
ð25Þ

where

x�
L2 ¼ k�11=m

�
11; m�

11 ¼
Z 1

0

ðw1ðxÞÞ2dx
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k�11 ¼
Z 1

0

d2w1ðxÞ
dx2

� �2
dxþ j�

Z 1

0

ðw1ðxÞÞ2dx

in the case of a uniform elastic foundation

k�11 ¼
Z 1

0

d2w1ðxÞ
dx2

� �2
dxþ j�ðw1ðx0ÞÞ2

in the case of a concentrated elastic foundation

b�1111 ¼
1

2

Z 1

0

dw1ðxÞ
ðdxÞ

� �2
dx

 !2
For a concentrated harmonic force of amplitude Fcc at
x0, f �

1 is given by

f �
1 ¼ F c L3

EI R
w1ðx0Þ ¼ F c

0r w1ðx0Þ ð26Þ

The coefficients m�
11; k�11; b�1111 and w1(x0) are evaluated

using the first mode shape numerically obtained by the
present analysis. The nonlinear frequency–amplitude
dependence for beams under various boundary condi-
tions and elastic foundations for free and forced vibra-
tion can be easily analyzed based on Eq. (25).
5. Numerical results

The mathematical formulation is presented for beams
with variable section under various elastic foundation
and boundary conditions and subjected to various types
of loads. In this paper, the analysis is limited to isotropic
beams with constant sections. The extension to variable
sections, anisotropic beams and static and dynamic mul-
timodal analyses of beams will be investigated in the
next work. The critical buckling loads and the natural
frequencies and the corresponding eigenmodes are deter-
mined by solving the resulting eigenvalue problem at
concatenation points. The deflection, the slope, the
bending moment and the shear force can be also investi-
gated at interior and boundaries of the beam. A large
number of natural frequencies or buckling loads and
associated eigenmodes can be numerically computed.
The accuracy of the result depends on the number of
interiors points chosen. Tests of convergence of the
buckling and vibration analyses are investigated. Many
Table 1
The fifth first buckling loads of a C–S beam obtained by the present

Order k�

n = 10 n = 20 n = 40 n = 60

1 20.47 20.27 20.21 20.20
2 62.17 60.36 59.86 59.76
3 128.90 121.59 119.60 119.22
4 225.91 205.36 199.81 198.74
5 360.00 313.51 300.94 298.53
beam tests are analyzed and only some benchmark ones
are presented in order to demonstrate the effectiveness of
the developed approach.

5.1. Buckling

The obtained results depend on the number of inter-
nal points considered. The convergence to the analytical
solution is tested and results are presented. For the sake
of brevity, only few tested case are presented. The con-
vergence of the solution with respect to interior points
�n� is presented in Tables 1 and 2. It can be seen clearly
from these tables that 60 interior points is largely en-
ough for accurate results. Results obtained with the
present model for critical buckling loads are favorably
compared to analytical ones in case of constant sections.
Results are presented only for clamped–simply sup-
ported and clamped–free beams. For buckling of beams
on a concentrated elastic foundation, the critical load
changes according to the amplitude and position of the
foundation. Numerical results obtained by 60 interior
points for S–S beams are presented in Table 3 and are
favorably compared to the available analytical ones
[13]. The effect of the concentrated foundation at
Xc = 0.75 on the fifth first modes are presented in
Fig. 3 for j� = 150 The same study is done for a C–F
beam (Xc = 1) leading to the same behavior as presented
in Fig. 4. The concentrated elastic foundation effect on
the first and higher buckling modes are clearly shown.

