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A Matrix Decomposition MFS Algorithm
for Biharmonic Problems in Annular Domains

T. Tsangaris1, Y.–S. Smyrlis1,2 and A. Karageorghis1,2

Abstract: The Method of Fundamental Solutions
(MFS) is a boundary-type method for the solution of
certain elliptic boundary value problems. In this work,
we develop an efficient matrix decomposition MFS al-
gorithm for the solution of biharmonic problems in an-
nular domains. The circulant structure of the matrices
involved in the MFS discretization is exploited by using
Fast Fourier Transforms. The algorithm is tested numer-
ically on several examples.

keyword: Method of fundamental solutions, biharmo-
nic equation, circulant matrices, annular domains, fast
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1 Introduction

The Method of Fundamental Solutions (MFS) is a mesh-
less technique for the numerical solution of certain ellip-
tic and parabolic differential equations (Fairweather and
Karageorghis (1998); Golberg and Chen (2001); Cho,
Golberg, Muleshkov, and Li (2004)). It is applicable
when the fundamental solution of the elliptic operator in
question is known. In the MFS, singularities of the fun-
damental solution, are avoided by the introduction of a
fictitious boundary exterior to the problem geometry (the
pseudo–boundary). Thus the approximate solution sat-
isfies the underlying partial differential equation. Since
the method was first introduced by Kupradze and Alek-
sidze (1963, 1964), and was first proposed as a numerical
technique by Mathon and Johnston (1977), it has been
applied to a wide variety of physical problems.

In recent years, this boundary–type technique has be-
come very popular because of its simplicity and ease of
numerical implementation. Details concerning the vari-
ous aspects and applications of the MFS can be found in
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the recent survey papers by Cho, Golberg, Muleshkov,
and Li (2004); Fairweather and Karageorghis (1998);
Fairweather, Karageorghis, and Martin (2003); Golberg
and Chen (1997, 1999); Kołodziej (2001).

There are various formulations of the MFS. The two
most popular ones are the following: In the first one,
the singularities are fixed, whereas in the second one
they are determined as part of the solution of the dis-
crete problem. The latter, which results in a nonlinear
least–squares problem, was used for the solution of bihar-
monic problems in Karageorghis and Fairweather (1987,
1988, 1989). In particular, in Karageorghis and Fair-
weather (1987), the authors used the integral represen-
tation of Maiti and Chakrabarty (1974), while in Kara-
georghis and Fairweather (1989) the authors used the
simple layer potential representation of Fichera (1961)
and in Karageorghis and Fairweather (1988) the authors
used the Almansi representation of biharmonic functions,
introduced by Almansi (1897). The above studies reveal
that these three formulations can be implemented equally
easily and that there is little to choose between them with
respect to accuracy.

The MFS with fixed singularities, which results in a lin-
ear system, was used for the solution of biharmonic prob-
lems in circular domains in Smyrlis and Karageorghis
(2003). This version of the MFS was also used for the so-
lution of three–dimensional biharmonic problems in ax-
isymmetric domains in Fairweather, Karageorghis, and
Smyrlis (2004). In this study, we shall be using the MFS
with fixed singularities for the solution of biharmonic
problems in annular domains. We shall be extending the
ideas used in Smyrlis and Karageorghis (2003) as well as
in Tsangaris, Smyrlis, and Karageorghis (2004), where
the MFS was used for the solution of harmonic prob-
lems in annular domains. A variant of the MFS involv-
ing Green’s functions was applied to the solution of har-
monic problems in annular domains in Katsurada (1989).

In this work we shall be using the properties of circu-
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lant matrices. The occurrence of such matrices when the
MFS is applied to circular domains was first observed by
Katsurada and Okamoto (1988). The properties of the
circulant matrices resulting from the MFS discretization,
in conjunction with the use of the Fast Fourier Transform
(FFT), were fully exploited in Smyrlis and Karageorghis
(2001, 2004b) for harmonic problems and in Smyrlis and
Karageorghis (2003) for biharmonic problems. It is note-
worthy that with the use of FFTs the computational effort
is reduced from O

(
N3

)
operations to O(N logN) opera-

tions. The properties of circulant matrices in conjunc-
tion with the Boundary Element Method (BEM) were
also studied by Jeng–Tzong Chen and his co–workers
in Chen, Lin, Kuo, and Chyuan (2001); Kuo, Chen, and
Huang (2000).

