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Abstract

The nearly singular integrals occur in the boundary integral equations when the source point is close to an integra-

tion element (as compared to its size) but not on the element. In this paper, the concept of a relative distance from a

source point to the boundary element is introduced to describe possible influence of the singularity of the integrals.

Then a semi-analytical algorithm is proposed for evaluating the nearly strongly singular and hypersingular integrals

in the three-dimensional BEM. By using integration by parts, the nearly singular surface integrals on the elements

are transformed to a series of line integrals along the contour of the element. The singular behavior, which appears

as factor, is separated from remaining regular integrals. Consequently standard numerical quadrature can provide very

accurate evaluation of the resulting line integrals. The semi-analytical algorithm is applied to analyzing the three-dimen-

sional elasticity problems, such as very thin-walled structures. Meanwhile, the displacements and stresses at the interior

points very close to its bounding surface are also determined efficiently. The results of the numerical investigation dem-

onstrate the accuracy and effectiveness of the algorithm.
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1. Introduction

The calculation of potentials, fluxes, displacements and stresses on and near the boundary is one of ma-

jor interest problems in boundary element analyses. Experience has shown that the boundary element meth-

ods (BEM) have advantages over other numerical methods for involving high gradients of field quantities.
The effectiveness of the BEM depends on a number of factors, such as mesh distribution, element choice

and accuracy of element integrals. However, the boundary integral equations (BIE) usually contain singular

integrals whose evaluation is difficult although the original problems are not singular. It seems that this is

the price, BEM has to pay for the reduction of dimensions. In fact, it is the singularity that ensures stability

and accuracy for the solutions of the BEM.

Currently, the algorithms for calculating singular integrals in the BEM can be categorized as follows

[23]: regularization methods before or after the discretization of the BIE. The former reduces the singular

order of the integrals by the use of the Stokes or the Gaussian theorem [9,22]. In the second category, the
divergent parts of singular integrals are eliminated by using semi-analytical or analytical way in the intrinsic

coordinate system for every singular element [10,11,8]. In Ref. [12], strongly singular and hypersingular sur-

face integrals are reduced to weakly singular ones by analytic regularization. Then these weakly singular

integrals are treated with Gaussian product rules after introducing polar coordinates. Reviews on the treat-

ment about some singular integrals can be seen in Refs. [23,3]. When a load point approaches the boundary,

it is a limiting procedure that the distance r between the source point and the field point tends to zero. Some

methods [10,11] have efficiently calculated the singular integrals when the kernel functions are Hölder con-

tinuous by means of the limiting analysis. However, for r 5 0, the quadrature methods established by ear-
lier studies are not efficient for calculating the interior quantities close to the boundary. The effect is usually

referred to as the ‘‘boundary layer effect’’. This is the nearly singular integral.

In BEM, nearly singular integrals come up in the following cases: (1) Computing the interior quantities

close to the boundary; (2) There are great differences among the sizes of adjoining element meshes; (3) For

narrow and thin domains; (4) For non-linear problems in which the integrals in the domains near the

boundary need to be calculated. Because of the difficulty of evaluating the nearly singular integrals, for

a long time there has existed an opinion that the BEM are not suitable for analyzing thin-body problems.

It is well known that rigid body translations [4,14] can be used for regularizing the Cauchy principal va-
lue integrals. According to this idea, a particular solution field method is developed [1,24]. The method em-

ploys the uniform or first order stress fields approximately to imitate the unknown stress fields in the

elasticity, which indirectly evaluates the nearly hypersingular integrals. However, as the gradients of field

functions get large, the method produces large deviations. By utilizing the quantity at the closest point

on the boundary to the load point, Liu [15] proposes a strategy that the nearly singular integral is dealt with

by adding and subtracting a term in the BIE. It follows that the strongly singular integral can be trans-

formed into line integrals by the Stokes� theorem. The treatment makes that the three-dimensional BEM
can successfully analyze shell-like structures. In Ref. [18], an analytical scheme is given to linear triangular
elements, which is applied for calculating Cauchy principal value and nearly strongly singular integrals in

three-dimensional elasticity. After then, Davey et al. [6] develop a semi-analytical integration scheme to lin-

ear triangular elements for a kind of the singular integrals in steady-state elastodynamic problems. The

scheme adopts the subtraction way to formulate the integrals into singular and non-singular parts based

on the Taylor expansions. The singular part is computed analytically. Wendland et al. [25] obtain the higher

order derivatives of the primary field function u(x) on the boundary with an extraction technique in the
BEM. Then, for the load point y sufficiently close to the boundary, constructing the Taylor series expansion
on the local surface near y determines the interior quantities. Based on the standard boundary contour
method (BCM) [21] and boundary node method (BNM) [19], by the use of the continuous displacement

and stress BIEs [5], Mukherjee et al. [20] propose an efficient approach, called new BCM and new

BNM, in order to evaluate the displacements and stresses at points inside a bulky solid body that lie close
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to its bounding surface. The method is only implemented after all the displacements and tractions on the

surface of the body are obtained. For a long time, most of current numerical methods, including finite ele-

ment method, have been difficult to analyze very thin structures, such as the problems of thin coatings and

their interfacial mechanics. Recently, many efforts on the evaluation of the nearly singular integrals make

that the BEM can deal with these difficult problems. Some applications of boundary element analyses for
thin-body structures, especially for the two-dimensional problems, can be found in many literatures

[2,13,16,17].