5.2. Linear vibrations

The vibration analyses are investigated by numeri-
cally solving Eq. (20) and a large number of vibration
modes can be obtained. The fifth first free vibration
modes are presented in Figs. 5 and 6 for C–S and C–F
beams on concentrated elastic foundations at Xc = 0.75
and at Xc = 1 respectively. The convergence of fifth five
natural frequencies with respect to the number of inte-
rior points is presented in Tables 4 and 5. Again, a few
number of interior points is enough for a good predic-
tion of eigenfrequencies. For beams submitted to an
axial compression and on an elastic foundation, the
natural frequency ratio x�2=x�2

1 according to the axial
model for various numbers of internal points n

Analytical solution [13]

n = 80 n = 100

20.20 20.19 20.19
59.72 59.71 59.68
119.08 119.02 118.90
198.36 198.18 197.90
297.67 297.27 296.60
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Fig. 3. The fifth first buckling mode shapes, mass normalized, of a clamped–simply supported beam on a concentrated foundation
j� = 150 at Xc = 0.75 (n = 60).

Table 3
Comparison between critical buckling load ratios obtained by the present model and analytical ones of a simply-supported beam on
concentrated elastic foundations for different positions XL and amplitudes of j� (n = 60)

Position XL k�(j�)/k�(j� = 0) k�(j� = 0) = p2

j� = 20 j� = 40 j� = 60 j� = 80 j� = 100

Analytic
[13]

Present
model

Analytic
[13]

Present
model

Analytic
[13]

Present
model

Analytic
[13]

Present
model

Analytic
[13]

Present
model

0 1 1.0002 1 1.0002 1 1.0002 1 1.0002 1 1.0002
0.1 1.038 1.043 1.076 1.085 1.111 1.125 1.146 1.163 1.179 1.2
0.2 1.137 1.142 1.262 1.273 1.378 1.393 1.483 1.503 1.578 1.602
0.3 1.259 1.263 1.498 1.506 1.714 1.726 1.905 1.921 2.072 2.091
0.4 1.365 1.366 1.714 1.718 2.043 2.049 2.348 2.353 2.612 2.623
0.5 1.408 1.408 1.809 1.810 2.203 2.205 2.590 2.592 2.967 2.971

Table 2
The fifth first buckling loads of a C–F beam obtained by the present model for various numbers of internal points n

Order k� Analytical solution [13]

n = 10 n = 20 n = 40 n = 60 n = 80 n = 100

1 2.46 2.47 2.47 2.47 2.47 2.47 2.47
2 22.85 22.38 22.25 22.23 22.22 22.21 22.21
3 62.99 62.04 61.78 61.73 61.71 61.70 61.69
4 135.37 124.73 121.89 121.35 121.16 121.07 120.90
5 220.07 205.33 201.28 200.50 200.22 200.09 199.86
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compression ratio k�=k�
1 is presented in Figs. 7 and 8

(x�
1 ¼ x�ðk� ¼ 0; j� ¼ 0Þ; k�

1 ¼ k�ðj� ¼ 0ÞÞ. One can ob-
serve that the first natural frequency vanishes at critical
buckling load (divergence). If one adds to axial compres-
sion the elastic foundation j� the natural frequencies
change significantly as clearly shown in Figs. 7 and 8.
The load-frequency dependence can be easily obtained
for uniform and concentrated elastic foundations at
any desired interior point in the pre-buckling region.
For nonlinear pre-buckling and the post-buckling re-
gions, a nonlinear analysis is needed [26,27].

5.3. Flutter analysis

For a clamped–free beam loaded by a tangential fol-
lower force (Beck�s problem), the flutter phenomenon is
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Table 4
The fifth first natural frequencies of a C–S beam obtained by the present model for various numbers of internal points n

Order x� Analytical solution [30]

n = 10 n = 20 n = 40 n = 60 n = 80 n = 100

1 239.61 238.23 237.86 237.78 237.76 237.74 237.81
2 2 571.20 2 516.80 2 501.80 2 498.89 2 497.85 2 497.36 2 497.07
3 11 593.84 11 062.42 10 918.36 10 890.49 10 890.49 10 875.93 10 866.83
4 35 599.54 32 786.83 32 041.05 31 897.70 31 897.70 31 822.94 31 780.09
5 88 198.82 77 668.23 74 944.78 74 425.67 74 425.67 74 155.50 74 000.84