2 MFS formulation

We consider the boundary value problem

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∆2u = 0 in Ω,

u = f1 and
∂u
∂n

= g1 on ∂Ω1 ,

u = f2 and
∂u
∂n

= g2 on ∂Ω2 ,

(2.1)

where the domain Ω is the annulus

Ω =
{

xxx ∈ R
2 : ρ1 < |xxx| < ρ2

}
, (2.2)

∆ denotes the Laplace operator and f1, f2, g1 and g2 are
given functions. The boundary of Ω is ∂Ω = ∂Ω1 ∪∂Ω2

where ∂Ω1 and ∂Ω2 are the circles with radii ρ1 and ρ2,
respectively.

The MFS biharmonic formulation we shall be using is
based on the single layer potential representation of Maiti
and Chakrabarty (1974) according to which, a bihar-
monic function in a sufficiently smooth bounded domain
Ω ⊂ R

2, can be expressed as

u(P) =
∫

∂Ω
µ(Q) log |P−Q|dσ(Q)

+
∫

∂Ω
ν(Q) |P−Q|2( log |P−Q|−1

)
dσ(Q),

(2.3)

where the functions µ and ν are source densities at the
boundary.

In the MFS, we attempt to approximate the integral rep-
resentation (2.3) by a quadrature rule. Thus the solu-
tion u is approximated by (see Bogomolny (1985); Fair-
weather and Karageorghis (1998); Murashima, Nonaka,
and Nieda (1983); Smyrlis and Karageorghis (2003))

uN(µµµ,ννν,QQQ ;P) =
2N

∑
j=1

{
µ j k1(P,Q j)+ν j k2(P,Q j)

}
, (2.4)

where µµµ = (µ1, . . . ,µ2N)T, ννν = (ν1,ν2, . . .,ν2N)T and QQQ is
a 4N−vector containing the coordinates of the singulari-
ties Q j, j = 1, . . . ,2N, which lie outside Ω. The function
k1(P,Q) is a fundamental solution of Laplace’s equation
given by

k1(P,Q) = − 1
2π

log |P−Q|, (2.5)

and the function k2(P,Q) is a fundamental solution of the
biharmonic equation given by

k2(P,Q) = − 1
8π

|P−Q|2 log |P−Q|. (2.6)

It should be noted that the completeness of these bases is
discussed in Bogomolny (1985).

The singularities Q j are fixed on the pseudo–boundary
∂Ω̃ = ∂Ω̃1 ∪ ∂Ω̃2 of an annulus Ω̃ concentric to Ω and
defined by

Ω̃ = {xxx ∈ R
2 : R1 < |xxx| < R2},

where R2 > ρ2 > ρ1 > R1 . The boundary of Ω̃ comprises
∂Ω̃1 and ∂Ω̃2, the circles with radii R1 and R2, respec-
tively.

A set of collocation points {Pi}2N
i=1 is placed on ∂Ω. If

Pi = (xPi ,yPi), then we take

xPi =ρ1 cos
2(i−1)π

N
,

yPi =ρ1 sin
2(i−1)π

N
,

(2.7)

and

xPN+i =ρ2 cos
2(i−1)π

N
,

yPN+i =ρ2 sin
2(i−1)π

N
,

(2.8)

where i = 1, . . . ,N. If Q j = (xQ j ,yQ j), then

xQ j = R1 cos
2( j−1+α)π

N
,

yQ j = R1 sin
2( j−1+α)π

N
,

(2.9)
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Figure 1 : Log–plot of error versus angular parameter α for ε in Example 1 for different values of N.

and

xQN+ j = R2 cos
2( j−1+α)π

N
,

yQN+ j = R2 sin
2( j−1+α)π

N
,

(2.10)

where j = 1, . . .,N.