The present work proposes a new semi-analytical algorithm for evaluating the nearly strongly singular

and hypersingular integrals on the triangular and quadrilateral elements in three-dimensional BEM. After

the boundary integral equations are discretized on the boundary, the singular surface integrals on the ele-

ment can be transformed into a series of line integrals by using integration by parts. Then the line integrals

can efficiently be calculated by standard quadrature techniques. The semi-analytical algorithm is used to

analyze three-dimensional elasticity problems.
2. The analysis of the nearly singular integrals in BEM

Here, we consider the boundary integral equations of linear elasticity. The displacements and stresses at

any point y in the domain X are represented by
uiðyÞ ¼
Z

C
½U �

ijðx; yÞtjðyÞ � T �
ijðx; yÞujðxÞ�dC þ

Z
X
U �

ijbjðxÞdX; ð1Þ

rijðyÞ ¼
Z

C
½W �

ijkðx; yÞtkðxÞ � S�
ijkðx; yÞukðxÞ�dC þ

Z
X
W �

ijkbkðxÞdX; ð2Þ
where i, j,k = 1,2,3; C = oX. Here and in what follows, the summation convention is used. uj(x), tj(x) are the
displacement and traction on the boundary C, respectively. bj(x) is the body load. U

�
ij and T

�
ij are the Kelvin

displacement and traction fundamental solutions, respectively. W �
ijk and S

�
ijk are defined by derivatives of U

�
ij

and T �
ij, respectively, as follows:
½U �
ij�3Dðx; yÞ ¼

1

16pð1� mÞGr ð3� 4mÞdij þ r;ir;j
� �

; ð3aÞ

½U �
ij�2Dðx; yÞ ¼

1

8pð1� mÞG ð3� 4mÞ ln rdij � r;ir;j
� �

ðplane strainÞ; ð3bÞ

T �
ijðx; yÞ ¼

1

4apð1� mÞra
ð1� 2mÞðr;in;j � r;jn;iÞ � r;n ð1� 2mÞdij þ br;ir:j

� �� �
; ð4Þ

W �
ijkðx; yÞ ¼

1

4apð1� mÞra
ð1� 2mÞðr;jdik þ r;idkj � r;kdjiÞ þ br;ir;jr;k
� �

; ð5Þ

S�
ijkðx; yÞ ¼

G
2apð1� mÞrb

br;n ð1� 2mÞr;kdji þ mðr;idjk þ r;jdikÞ � cr;ir;jr;k
� ��

þ ð1� 2mÞðbr;ir;kn;j þ djkni þ diknjÞ þ bmðr;ir;knj þ r;jr;kniÞ � ð1� 4mÞdjink
�
; ð6Þ
where G is the shear modulus and m the Poisson ratio. a, b, c are coefficients with a = 1, b = 2 and c = 4 for
two-dimensional problems, a = 2, b = 3 and c = 5 for three dimensions. y is the source or load point and x
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the field point on the closed surface C. Let yi and xi denote the Cartesian coordinate components of y and x,
respectively. ni denotes the components of the outward unit normal at x. Thus we can write
ri ¼ xi � yi; r ¼ ffiffiffiffiffiffiffi
riri

p

r;i ¼ or=oxi; r;n ¼ or=on ¼ r;ini

�
: ð7Þ
Let y approach the boundary C in Eqs. (1) and (2). It follows the displacement boundary integral

equation
CijðyÞujðyÞ ¼
Z

C
U �

ijðx; yÞtjðxÞdCðxÞ �
Z
--
C
T �

ijðx; yÞujðxÞdCðxÞ þ
Z

X
U �

ijbj dX: ð8Þ
If tk(x) and the partial derivatives of uk(x) satisfy the Hölder continuity near the point x on C, when
y ! x, we can write the stress boundary integral equations
BijstðyÞrstðyÞ ¼
Z
--
C
W �

ijktkðxÞdCðxÞ � S�
ijkukðxÞdCðxÞ þ

Z
X
W �

ijkbk dX; ð9Þ
where
R
--C denotes the Cauchy principal value integral and denotes the Hardamard finite part of the inte-

gral; Cij(y) and Bijst(y) are defined as the displacement and stress singular coefficients, respectively, which
depend on the material parameters and the local geometry of C at y. There are Cij = dij/2 at a smooth

boundary point and Bijst(y) = dijdst/2 at a smooth boundary point and tk is continuous at the point. The

conventional BEM in the elasticity problems obtains the boundary displacements and tractions by solving

Eq. (8). Then all of the displacements and stresses at the interior points can be determined by Eqs. (1) and

(2). In the ways, when r ! 0, these kernel functions in the BIE present the singularity to a different extent.

U �
ij shows a weak singularity of order 1/r for three-dimensional problems and ln r for two-dimensional

problems; T �
ij and W �

ijk have a strong singularity of order 1/r
b�1; S�

ijk has a hypersingularity of order 1/r
b.

When the source point y is not on the boundary but close to the boundary, the singularity leads to nearly
singular integrals in Eqs. (1) and (2) so that the evaluation of the conventional numerical quadrature is in-

valid on the elements close to the source point y.
In the boundary element analysis based on Eq. (8), consider flat triangular element Ce close to the source

point y (y1,y2,y3) with three nodes, as shown in Fig. 1. A local coordinate system ong is defined on Ce with

the origin being node 1, as shown in Fig. 2. The element Ce is made a linear isoparametric element. Accord-

ing to the collocation scheme, the geometry, displacements and tractions on Ce are described by linear shape

functions in the local system ong as
xi ¼ Nmðn; gÞxmi; m ¼ 1; 2; 3; ð10Þ
Fig. 1. Point y and the element Ce.
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ui ¼ Nmðn; gÞumi; ð11Þ