Table 5
The fifth first natural frequencies of a C–F beam obtained by the present model for various numbers of internal points n

Order x� Analytical solution [30]

n = 10 n = 20 n = 40 n = 60 n = 80 n = 100

1 12.355 12.360 12.362 12.362 12.362 12.362 12.362
2 489.95 486.74 485.83 485.66 485.60 485.57 485.52
3 3 927.73 3 839.64 3 815.21 3 810.46 3 808.77 3 807.97 3 806.62
4 15 636.15 14 892.46 14 689.09 14 649.68 14 635.65 14 629.09 14 617.45
5 44 875.56 41 257.42 40 284.90 40 097.59 40 030.97 39 999.85 39 943.81
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investigated. In the present analysis, the coalescence cri-
terion is used. The numerically obtained flutter load with
60 internal points is k� = 20.0625 (k� = 20.05[19–21]). At
this load, the first and the second eigenfrequencies coin-
cide (x�2

1 ¼ x�2
2 ¼ 121:46) and become complex conju-

gate after the flutter load. In Fig. 9 are presented the
fifth first vibration modes and shows a perfect coinci-
dence between the first and the second mode. The third,
the fourth and the fifth eigenmodes are real. Fig. 10
shows the load-frequency curves for a uniform elastic
foundation with various amplitudes j�. It can be seen
that the flutter load is amplitude-foundation indepen-
dent and the Beck�s solution [15–21] is obtained. The
case of concentrated foundations is presented in Fig.
11 and shows a higher dependence between the flutter
load and the position of the concentrated foundation.
For this test, some more information is supplied in order
to explain its particular behavior. The flutter load varia-
tion with respect to the position and the amplitude of the
concentrated elastic foundations is presented in Fig. 12.
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It is clearly shown that for 0 < j� < 35 the flutter may
happen at every position Xc and the flutter load varies
slowly from Beck�s solution and the variation increases
for Xc > 0.5. In the present analysis, for Xc = 1, the flut-
ter limit correspond to j�

lim ¼ 35, which is favorably
compared to the results given in [23] ðj�

lim � 36Þ. For
j� > 35, the flutter load is strongly position dependent
and there is no flutter (divergence) for some positions.
For j� < 200, the position Xc � 0.77 leads to the smallest
value of the flutter load and the beam may flutter at a
very low value. For j� > 500, the flutter position zone
is largely reduced and the flutter load increases highly
from Beck�s solution. The transition from flutter zone
to divergence zone according to the amplitude and the
position of the concentrated elastic foundation is pre-
sented in Fig. 13.

5.4. Nonlinear vibrations

The main extension of this work is the develop-
ment of the multimodal analyses of post-buckling, non-
linear vibration and nonlinear flutter of beams based on
the numerically computed eigenmodes. For nonlinear
vibration, this study is limited to the 1-mode analysis
and the nonlinear amplitude-frequency (24) is used.
For the sake of brevity, only some benchmark cases
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Table 6
Frequency ratio (x�=x�

L) at various amplitudes of the nonlinear free vibration of a C–C beam under various concentrated elastic
foundations at Xc = 0.75 (n = 60)

a1 Analytic [28] (x�=x�
L) Present model

j� = 0 j� = 0 j� = 300 j� = 600 j� = inf

0.2 1.000899 1.000897 1.000711 1.000675 1.000321
0.4 1.003590 1.003585 1.002843 1.002699 1.001282
1 1.022231 1.022197 1.017636 1.016749 1.007985
1.5 1.049357 1.049284 1.039259 1.037305 1.017879
2 1.086197 1.086070 1.068798 1.065417 1.031570
2.5 1.131801 1.131612 1.105617 1.100507 1.048911
3 1.185159 1.184899 1.149017 1.141930 1.069724
3.5 1.245275 1.244937 1.198283 1.189027 1.093810