The presence of the angular parameter α∈ [−1
2 , 1

2 ] indi-
cates that the sources are rotated by an angle 2πα/N with
respect to the boundary points. This rotation is known to
improve the accuracy of the approximation significantly
when the pseudo–boundary is very close to the boundary.(
See Smyrlis and Karageorghis (2001, 2004b)

)
.

The vectors of coefficients µµµ and ννν are determined so that
the boundary conditions are satisfied at the collocation
points {Pi}2N

i=1 :

uN(µµµ,ννν,QQQ;Pi) = f1(Pi),
∂
∂n

uN(µµµ,ννν,QQQ;Pi) = g1(Pi),
(2.11)

and

uN(µµµ,ννν,QQQ;PN+i) = f2(PN+i),
∂
∂n

uN(µµµ,ννν,QQQ;PN+i) = g2(PN+i),
(2.12)

for i = 1, . . .,N, where ∂/∂n is exterior normal derivative
on the boundary ∂Ω. This yields a linear system of the
form

⎛
⎜⎜⎝

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

⎞
⎟⎟⎠

⎛
⎜⎜⎝

sss1

sss2

ttt1

ttt2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

fff 1

fff 2

ggg1

ggg2

⎞
⎟⎟⎠ , (2.13)

where

sss1 = (µ1,µ2, . . .,µN)T , sss2 = (µN+1,µN+2, . . .,µ2N)T ,

ttt1 = (ν1,ν2, . . .,νN)T , ttt2 = (νN+1,νN+2, . . .,ν2N)T .

The elements of the matrices Amn, m,n = 1, · · · ,4 are
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Figure 2 : Log–plot of error versus angular parameter α for ε in Example 2 for different values of N.

given by

(A11)i, j = k1
(
Pi,Q j

)
, (A12)i, j = k1

(
Pi,QN+ j

)
,

(A13)i, j = k2
(
Pi,Q j

)
, (A14)i, j = k2

(
Pi,QN+ j

)
,

(A21)i, j = k1
(
PN+i,Q j

)
, (A22)i, j = k1

(
PN+i,QN+ j

)
,

(A23)i, j = k2
(
PN+i,Q j

)
, (A24)i, j = k2

(
PN+i,QN+ j

)
,

(A31)i, j = h1
(
Pi,Q j

)
, (A32)i, j = h1

(
Pi,QN+ j

)
,

(A33)i, j = h2
(
Pi,Q j

)
, (A34)i, j = h2

(
Pi,QN+ j

)
,

(A41)i, j = h1
(
PN+i,Q j

)
, (A42)i, j = h1

(
PN+i,QN+ j

)
,

(A43)i, j = h2
(
PN+i,Q j

)
, (A44)i, j = h2

(
PN+i,QN+ j

)
,

for i, j = 1, . . .,N, with

k1(xxx,yyy) = − 1
2π

log |xxx−yyy|,

k2(xxx,yyy) = − 1
8π

|xxx−yyy|2 log |xxx−yyy|,

and

h1(xxx,yyy) = − 1
2π

(xxx−yyy) ·xxx
|xxx||xxx−yyy|2 ,

h2(xxx,yyy) = − 1
8π

(
1+2log |xxx−yyy|)(xxx−yyy) ·xxx

|xxx| ,

where xxx and yyy are the vectors describing the points P and
Q, respectively. The functions h1 and h2 are the normal
derivatives of k1 and k2, respectively, with direction ex-
trerior to the boundary, i.e.,

h j(xxx,yyy) = ∇xxx k j(xxx,yyy) ·nnn =
∂

∂n(xxx)
k j(xxx,yyy), j = 1,2,

where nnn is the unit normal exterior to the boundary of Ω.