ti ¼ Nmðn; gÞtmi; ð12Þ

where
Nmðn; gÞ ¼
1

2A
ðam þ bmn þ cmgÞ; ð13Þ

a1 ¼ n2g3 � n3g2; a2 ¼ n3g1 � n1g3; a3 ¼ n1g2 � n2g1;

b1 ¼ g2 � g3; b2 ¼ g3 � g1; b3 ¼ g1 � g2;

c1 ¼ n3 � n2; c2 ¼ n1 � n3; c3 ¼ n2 � n1;
xmi, umi and tmi are the coordinate, displacement and traction at node m along the xi-direction on Ce, respec-

tively. A is the area of Ce. nm and gm are the coordinates of node m in the coordinate system ong, which are
determined by xmi. The Jacobian of the mapping from the coordinate ox1x2x3 to ong on Ce is obtained as
J s ¼ oðx1; x2; x3Þ
oðn; gÞ ¼ oðx2; x3Þ

oðn; gÞ

	 
2
þ oðx3; x1Þ

oðn; gÞ

	 
2
þ oðx1; x2Þ

oðn; gÞ

	 
2" #1=2
¼ 1; ð14Þ
since the relation of the transformation is linear. The perpendicular point y0(n0,g0) of y in the plane of Ce

can easily be determined. Then, we define a polar coordinate system qh in the plane ng. The pole and polar
axis of the system coincide with the point (n0,g0) and the parallel line of the axis n, respectively, as seen in
Fig. 2. One performs the coordinate transformation
n � n0 ¼ q cos h; g � g0 ¼ q sin h: ð15Þ

The transformation Jacobian is
Jq ¼ oðn; gÞ
oðq; hÞ ¼ q: ð16Þ
Substituting Eq. (15) into Eqs. (10) and (13) yields
Nmðn; gÞ ¼
1

2A
qðbm cos h þ cm sin hÞ þ Nmðn0; g0Þ;

xi ¼
1

2A
qðbm cos h þ cm sin hÞxmi þ y0i; ð17Þ
where
y0i ¼ Nmðn0; g0Þxmi ð18Þ
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are the coordinates of the point y0 in the system ox1x2x3. By introducing Eq. (17) into Eq. (7), there are
xi � yi ¼ ri ¼
1

2A
qðbm cos h þ cm sin hÞxmi þ y0i � yi ð19Þ
and
R ¼ r2 ¼ q2 þ d21; ð20Þ

where
d21 ¼ ðy0i � yiÞðy0i � yiÞ; ð21Þ

d1 is the perpendicular distance from the source point y to the plane of Ce. If the point y0 is outside of Ce but

in the same plane as Ce, there exists a closest point on Ce to y0. Let d2 denote the distance from y0 to the
closest point. Here we introduce the concept of relative distance according to
e1 ¼ d1=Lmax; e2 ¼ d2=Lmax; ð22Þ

where Lmax is maximum of the lengths of three edges of the element. When y0 gets close to Ce or in Ce, Eq.

(20) shows that the measure of 1/r ! 1 depends on the extent of e1! 0. Hence, e1 is defined relative dis-

tance from the source point to the element Ce. In fact,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 þ e22

p
can be termed a relative distance too. The

integrals on Ce can be formulated in the polar coordinate system by
dCðxÞ ¼ J s dndg ¼ qdqdh:
After substituting Eqs. (11)–(20) into Eqs. (1) and (2), the surface integrals on Ce in Eqs. (1) and (2) are

described by the following integral types
In ¼
Z

Ce

1

Rn=2
Qnðq; hÞqdqdh; n ¼ 1; 3; 5; 7; ð23Þ
where R is a quadratic function of q, Qn(q,h) are polynomial functions with respect to q, cosh and sinh, in
which the orders of the polynomials are finite. If straightforward quadrature schemes are used to evaluate

the integrals of Eq. (23), there leads to a tremendous loss of accuracy with the reduction of the relative dis-

tance e1 and e2. Therefore, small e1 and e2 are the main causes of the nearly singular integrals.
3. Formulations of the semi-analytical algorithm

The idea of the regularization for the nearly singular integrals is that the surface integrals Eq. (23) are
transformed into line integrals along the contour of Ce by utilizing a series of integration by parts. In Eq.

(23), the first step implements the integration with respect to the variable q, i.e.,
Knðq; hÞ ¼
Z

1

Rn=2
Qnðq; hÞqdq: ð24Þ
Here the nearly singular integrals in Eq. (24) are categorized as two cases according to e15 0 and e1 = 0.

For the integrals of the two cases, the formulations of the regularization are given, respectively, in the

following.

Case 1. e15 0

There exists the recurrence formula of the integral as
J 1 ¼
Z
dq
r

¼ ln q þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ d21

q	 

þ c;
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Jn ¼
Z
dq

Rn=2
¼ q

d21ðn� 2Þðq2 þ d21Þ
n=2�1 þ

n� 3
d21ðn� 2Þ

Z
dq

ðq2 þ d21Þ
n=2�1 ðn P 3Þ:
By means of the results above, one makes the integration by parts in Eq. (24). There is
Knðq; hÞ ¼ � Qn

ðn� 2Þrn�2 þ
1

ðn� 2Þ

Z
Q0

n

rn�2
dq; ð25Þ
where (
 
 
) 0 = d(
 
 
)/dq. Then, the technique of the integration by parts is done over and over in Eq. (25). It
produces the following formulations
K1ðq; hÞ ¼ rQ1 �
1