Table 7
Frequency ratio (x�=x�

L) at various amplitudes of the nonlinear free vibration of a C–S beam under various concentrated elastic
foundations at Xc = 0.75 (n = 60)

a1 Analytic [28] (x�=x�
L) Present model

j� = 0 j� = 0 j� = 300 j� = 600 j� = inf

0.2 1.002001 1.001999 1.000685 1.000594 1.000252
0.4 1.007980 1.007975 1.002738 1.002375 1.001008
1 1.017868 1.017850 1.016989 1.014755 1.006283
1.5 1.048881 1.048849 1.037834 1.032902 1.014082
2 1.106951 1.106884 1.066333 1.057786 1.024902
2.5 1.183471 1.183360 1.101891 1.088944 1.038646
3 1.275125 1.274963 1.143852 1.125856 1.055202
3.5 1.378898 1.378682 1.191538 1.167976 1.074440
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are presented such as C–C and C–S beams. The nonlin-
ear frequencies with respect to mode-amplitudes for
various concentrated elastic foundation amplitudes at
Xc = 0.75 are presented in Tables 6 and 7. The rigidity
effect added by the elastic foundation on the nonlin-
ear free vibration is analyzed. The backbone and
resonance curves are presented in Fig. 14 for a C–S
beam on concentrated elastic foundations at (Xc =
0.75) and subjected to a lateral concentrated har-
monic excitation at the beam center. Increasing the
foundation amplitude leads to reducing the nonlinear
effect.



0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5

κ
* =10

0

κ
* =0

κ
* =5

0

 

(ω*/ω*L)2

a 1

Fig. 14. Resonance curves of forced vibrations of a C–S beam under harmonic concentrated force at the center of the beam (for
c = 20) for different values of concentrated elastic foundations at Xc = 0.75 (n = 60).

2646 Z. Elfelsoufi, L. Azrar / Computers and Structures 83 (2005) 2632–2649
6. Conclusion

A methodological approach based on integral equa-
tion formulations for buckling, flutter and vibration
analyses of beams is presented in simple and compact
forms. Critical buckling loads, natural frequencies, flut-
ter loads and load-frequency dependences are investi-
gated for beams on various elastic foundations and
boundary conditions. Tests of convergence with respect
to interior points are carried out and showed that 60
points are largely enough for good accuracies of eigen-
values and eigenmodes. Nonlinear free and forced vibra-
tions of beams based on one mode analysis are
investigated. The presented model is quite general and
all obtained results are in agreement with available data.
Multimodal analyses based on the computed eigen-
modes for post-buckling, nonlinear vibrations and non-
linear flutter will be investigated in next work.
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Appendix A

In this study, we limit ourselves to isotropic elastic
beams with a constant section. In this case, the rigidity
and mass functions K1(x) and K2(x) are constant
(K1(x) = K2(x) = 1).
The fundamental solution W� used in this analysis
corresponds to o4W �

ox4 ðx; sÞ ¼ dðx; sÞ and is

W �ðx; sÞ ¼ j x� sj3

12

Several types of radial basis functions fj(x) are tested and
the general form is:

fjðxÞ ¼ 1þ arj þ br2j þ cr3j where rj ¼j x� xj j

The other functions gj and hj are calculate using the fol-
lowing expression:

d4gj
dx4

ðxÞ ¼ fjðxÞ and
d4hj
dx4

ðxÞ ¼ K2ðxÞfjðxÞ

gjðxÞ ¼ hjðxÞ ¼
r4j
24

þ a
r5j
120

þ b
r6j
360

þ c
r7j
840

where a, b and c are the chosen constants [3,4].
Appendix B. Matrices corresponding to specified

boundary conditions

The system of Eq. (15) is put in the following matrix
form vectors and matrices used will be specified for each
boundary condition considered

I A

0 A0

" # fW g

fTg

( )

¼ x�2
B

B0

" #
þ k�

C

C0

" #
þ K�

D

D0

" # !
F fW g
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Following the notations given in Fig. 2, let us put:

B-1 S–S beam:W1 = 0,M1 = 0,Wn+2 = 0 andMn+2 = 0

A1ðsÞ ¼ � j s j
2

h1; A2ðsÞ ¼
j 1� s j
2

hnþ2;

A3ðsÞ ¼ W �ðs; 0ÞQ1; A4ðsÞ ¼ �W �ðs; 1ÞQnþ2

fW g ¼ fW 2;W 3; . . . ;W n;W nþ1g and

fTg ¼ fh1; hnþ2;Q1;Qnþ2g

B-2 C–C beam: W1 = 0, h1 = 0, Wn+2 = 0 and hn+2 = 0

A1ðsÞ ¼ � oW �

ox
ðs; 0ÞM1; A2ðsÞ ¼

oW �

ox
ðs; 1ÞMnþ2;

A3ðsÞ ¼ W �ðs; 0ÞQ1; A4ðsÞ ¼ �W �ðs; 1ÞQnþ2

fW g ¼ fW 2;W 3; . . . ;W n;W nþ1g and

fTg ¼ fM1;Mnþ2;Q1;Qnþ2g

The other matrices are I,O,A,A0,B,B0,C,C0,D,D0,
F1,F as already defined for a C–S beam.

B-3 C–F beam with a follower tangential force: W1 = 0,
h1 = 0, Mn+2 = 0 and Qn+2 = �j�Wn+2

A1ðsÞ ¼ � oW �

ox
ðs; 0Þ;M1; A2ðsÞ ¼

1� sj j
2

hnþ2;

A3ðsÞ ¼ W �ðs; 0ÞQ1
fW g ¼ fW 2;W 3; . . . ;W nþ1;W nþ2g and

fTg ¼ fM1; hnþ2;Q1g

I : matrix ððnþ 1Þ � ðnþ 1ÞÞ; I i;i ¼ 1;
I i;nþ1 ¼ j�W �ðs; 1Þ � 0:5; for i ¼ 1 to n;

Inþ1;nþ1 ¼ j�W �ð1; 1Þ þ 0:5 the other terms are null

O :matrix ð3�ðnþ 1ÞÞ; O1;nþ1 ¼ j�W �ð0;1Þ� 0:5;

O2;nþ1 ¼ j� o
2W �ðs;1Þ
os2

ð0;1Þ and the other terms are null

A : matrix ððnþ 1Þ � 3Þ; Aik ¼ AkðsiÞ; for k ¼ 1–3;

i ¼ 2 to nþ 2 and si ¼ ði� 1Þ=ðnþ 1Þ

A0 : matrix ð3� 3Þ; A01k ¼ Akð0Þ; A02k ¼ bbAkð0Þ;

A03k ¼ bbAð1Þ; for k ¼ 1–3

B : matrix ððnþ 1Þ � ðnþ 2ÞÞ; Bij ¼ BjðsiÞ;
i ¼ 2 to nþ 2 and j ¼ 1 to nþ 2

B0 : matrix ð3� ðnþ 2ÞÞ; B01j ¼ Bjð0Þ;

B02j ¼ bbBjð0Þ; B03j ¼ bbBjð1Þ; j ¼ 1 to nþ 2

C : matrix ððnþ 1Þ � ðnþ 2ÞÞ; Cij ¼ CjðsiÞ;
i ¼ 2 to nþ 2 and j ¼ 1 to nþ 2
C0 : matrix ð3� ðnþ 2ÞÞ; C01j ¼ Cð0Þ;

C02j ¼ bbC jð0Þ; C03j ¼ bbC jð1Þ; j ¼ 1 to nþ 2

D : matrix ððnþ 1Þ � ðnþ 2ÞÞ; Dij ¼ DjðsiÞ;
i ¼ 2 to nþ 2 and j ¼ 1 to nþ 2

D0 : matrix ð3� ðnþ 2ÞÞ; D01j ¼ Djð0Þ;