The matrices Amn, m,n = 1, · · · ,4 are circulant3 and thus

3 A square matrix A is circulant (see Davis (1979)) if it has the form

A =

⎛
⎜⎜⎝

a1 a2 · · · aN
aN a1 · · · aN−1
. . . . . . . . . . . . . . . . . . .
a2 a3 · · · a1

⎞
⎟⎟⎠. (2.14)
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Figure 3 : Log–plot of error versus angular parameter α for ε in Example 3 for different values of N.

diagonalizable. In particular,

Amn = U∗DmnU, m,n = 1, . . . ,4, (2.15)

where

Dmn = diag
(
λmn

1 , . . .,λmn
N

)
, m,n = 1, · · · ,4,

are diagonal matrices whose diagonal elements are the
eigenvalues of the matrices Amn, m,n = 1, · · · ,4, respec-
tively, and

U∗=
1√
N

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2N−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 ωN−1 ω2(N−1) · · · ω(N−1)(N−1)

⎞
⎟⎟⎟⎟⎟⎠

,

This means that the elements of each row are same as the elements
of the previous row but moved one position to the right. The first
element of each row is the same as the the last element of the pre-
vious row. The circulant matrix A in (2.14) is usually denoted by
A = circ(a1,a2, . . . ,aN ).

with ω = e
2πi
N . The matrix U∗ is known as the Fourier

matrix and it can be readily verified that it is unitary. If
Amn = circ

(
amn

1 , . . . ,amn
N

)
, then the elements of the diag-

onal matrices Dmn are given by (see Davis (1979))

λmn
j =

N

∑
�=1

ω( j−1)(�−1)amn
� .

Note that from the above expression it is obvious that the
λmn

j can be obtained from the amn
� via discrete Fourier

transforms.

3 Matrix decomposition algorithm

Let

Â = (I4 ⊗U)

⎛
⎜⎜⎝

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

⎞
⎟⎟⎠(I4 ⊗U∗) ,

where I4 is the identity matrix in R
4×4 and ⊗ denotes the

matrix tensor product. The system (2.13) can be written
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Figure 4 : Log–plot of error versus angular parameter α for ε in Example 4 for different values of N.

as

Â (I4 ⊗U)

⎛
⎜⎜⎝

sss1

sss2

ttt1

ttt2

⎞
⎟⎟⎠ = (I4 ⊗U)

⎛
⎜⎜⎝

fff 1

fff 2

ggg1

ggg2

⎞
⎟⎟⎠ , (3.1)

where the matrix Â can be written as

Â =

⎛
⎜⎜⎝

UA11U∗ UA12U∗ UA13U∗ UA14U∗

UA21U∗ UA22U∗ UA23U∗ UA24U∗

UA31U∗ UA32U∗ UA33U∗ UA34U∗

UA41U∗ UA42U∗ UA43U∗ UA44U∗

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44

⎞
⎟⎟⎠.

Also,

(I4 ⊗U)

⎛
⎜⎜⎜⎜⎝

sss1

sss2

ttt1

ttt2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

Usss1

Usss2

Uttt1

Uttt2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

ŝss1

ŝss2

t̂tt1

t̂tt2

⎞
⎟⎟⎟⎟⎠

and

(I4 ⊗U)

⎛
⎜⎜⎜⎝

fff 1

fff 2

ggg1

ggg2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

U fff 1

U fff 2

Uggg1

Uggg2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

f̂ff 1

f̂ff 2

ĝgg1

ĝgg2

⎞
⎟⎟⎟⎟⎠ ,

where

ŝss1 = Usss1, ŝss2 = Usss2, t̂tt1 = Uttt1, t̂tt2 = Uttt2,

f̂ff 1 = U fff 1, f̂ff 2 = U fff 2, ĝgg1 = Uggg1, ĝgg2 = Uggg2,
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Figure 5 : Log–plot of maximum relative error versus ε in Example 1 for different values of N.

where i = 1,2, . . .,N. Finally, system (3.1) is reduced to⎛
⎜⎜⎜⎜⎝

D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ŝss1

ŝss2

t̂tt1

t̂tt2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

f̂ff 1

f̂ff 2

ĝgg1

ĝgg2

⎞
⎟⎟⎟⎟⎠ , (3.2)

The solution of system (3.2) can be decomposed into the
solution of the N independent 4×4 systems⎛
⎜⎜⎝

λ11
i λ12

i λ13
i λ14

i
λ21

i λ22
i λ23

i λ24
i

λ31
i λ32

i λ33
i λ34

i
λ41

i λ42
i λ43

i λ44
i

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ŝ1
i

ŝ2
i

t̂1
i

t̂2
i

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

f̂ 1
i

f̂ 2
i

ĝ1
i

ĝ2
i

⎞
⎟⎟⎠ , (3.3)

where i = 1,2, . . .,N. Having obtained ŝss1, ŝss2 and t̂tt1, t̂tt2,
we can find sss1,sss2 and ttt1,ttt2, (and hence µµµ,ννν) from

sss1 = U∗ŝss1, sss2 = U∗ŝss2, ttt1 = U∗t̂tt1, ttt2 = U∗t̂tt2.