2
Q0
1½qr þ d21 lnðq þ rÞ� þ 1

2
Q00
1

1

3
r3 þ d21q lnðq þ rÞ � d21r

� �

� 1
4
Q000
1

1

6
qr3 � 5

4
d21qr þ d21q

2 lnðq þ rÞ � 1
4

d41 lnðq þ rÞ
� �

þ 1
4

Z
Qð4Þ
1

1

6
qr3 � 5

4
d21qr þ d21q

2 lnðq þ rÞ � 1
4
d41 lnðq þ rÞ

� �
dq; ð26aÞ

K3ðq; hÞ ¼
Z

qQ3ðq; hÞ
r3

dq ¼ � 1
r
Q3 þ Q0

3 lnðq þ rÞ � Q00
3½q lnðq þ rÞ � r�

þ 1
4
Q000
3 ½2q2 lnðq þ rÞ � d21 lnðq þ rÞ � 3qr�

� 1
4
Qð4Þ
3 � 11

9
r3 þ 5

3
d21r þ

2

3
q3 lnðq þ rÞ � d21q lnðq þ rÞ

� �

þ 1
4

Z
Qð5Þ
3 � 11

9
r3 þ 5

3
d21r þ

2

3
q3 lnðq þ rÞ � d21q lnðq þ rÞ

� �
dq:; ð26bÞ

K5ðq; hÞ ¼
Z

qQ5ðq; hÞ
r5

dq ¼ � 1

3r3
Q5 þ

1

6d21

1

r
R0Q0

5 � 2rQ00
5

� �

þ 1

6d21
Q000
5 ½qr þ d21 lnðq þ rÞ� � 1

6d21
Qð4Þ
5

1

3
r3 þ d21q lnðq þ rÞ � d21r

� �

þ 1

12d21
Qð5Þ
5

1

6
qr3 � 5

4
d21qr þ d21q

2 lnðq þ rÞ � 1
4
d41 lnðq þ rÞ

� �

� 1

12d21

Z
Qð6Þ
5

1

6
qr3 � 5

4
d21qr þ d21q

2 lnðq þ rÞ � 1
4
d41 lnðq þ rÞ

� �
dq; ð26cÞ

K7ðq; hÞ ¼
Z

qQ7ðq; hÞ
r7

dq ¼ � 1

5r5
Q7ðq; hÞ þ

q

15d21r
Q0
7

1

r2
þ 2

d21

 !
� 1

15d21
Q00
7

2r

d21
� 1

r

" #

þ q

15d41
rQ000

7 � 1

45d41
r3Qð4Þ

7 þ 1

360d41
Qð5Þ
7 ½2qr3 þ 3d21qr þ 3d

4
1 lnðq þ rÞ�

� 1

360d41
Qð6Þ
7

2

5
r3 þ d21r

3 � 3d41r þ 3d
4
1q lnðq þ rÞ

� �

þ 1

360d41

Z
Qð7Þ
7

2

5
r3 þ d21r

3 � 3d41r þ 3d
4
1q lnðq þ rÞ

� �
dq: ð26dÞ
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Case 2. e1 = 0, but e25 0

It is termed the second kind of the nearly singular integrals. In the case, there is
r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ d21

q
¼ q:
Eq. (24) can be written as
Knðq; hÞ ¼
Z

1

qn�1 Qnðq; hÞdq: ð27Þ
There exist the following integral formulas
Z
1

qn
dq ¼ � 1

ðn� 1Þqn�1 þ c; n 6¼ 1;

Z
1

q
dq ¼ ln q þ c:
By the use of the above formulas, the integration by parts is again done for Eq. (27) by the similar way as

above. We obtain
K1ðq; hÞ ¼
Z

Q1ðq; hÞdq ¼ qQ1 �
1

2
q2Q0

1 þ
1

6
q3Q00

1 �
1

24
q4Q000

1 þ 1

24

Z
q4Qð4Þ

1 dq; ð28aÞ

K3ðq; hÞ ¼
Z
1

q2
Q3ðq; hÞdq

¼ � 1
q
Q3 þ ln qQ0

3 � qðln q � 1ÞQ00
3 þ

1

2
q2 ln q � 3

2

	 

Q000
3

� 1
6
q3 ln q � 11

6

	 

Qð4Þ
3 þ 1

6

Z
q3 ln q � 11

6

	 

Qð5Þ
3 dq; ð28bÞ

K5ðq; hÞ ¼
Z
1

q4
Q5ðq; hÞdq

¼ � 1

3q3
Q5 �

1

6q2
Q0
5 �

1

6q
Q00
5 þ

1

6
ln qQ000

5 � 1
6

qðln q � 1ÞQð4Þ
5

þ 1

12
q2 ln q � 3

2

	 

Qð5Þ
5 � 1

12

Z
q2 ln q � 3

2

	 

Qð6Þ
5 dq; ð28cÞ

K7ðq; hÞ ¼
Z
1

q6
Q7ðq; hÞdq

¼ � 1

5q5
Q7 �

1

20q4
Q0
7 �

1

60q3
Q00
7 �

1

120q2
Q000
7 � 1

120q
Qð4Þ
7 þ 1

120
ln qQð5Þ

7

� 1

120
qðln q � 1ÞQð6Þ

7 þ 1

120

Z
qðln q � 1ÞQð7Þ

7 dq: ð28dÞ
For Eq. (23) the orders of the polynomials Qn(q,h) (n = 1,3,5,7) with respect to q are always finite after
the BIE is discretized. If the linear isoparametric triangular elements are adopted in the BIE of three-dimen-

sional elasticity, there are certainly
Q000
1 ðq; hÞ ¼ 0; Qð4Þ

3 ðq; hÞ ¼ 0; Qð5Þ
5 ðq; hÞ ¼ 0; Qð6Þ

7 ðq; hÞ ¼ 0: ð29Þ
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If the quadratic sub-parametric flat elements are adopted, where the field quantities are modeled by the

quadratic shape function, it results in
Qð4Þ
1 ðq; hÞ ¼ 0; Qð5Þ

3 ðq; hÞ ¼ 0; Qð6Þ
5 ðq; hÞ ¼ 0; Qð7Þ

7 ðq; hÞ ¼ 0: ð30Þ

Consequently each of the last terms in Eqs. (26) and (28) will be zero. Hence the integrals Kn(q,h) with

respect to q have been integrated analytically. Then substituting Eqs. (26) or (28) into Eq. (23), one obtains
In ¼
Z
oCe