D02j ¼ bbDjð0Þ; D03j ¼ bbDjð1Þ; j ¼ 1 to nþ 2

F 1 :matrix ððnþ 2Þ � ðnþ 2ÞÞ of radial function matrix

F 1ij ¼ fj
ði� 1Þ
ðnþ 1Þ

� �
; i ¼ 1 to nþ 2 and j ¼ 1 to nþ 2

F : matrix ððnþ 2Þ � ðnþ 1ÞÞF ij ¼ F 1�1iðjþ1Þ;

F iðnþ2Þ ¼ 0; i ¼ 1 to nþ 2 and j ¼ 1 to nþ 1
because for clamped–free boundary conditions

W 1 ¼ 0

B-4 C–F beam with a conservative axial force. W1 = 0,
h1 = 0, Mn+2 = 0 and Qn+2 = �j*, Wn+2 + k*hn+2

A1ðsÞ ¼ � oW �

ox
ðs; 0ÞM1; A2ðsÞ ¼ W �ðs; 0ÞQ1

fW g ¼ fW 2;W 3; . . . ;W nþ1;W nþ2; hnþ2g and

fTg ¼ fM1;Q1g

I : matrixððnþ 2Þ � ðnþ 2ÞÞ;
I i;i ¼ 1; I i;nþ1 ¼ j�W �ðs; 1Þ;�0:5;
I i;nþ2 ¼ j1�sj

2
; for i ¼ 1 to n

Inþ1;nþ1 ¼ 0:5
Inþ2;nþ1 ¼ j�W �ð0; 1Þ � 0:5
Inþ2;nþ2 ¼ 0:5

8>>>>>><>>>>>>:
and the other terms are null.

O : matrix ð2� ðn þ 2ÞÞ; O1;nþ1 ¼ j� o
2W �ðs; 1Þ

os2
ð0; 1Þ

and the other terms are null

A : matrix ððnþ 2Þ � 2Þ; Aik ¼ AkðsiÞ; for k ¼ 1 to 2;
i ¼ 2 to nþ 2 and si ¼ ði� 1Þ=ðnþ 1Þ

A0 : matrix ð2� 2Þ; A01k ¼ bbAkð0Þ;

A02k ¼ bbAkð1Þ; for k ¼ 1–2

B : matrix ððnþ 2Þ � ðnþ 2ÞÞ; Bij ¼ BjðsiÞ;
i ¼ 2 to nþ 2 and j ¼ 1 to nþ 2

B0 : matrix ð2� ðnþ 2ÞÞ; B01j ¼ bbBjð0Þ;

B02j ¼ bbBjð1Þ; j ¼ 1 to nþ 2
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C : matrix ððnþ 2Þ � ðnþ 2ÞÞ; Cij ¼ CjðsiÞ;
i ¼ 2 to nþ 2 and j ¼ 1 to nþ 2

C0 : matrix ð2� ðnþ 2ÞÞ; C01j ¼ bbC jð0Þ;

C02j ¼ bbC jð1Þ; j ¼ 1 to nþ 2

D : matrix ððnþ 2Þ � ðnþ 2ÞÞ; Dij ¼ DjðsiÞ;
i ¼ 2 to nþ 2 and j ¼ 1 to nþ 2

D0 : matrix ð2� ðnþ 2ÞÞ; D01j ¼ bbDjð0Þ;

D02j ¼ bbDjð1Þ; j ¼ 1 to nþ 2

F 1 : matrix ððnþ 2Þ � ðnþ 2ÞÞ

of radial function matrix F 1ij ¼ fj
ði� 1Þ
ðnþ 1Þ

� �
;

i ¼ 1 to nþ 2 and j ¼ 1 to nþ 2

F : matrix ððnþ 2Þ � ðnþ 2ÞÞ; F ij ¼ F 1�1iðjþ1Þ;

i ¼ 1 to nþ 2 and j ¼ 1 to nþ 1
because for clamped–free boundary conditions

W 1 ¼ 0. The other terms are null.
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