We thus have the following matrix decomposition algo-
rithm for solving (2.13):

Description of the algorithm

Step 1: Compute f̂ff 1 = U fff 1, f̂ff 2 = U fff 2 and
ĝgg1 = Uggg1, ĝgg2 = Uggg2.

Step 2: Construct the diagonal matrices
Dmn, m,n = 1, . . . ,4.

Step 3: Evaluate ŝss1, ŝss2 and t̂tt1, t̂tt2 by solving N
4×4 complex systems.

Step 4: Compute sss1 = U∗ ŝss1, sss2 = U∗ŝss2 and
ttt1 = U∗t̂tt1, ttt2 = U∗t̂tt2.

Analysis of the cost

(i) In Step 1 and Step 4, because of the form of the ma-
trices U and U∗, the operations can be carried out
via FFTs at a cost of O(N logN) operations.

(ii) FFTs can also be used for the evaluation of the di-
agonal matrices in Step 2.
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Figure 6 : Log–plot of maximum relative error versus ε in Example 2 for different values of N.

(iii) The FFT operations are performed using the NAG4

routines C06FPF, C06FQF and C06FRF.

(iv) In Step 3, we need to solve N complex linear sys-
tems of order 4. This is done at a cost of O(N)
operations using the NAG routine F04ADF.

Note. A similar algorithm can also be applied in the case
of different combinations of boundary conditions associ-
ated with the biharmonic equation.

4 Numerical results

We considered the following numerical examples corre-
sponding to the Dirichlet problem (2.1) in the annulus
defined by ρ1 = 1 and ρ2 = 2:

Example 1. Problem corresponding to the exact solution

u(x,y) = x4 −y4.

4 Numerical Analysis Group (NAG) Library Mark 20, NAG Ltd,
Wilkinson House, Jordan Hill Road, Oxford, UK, 2001.

Example 2. In this case we consider a test example
from Kuwahara and Imai (1969), where in polar coor-
dinates f (θ) = −1

4 and g(θ) = −1
2 (1 + cosθ), which

corresponds to the exact solution

u(r,θ) =
1
4
(1− r2)(1+ r cosθ)− 1

4
.

Example 3. Problem corresponding to the exact solution

u(x,y) = (x2 +y2)ex cosy+
x

x2 +y2 .

Example 4. Problem corresponding to the exact solution

u(x,y) = (x2 +y2)
{
(x+ iy)3 +(x− iy)3}

+
{
(x+ iy)5 +(x− iy)5}.

The maximum relative error in these examples was cal-
culated on a grid of m2 points on the annulus defined by
(ri cosϑ j, ri sinϑ j), with

ri = ρ1 +
i−1
m−1

(ρ2 −ρ1), ϑ j =
2π( j−1)

m
,
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Figure 7 : Log–plot of maximum relative error versus ε in Example 3 for different values of N.

where i, j = 1, . . . ,m. The parameter m was taken to be
equal to 21.

In Figures 1–4, we varied the angular parameter α and
examined how this affected the accuracy of the solu-
tion for various values of N for different ε = ρ1 −R1 =
R2 −ρ2. The numerical results indicate that for small ε,
the accuracy of the solution is dependent on the angu-
lar parameter α. As ε grows this dependence disappears.
Further, for a certain range of values of ε, the approx-
imate solution is most accurate for α ≈ 1

4 . This phe-
nomenon was also observed in Smyrlis and Karageorghis
(2001, 2003, 2004b) and is valid for all the examples con-
sidered in this paper. (See Figures 1–4). We also var-
ied the radii R1 and R2 which define the circles of the
pseudo–boundary for α = 0 and examined how this af-
fected the accuracy of the solution for various values of
N. In this case, we observed that as ε increases, the ac-
curacy of the method improves. See Figures 5–8.