Knðq; hÞ½ �q2ðhÞq¼q1ðhÞ dh; ð31Þ
where oCe is the contour of element Ce. Noting Eq. (15) and Fig. 2, the representations of three edges of the

triangular element in polar system qh are

(1) Edge 12
q12ðhÞ ¼ � g0
sin h

: ð32aÞ
(2) Edge 23
q23ðhÞ ¼
ðn2 � n0Þg3 � ðn2 � n3Þg0
cos hg3 þ ðn2 � n3Þ sin h

: ð32bÞ
(3) Edge 31
q31ðhÞ ¼
n3g0 � n0g3

g3 cos h � n3 sin h
: ð32cÞ
Thus, lower and upper bounds of the integration Kn(q,h) with respect to q are taken from Eqs. (32a)–

(32c), in turn. It can be seen that In are replaced by the line integrals with respect to the variable h along the
contour of Ce. Furthermore, the factor e1 (or d1) led to the nearly singular integrals has been removed out of
the integrants of the line integrals in Eqs. (31). Therefore the standard numerical quadrature scheme can

achieve satisfactory results for the line integrals in the cases of very small e1 and e2.

Example 1. The evaluation of the surface integrals
I51 ¼
Z Z

C

1

r5
dCðxÞ; I71 ¼ dCðxÞ; ðaÞ

r ¼ x� yj j; x 2 Cf g; y ¼ ðD2;D2;D1Þ;
C is a triangular domain which is constructed by three points (0,0,0), (1,0,0) and (1,1,0) as shown in

Fig. 3. As the point y is close to C, one has r ! 0 so that the nearly singular integrals occur in Eq. (a).

Two approximate ways are employed to determine the integrals. The first way is directly to calculate the

surface integrals with the conventional Gaussian quadrature according to the following step (see Fig. 2)
Z Z
D123

ð
 
 
ÞdC ¼ �
Z Z

Dy012

�
Z Z

Dy023

�
Z Z

Dy031

ð
 
 
ÞdC;
where plus is taken when points y0, 1 and 2 are anticlockwise ranked along the boundary of Dy012
, otherwise

minus is taken. The others are same convention. The domain of each sub-triangle is transformed to the rec-

tangle by using the so-called Duffy triangular coordinates [7]. Then the transformed integrals are computed

by the 8 · 8-point Gaussian quadrature. The second way is the semi-analytical algorithm in which the



Table 1

The results of Example 1

Point y I51 I71

D1 D2 Exact

solution

Error of

conventional

Error of

semi-analytical

Exact

solution

Error of

conventional

Error of

semi-analytical

0.001 0.01 0.10468e+10 �0.260e+02 0.461e�11 0.628e+15 �0.259e+02 0.190e�10
0.1 0.10472e+10 �0.754e+02 0.342e�13 0.628e+15 �0.931e+02 0.199e�13
0.6 0.10472e+10 �0.993e+02 0 0.628e+15 �1.000e+02 0

0.01 0.01 0.874e+06 �0.162e+02 �0.480e�04 0.583e+10 �0.228e+02 0.949e�04
0.1 0.105e+07 �0.106e+02 �0.476e�11 0.628e+10 �0.209e+02 0.120e�10
0.6 0.105e+07 0.264e+02 0.556e�13 0.628e+10 �0.416e+00 0.303e�13

0.1 0.01 0.333e+03 �0.254e+01 0.293e+00 0.215e+05 �0.430e+01 �0.540e�01
0.1 0.873e+03 �0.912e+00 �0.207e�04 0.583e+05 �0.177e+01 0.150e�04
0.6 0.104e+04 0.758e�01 0.369e�10 0.628e+05 �0.180e+00 �0.427e�10

Fig. 3. The triangular domain C.
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resulting line integrals Eq. (31) instead of Eq. (a) are calculated. Here we take the 8-point Gaussian inte-

gration for each line integral. The errors of the evaluation are shown in Table 1 where error means
error ¼ Iapprox: � Iexact
Iexact

� 100%:
The simple example is designed to test the accuracy of the semi-analytical algorithm. It is seen that the

results obtained by using the semi-analytical algorithm are excellent agreement with the exact solution

although the D1 gets very small, however the ones of the conventional way are out of true when D1 < 0.1.
4. Numerical examples

In the section, the semi-analytical algorithm developed for the evaluation of the nearly singular integrals

is used to determine the displacements and stresses of three-dimensional elasticity in the BEM. The conven-

tional numerical quadrature is sufficient enough to evaluate the integrals on the elements far to the source

point. The semi-analytical algorithm is available to the triangular elements. By the substitution of Eqs. (10),
(13)–(20) into Eqs. (3)–(6) for a linear isoparametric triangular element Ce, one can write
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U �
ij ¼

1

16pð1� mÞGr ð3� 4mÞdij þ
rirj
r2

h i
; ð33aÞ

T �
ij ¼ � 1

8pð1� mÞr3 ð1� 2mÞdij þ 3
rirj
r2

h i
nlrl þ ð1� 2mÞðnirj � njriÞ

n o
; ð33bÞ

W �
ijk ¼

1

8pð1� mÞr3 ð1� 2mÞðridjk þ rjdik � rkdijÞ þ
3

r2
rirjrk

� �
; ð33cÞ

S�
ijk ¼

G
4pð1� mÞr3

3rlnl
r2

ð1� 2mÞr;kdij þ mðridjk þ rjdikÞ �
5

r2
rirjrk

� ��

þ 3m
r2

ðnirj þ njriÞrk þ ð1� 2mÞ 3nkrirj
r2

þ nidjk þ njdik

	 

� ð1� 4mÞnkdij

�
; ð33dÞ
where r is the square root of a quadratic function of q. Then Eqs. (11), (12) and (33) are introduced into
Eqs. (1) and (2) according to the collocation approach. Thus, in the boundary integral equation Eqs. (1)
and (2), the surface integrals on Ce become the modes described by Eq. (23). Here ri and Nm as seen in

Eqs. (17) and (19) are linear functions of q. Hence it is easily verified that the conclusions of Eqs. (29) cor-
responding to the integrals on Ce exist. Now, with the semi-analytical algorithm we can calculate the result-

ing line integrals instead of the surface integrals on Ce if the integrals are nearly singular.

Generally the quadratic isoparametric elements with 8 nodes are appreciated because of the higher accu-

racy in three-dimensional BEM. As the nearly singular integrals occur in the elements, the straightforward

evaluation using the conventional quadrature algorithms in Eqs. (1) and (2) results in a degeneracy of accu-

racy even if a large number of integral points are taken. Here, the calculation for a quadratic element C8 can
be improved by subdividing it into several triangular elements only when we need to compute its nearly

singular integrals. Linear trial functions are used to describe the geometry, displacements and tractions

on each of the triangular elements. In the other steps of analyzing the problem, C8 still maintains the orig-
inal quadratic element. A way of subdividing the element is seen in Fig. 4. Find the center point C in C8 by
xCi ¼
X8
m¼1

Nmðn; gÞxmijn¼0;g¼0;
where Nm(n,g) (m = 1,2, . . . , 8) are quadratic shape functions. Make the displacements and tractions at
point C be
uCi ¼
X8
m¼1

Nmð0; 0Þumi;
Fig. 4. The subdivision on C8.
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tCi ¼
X8
m¼1

Nmð0; 0Þtmi:
Then C8 can be replaced with the eight triangular elements constituted by each adjoining two nodes of
the eight nodes and point C in turn. Thus the nearly singular integrals on these triangular elements can be

calculated with the semi-analytical algorithm. The sum of these integrals on all of the eight triangular ele-

ments can supplant the original integrals on C8. Note that the subdivision of C8 and the extra computa-
tional time added by the strategy are not involved in the other procedures of the boundary element

analysis. The following three examples are presented to demonstrate the effectiveness of the method. Here,

eight-point Gaussian integration is used unless specified otherwise when the numerical integrals are done.

Example 2 (Bending of a cuboid beam). The beam is subjected to a pair of symmetrical linear distribution

load pmax = 10 MPa at its two ends. For the material, Young�s modulus is E = 210 GPa and Poisson�s ratio
m = 0.3. Due to symmetry, we only need to consider the half of the beam. Its dimensions are shown in Fig. 5.
In the BEM model, the boundary is discretized by 24 quadratic elements with 74 nodes, where each of

the six surfaces of the beam has four elements. The displacements and stresses in the interior domain close

to point A(5,10,10) are calculated by using the conventional method and the semi-analytical method. The

conventional method is directly to compute the integrals in Eqs. (1) and (2) according to the quadratic

elements by the standard Gaussian quadrature. In the semi-analytical algorithm, the nearly strongly

singular and hypersingular integrals are computed according to the line integrals Eq. (31) on the refined

triangular elements proposed in Fig. 4. The results are shown in Tables 2 and 3. u1 is the displacement in the

x1-direction, r11 the normal stress in the x1-direction.
Here, for a quadratic element, the meaning of the relative distance e1 is
e1 ¼ d=Lmax;
where d is the perpendicular distance from the source point to the element, Lmax is the maximum of the

lengths of the two diagonal lines of each quadrilateral element. The relative distance e1 in every last column

of the Tables 2 and 3 is the minimum for all elements corresponding to each load point. Here, the BE anal-

ysis for this simple problem obtains exact boundary displacements and tractions. Thus, the errors of the
evaluation of the displacements and stresses at the interior points are all from the numerical quadrature

for the BIEs (1) and (2). It can be seen that the semi-analytical method achieves more accurate results than
Fig. 5. Bending of the cuboid beam.



Table 2

The displacement u1 (·10�3 cm) of the cuboid beam

Point no. Coordinates Exact solution Conventional solution Semi-analytical solution Relative distance e1

x1 (cm) x2 (cm) x3 (cm)

1 5.00 9.00 9.00 0.190476 0.19045 0.19048 0.1414

2 5.00 9.30 9.30 0.204762 0.20656 0.20477 0.09900

3 5.00 9.60. 9.60 0.219048 0.20075 0.21904 0.05657

4 5.00 9.90 9.90 0.233333 0.34617 0.23327 0.01414

5 5.00 9.92 9.92 0.234286 · 0.23421 0.01131

10 5.00 9.99 9.99 0.237619 · 0.23756 0.001414

12 5.00 9.999 9.999 0.238048 · 0.23802 0.000141

13 5.00 9.9999 9.9999 0.238091 · 0.23807 0.0000141

14 5.00 9.99999 9.99999 0.238095 · 0.23808 0.00000141

Table 3

The stress r11 (MPa) of the cuboid beam

Point no. Coordinates Exact solution Conventional solution Semi-analytical solution Relative distance e1

x1 (cm) x2 (cm) x3 (cm)