It has been observed that in certain cases two peaks ap-

pear for each value of N (see Figures 6–7). Numerical ex-
perimentation revealed that these are due to the fact that
some of the 4×4 matrices defined in (3.3) are singular.
The theoretical investigation of this singularity is beyond
the scope of this paper but it should be noted that the full
investigation of similar phenomena, for harmonic prob-
lems in a disk, can be found in Smyrlis and Karageorghis
(2004b). The reason for which peaks do not appear in
Figures 5 and 8, is that the examples in question have
zero average on both boundaries. Therefore, the contri-
butions of the eigenvectors corresponding to the vanish-
ing eigenvalues of the global matrix are, in these exam-
ples, zero vectors.

Similar results were observed for α �= 0.

Finally, we varied the radius R2 of the external circle
of the pseudo–boundary keeping R1 fixed and equal to
1/2. We examined how this affected the accuracy of the
approximation of the solution for various values of N.
The results of Figures 9–12 indicate that as R2 increases
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Figure 8 : Log–plot of maximum relative error versus ε in Example 4 for different values of N.

the accuracy improves. However, for larger values of
ε the accuracy deteriorates. This phenomenon is due
to ill-conditioning and has been repeatedly reported in
the literature; see Kitagawa (1988, 1991); Ramachandran
(2002); Smyrlis and Karageorghis (2001, 2003, 2004b).
In particular, as the radius R2 of the external circle of the
pseudo–boundary increases, the values of the eigenval-
ues of the submatrices Amn, m,n = 1, . . . ,4, range from
O(1) to O

(
( ρ2

R2
)N/2

)
.

(
See Smyrlis and Karageorghis

(2004b).
)

Such small values cannot be captured numer-
ically and this leads to ill–conditioning of the submatri-
ces and hence of the global matrix in the linear system
(2.13). The consequences of this ill–conditioning can be
observed from Figures 9–12, where the error increases
for large values of R and in some cases it is even impos-
sible to solve the linear systems.

It should be noted that the way the closeness of the
sources to the boundary affects the accuracy of the so-
lution, depends on the number of boundary points. In
Figures 5–12 one may observe that the accuracy of the

method is poor for small values of ε = R−ρ, whereas it
improves dramatically for ε > 2π/N. Similar phenom-
ena were observed for the harmonic case in Tsangaris,
Smyrlis, and Karageorghis (2004).

5 Conclusions

In this work, we develop an efficient algorithm for the so-
lution of biharmonic problems in annular domains. This
algorithm is based on a matrix decomposition formula-
tion and exploits the circulant nature of the matrices in-
volved by employing FFTs. The numerical results indi-
cate that the accuracy of the solution is affected by the
angle by which the singularities are rotated with respect
to the boundary points and by the distance of the pseudo–
boundary from the boundary of the annulus.

The ideas developed in this study could also be applied to
different elliptic equations, such as the Helmholtz equa-
tion.

It should be noted that this approach has its limitations
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Figure 9 : Log–plot of maximum relative error versus ε in Example 1 for different values of N.
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Figure 11 : Log–plot of maximum relative error versus ε in Example 3 for different values of N.
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in the sense that it is only applicable to circular and an-
nular domains. However, these ideas can be applied to
certain three–dimensional problems. In particular, one
could extend this algorithm to axisymmetric multiply
connected shell–type biharmonic problems, in the spirit
of the work of Fairweather, Karageorghis, and Smyrlis
(2004); Smyrlis and Karageorghis (2004a), by exploiting
the circular symmetries about the axis of rotation. In this
case, if we suppose that we have an N2−point discretiza-
tion of the boundary of the axisymmetric solid, a matrix
decomposition algorithm would lead to the solution of N
independent 4N×4N systems, where the elements λk�

i in
the coefficient matrix of system (3.3), are now replaced
by N ×N matrices. Thus instead of solving a system of
order N2 which requires O

(
N6

)
operations, one would

only need to solve N independent system of order 4N
with cost O

(
N4

)
.
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