1 5.00 9.00 9.00 8.0000 7.8633 7.8000 0.1414

2 5.00 9.30 9.30 8.6000 9.9568 8.2659 0.0990

3 5.00 9.60. 9.60 9.2000 12.897 8.7017 0.0566

4 5.00 9.90 9.90 9.8000 · 9.2444 0.0141

5 5.00 9.92 9.92 9.8400 · 9.3104 0.0113

6 5.00 9.94 9.94 9.8800 · 9.3951 0.00849

7 5.00 9.96 9.96 9.9200 · 9.5193 0.00566

8 5.00 9.97 9.97 9.9400 · 9.6154 0.00424

9 5.00 9.98 9.98 9.9600 · 9.7705 0.00283

10 5.00 9.99 9.99 9.9800 · 10.130 0.00141

11 5.00 9.993 9.993 9.9860 · 10.392 0.00099
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the conventional method, and is available to compute the quantities at the interior points very close to the

boundary.

Example 3 (A hollow sphere subjected to internal pressure p on the inner surface). The inner radius of the

hollow sphere is a = 1, outer radius b = 4, the applied load p = 1, material parameters E = 1, m = 0.25. Here
and in what follows, assume that the relative units are all compatible.

Due to symmetry conditions, only one-eighth of the hollow sphere is considered in the BEM analysis, as

shown in Fig. 6. Both inner and outer surfaces in one octant are discretized, respectively, with 27 and 65

eight-node quadrilateral elements (a total of 92 elements). The conventional method and the semi-analytical

algorithm are used to calculate the displacements and stresses in the interior points of the vessel, where the

relative distance e1 is the same meaning as example 2. The radial displacement ur, radial stress rrr and hoop

stresses rhh as functions of radius are shown in Fig. 7 and Table 4, respectively, together with exact solution
and the results of the new BNM [20]. The new BNM is proposed to calculate the nearly singular integrals by

Mukherjee et al. The new BNM takes 72 quadratic T6 triangles on each surface of the hollow sphere for the

example, which obtains more accurate values than the standard BNM [19]. Meanwhile, Ref. [20] also pre-

sents the results obtained using the new BCM, where it shows the same precision as the new BNM.

The comparison between the conventional method and the semi-analytic method is given in terms of the

results from Tables 2–4 and Fig. 7 of the above two examples. The results of the displacements obtained



Fig. 6. Meshes of the hollow sphere. (a) Meshes on inner surface; (b) Meshes on outer surface.
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Fig. 7. Radial displacements at the interior points very close to the inner surface.
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using the conventional method gradually get degenerative where e1 < 0.03, and ones of the stresses are out

of true where e1 < 0.1. The stresses obtained by the semi-analytical method show no signs of deterioration
when e1 reaches 0.001, and the displacements have been excellent agreement with the exact solutions even if

e1 reaches 1 · 10�6. Therefore the present method, in contrast with the conventional method, reduces the
relative distance e1 by two orders of magnitude within efficient extent of the evaluation of the stresses with

the nearly hypersingular integrals in the BEM. The nearly strong singularity, at least, in the range of

e1 P 1 · 10�6 has been eliminated by the present method.
Table 4 and Fig. 7 show that the semi-analytic method successfully computes the stresses at the interior

points in the range of 1.001 6 r (implying r 6 3.999) and the displacements (with the nearly strongly singu-

lar integrals) in 1.000001 6 r (implying r 6 3.999999) for the hollow sphere, whereas the new BNM and
new BCM of Ref. [20] only give the results of the displacements and stresses in 1.01 6 r 6 3.99. Therefore,



Table 4

Radial and hoop stresses at the interior points very close to the inner surface

Radius

(r)

Relative

distance e1

rrr rhh

Conventional

BEM

Present

BEM

BNM

[20]

Exact

solution

Conventional

BEM

Present

BEM

BNM

[20]

Exact

solution

1.001 0.002687 · �1.04880 – �0.996958 · 0.450990 – 0.522289

1.002 0.005374 · �1.07239 – �0.993929 · 0.483642 – 0.520774

1.003 0.008062 · �1.06975 – �0.990912 · 0.494724 – 0.519265

1.004 0.010749 · �1.06288 – �0.987906 · 0.500010 – 0.517763

1.005 0.013436 · �1.05523 – �0.984913 · 0.502832 – 0.516266

1.006 0.016123 · �1.04763 – �0.981932 · 0.504354 – 0.514775

1.007 0.018810 · �1.04031 – �0.978962 · 0.505100 – 0.513290

1.008 0.021497 · �1.03334 – �0.976004 · 0.505338 – 0.511812

1.009 0.024185 · �1.02669 – �0.973058 · 0.505227 – 0.510338

1.01 0.026872 · �1.02035 �0.98020 �0.970123 · 0.504864 0.51168 0.508871

1.03 0.080615 · �0.928586 �0.92753 �0.913795 · 0.482775 0.49365 0.480707

1.05 0.134359 �0.843312 �0.864060 �0.85789 �0.861676 0.475300 0.456931 0.46201 0.454648

1.07 0.188102 �0.758970 �0.810419 �0.79589 �0.813382 0.412212 0.432513 0.42834 0.430501

1.09 0.241846 �0.759272 �0.763181 �0.74915 �0.768567 0.403907 0.409869 0.40084 0.408093

1.11 0.295589 �0.727359 �0.727359 �0.71229 �0.726925 0.387109 0.387109 0.37928 0.387272
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the present method can efficiently calculate the nearly strongly and hypersingular integrals with smaller rel-

ative distance e1 than the new BNM and new BCM, based on a similar mesh pattern.

Example 4 (An ellipsoidal vessel with non-uniform thickness and under internal pressure p). The inner

surface of the ellipsoidal vessel is a sphere with radius a. The outer surface is an ellipsoid where the short

axis is c along the y-direction and the long axis d along the x- and z-directions, as shown in Fig. 8. The ratio

of d/a is fixed at 1.2, while the ratio of c/a is taken as 1.05, 1.03 and 1.01, respectively. For the material,
E = 1 and t = 0.25. The wall of vessel is so thin near point A that the nearly singular integrals arise in the
BE approach. Liu [15] has solved the example by the BEM with removing the nearly strongly singular

integrals. Alternatively, the present paper employs the semi-analytical algorithm to calculate this problem.

Because of symmetry, only one-eighth of the vessel is meshed in the BEM. Both inner and outer surfaces in

one octant are discretized, respectively, with 27 eight-node quadrilateral elements (a total of 54 elements),

as shown in Fig. 9. The hoop stresses at points A and B on the inner surface are given in Table 6, together

with the results of the BEM and FEM in Ref. [15]. The BEM of Ref. [15] uses 384 elements for the whole

vessel with each octant having 48 elements. The FE analysis with 5120 second-order solid elements for one
octant is acted as a contrast solution because no analytical solution is found for the test. In Table 5, it is
Fig. 8. An ellipsoidal vessel with non-uniform thickness and under internal pressure p.



Fig. 9. BEM Meshes on inner or outer surface of the vessel.

Table 5

Hoop stresses (·p) in the ellipsoidal vessel (d/a = 1.2)

Ratio c/a At point A At point B

Present BEM BEM [15] FEM [15] Present BEM BEM [15] FEM [15]

1.05 9.759 10.266 9.451 2.938 2.920 3.077

1.03 15.804 15.544 15.691 3.024 2.976 3.164

1.01 40.279 35.098 46.978 3.174 3.145 3.258
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seen that the present BEM with the semi-analytical algorithm provides more accurate results than ones of

the BEM [15], based on the similar number of elements. Note that for the case of c/a = 1.01 the ellipsoidal

vessel is very thin at AC-direction. Actually, the tiny distinction of the geometric model of the BE or FE
meshes from the original configuration leads to a great change of the stress field near point A. The results of

the present BEM with 54 elements also have some deviation from ones of the FEM at point A for c/a = 1.01

(see the last line of Table 5). Here, when a finer mesh with 216 elements is implemented, the present BEM

achieves better results (The hoop stress at point A is 45.103 · p) for c/a = 1.01, as shown in Table 6.

In the other hand, the present method can compute the stresses and displacements in the interior points
very close to the boundary. By the use of the semi-analytical algorithm, the results of the stresses along AC
line in the cases of c/a = 1.03 and 1.01 are obtained (see Tables 6 and 7), whereas the BE analysis of Ref. [15]

is not available to evaluate the nearly hypersingular integrals. In general, the finite element methods need

very many elements to solve this kind of thin-walled problems. It is verified that the BEM with the semi-

analytical algorithm can provide accurate solutions for very thin-walled structures.
Table 6

The hoop stresses (·p) at interior points (c/a = 1.01, d/a = 1.2)

Coordinates Present BEM (54 elements) Present BEM (216 elements) FEM [15] (5120 elements)

x y z

0 1.0 0 40.279 45.103 46.978

0 1.0016667 0 38.1594 46.5412 –

0 1.0033333 0 35.4479 42.5937 –

0 1.005 0 34.0334 40.7967 –

0 1.0066667 0 31.7853 38.1997 –

0 1.0083333 0 24.5039 29.8928 –



Table 7

The hoop stresses rzz (·p) at interior points (c/a = 1.03, d/a = 1.2)

Coordinates Present BEM (54 elements)

x y z

0 1.0 0 15.804

0 1.005 0 15.7712

0 1.01 0 15.4897

0 1.015 0 15.4274

0 1.02 0 15.2922

0 1.025 0 14.3799
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5. Conclusions

The concept of the relative distance is proposed in order to describe the influence of the nearly singular

integrals in the analysis of three-dimensional BEM. In the present paper, the new semi-analytical algorithm

is given to calculate the nearly strongly singular and hypersingular integrals in the BEM. The algorithm is

implemented on the linear isoparametric triangular elements and flat elements. By using the technique of

the integration by parts, the nearly singular surface integrals are transformed to a series of line integrals

along the contour of the elements for which the standard Gaussian quadrature is adequate to obtain very
accurate results. Numerical tests demonstrate the considerable effectiveness of the strategy.

For the use of the higher order elements with the curve surface, we suggest the subdivision way utilizing

eight triangular elements instead of a quadratic element only when its nearly singular integrals need to be

determined. Then the present method is easily implemented for the triangular elements. Of course, the eval-

uation for the farther elements from the load source can still employ the original methods. With the present

algorithm, the displacements and stresses at the interior points very close to the boundary are successfully

calculated by the BEM in three-dimensional elasticity problems. Furthermore, the tests show that the BEM

can efficiently analyze very thin-walled structures, including the thin laminate structures and coatings. The
algorithm does not require any other transformations except for using Eqs. (31), instead of Eq. (23), in

comparison with the treatment of the conventional BEM. According to the nature of singularity from

Eq. (23) in other physical problems, the present algorithm can also be used to determine the nearly singular

integrals in boundary element formulations for such problems.
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