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Acoustic Scattering from Complex Shaped Three Dimensional Structures

B. Chandrasekhar' and S. M. Rao?

Abstract: In this work, a simple, robust, and an ef-
ficient numerical algorithm to calculate the scattered
acoustic fields from complex shaped objects such as
aircrafts and missiles, subjected to a plane wave inci-
dence is presented. The work is based on the recently
proposed method of moments (MoM) and the potential
theory, unlike the standard Helmholtz integral equation
(HIE) solution method. For the numerical solution, the
scattering structure is approximated by planar triangular
patches. For the MoM solution of complex bodies in-
volving open/closed/intersecting surfaces, a unified set of
basis functions to approximate the source distribution is
defined. These basis functions along with suitable testing
procedure generates a simple numerical algorithm appli-
cable to complex shaped finite bodies. Finally, several
numerical examples, along with comparison with other
methods wherever possible, have been presented to illus-
trate the capabilities of the present method.

keyword: Acoustic Scattering, Method of Moments,
Complex bodies.

1 Introduction

The radiation and scattering of acoustic fields by
arbitrarily-shaped complex bodies such as aircrafts and
missiles, surrounded by an infinite homogeneous acous-
tic medium is a problem of considerable interest. Al-
though geometrical and physical theory of diffraction
methods [Ufimtsev (2003)] are popular for acoustically
large bodies, i.e. when the physical dimensions of the
body is several wavelengths long, the boundary integral
methods (BIM) are preferred solution methods for the
low to medium range frequencies. For open region prob-
lems, the BIM’s are even more attractive when compared
to differential equation methods viz. finite-element meth-
ods [Ciskowski and Brebbia (1991)]. The obvious rea-
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sons are: a) the solution region is confined to the surface
of the object and b) the exact enforcement of radiation
condition. Although T-matrix methods have been pop-
ular to deal with such problems [Varadan and Varadan
(1980)], Tobocman (1984, 1985) has demonstrated that
the Helmholtz Integral Equation (HIE) method is su-
perior for many three-dimensional scattering problems.
However, the HIE solution suffers from one basic prob-
lem, viz. the non-uniqueness of solution at wavenum-
bers corresponding to the interior Dirichlet or Neu-
mann characteristic wavenumbers. The proposed rem-
edy, and a popular one, is the so-called CHIEF (Com-
bined Helmholtz Integral Equation Formulation) method
developed by Schenck (1968) and Benthien and Schenck
(1997). Unfortunately, the CHIEF method is somewhat
heuristic and prone to inaccuracies specially at high-
frequencies.

As an alternative to CHIEF method, there exists another
method proposed by Burton and Miller (BM) (1971)
which is more elegant and mathematically guaranteed
to be stable. The BM procedure basically suggests de-
veloping two separate formulations viz. a) HIE formula-
tion and b) It’s normal derivative, and combining these
two formulations to obtain a stable solution at all fre-
quencies. Unfortunately, the normal derivative operation
results in a hyper-singular kernel which requires com-
plicated numerical methods to solve effectively. Nev-
ertheless, there exists a numerical algorithm, CONDOR
(Composite Outward Normal Derivative Overlap Rela-
tion), developed using the BM approach, appears to be
an alternative to CHIEF algorithm [Reut (1985)].

The regularization of the hyper-singular kernel and con-
sequently a more efficient alternative to CONDOR has
received considerable attention from the researchers in
acoustic scattering community. The list is exhaustive
and only recent works are included here for the sake
of brevity [Liu and Rizzo (1992), Liu and Chen (1999),
Qian, Han, Ufimtsev, and Atluri (2004b), Yan, Hung, and
Zheng (2003)]. Obviously, these methods are quite suc-
cessful and popular.
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Although CHIEF and CONDOR algorithms have been
used extensively, neither of these methods are applica-
ble to open bodies i.e. bodies with zero-thickness such
as thin plates. It may be noted that, in a practical sense,
everybody is a closed body. However, it is much more ef-
ficient to treat several geometrical shapes as open bodies
by ignoring the finite thickness. For example, thin plates,
discs and aircraft wings may be treated as open bodies, to
name a few, because the thickness of such bodies is very
small compared to other geometrical dimensions. Thus,
for efficient modeling purposes, a general complex, ar-
bitrary body may have open as well as closed surfaces.
Hence, a practical numerical algorithm must distinguish
open/closed surfaces for efficiency reasons and be able to
overcome the instability problems. Unfortunately, both
CHIEF and CONDOR algorithms are extremely ineffi-
cient to handle such problems. Note that similar tech-
niques are available in the area of computational electro-
magnetics which resulted in extremely popular and ef-
ficient numerical algorithms [Chew, Song, Cui, Velam-
parambil, Hastriter, and Hu (2004), Reitich and Tamma
(2004)].

Recently, Chandrasekhar and Rao (2004a, 2004b) have
developed novel numerical procedures to overcome the
instability problem as well as the open body problem.
Further, Chandrasekhar and Rao (2004a, 2004b) based
their formulation on Potential theory [Kellog (1929)]
which is popularly known in acoustics as indirect method
[Ciskowski and Brebbia (1991), Hwang and Chang
(1991), Qian, Han, and Atluri (2004a)]. In the poten-
tial theory approach, a fictitious source distribution is as-
sumed on the scattering/radiation surface which produces
the scattered/radiated field. Uniqueness of the acoustic
solution is guaranteed by enforcing the boundary condi-
tions. However, their work presented simple canonical
shapes only. In the present work, the numerical proce-
dures are extended to handle truly arbitrary bodies under
a unified algorithm which is simple and efficient. The
main features of the present work are:

e Using a single formulation to work for both open
and closed bodies.

e The present formulation automatically eliminates
the instability problem.

e Describing and utilizing appropriate mathematical
and numerical procedures for bodies involving in-
tersecting surfaces.
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e Demonstrating the applicability of the present pro-
cedure to truly arbitrary bodies.

The paper is organized as follows:

In the next section, a detailed description of the integral
equation derivation is presented. In Section 3, numer-
ical steps involved in the solving of the integral equa-
tion is detailed. The numerical procedure is based on
the well-known method of moments (MoM) [Harrington
(1968)] which is a popular choice for boundary integral
equation solution. It may be noted that MoM has been
used in several acoustic scattering problems previously
[Chen, Ju, and Cha (2000), Rao and Raju (1989), Chan-
drasekhar and Rao (2004a, 2004b)]. In Section 4, numer-
ical results for several example problems are presented.
It may be noted that although the present formulation has
been extensively tested with canonical shapes and found
to be accurate, only few selected geometrical shapes are
presented along with comparison with other methods for
illustration purposes. Also in this section, several numer-
ical results for complex geometries, hitherto not reported
in the literature, are presented to illustrate the capabilities
of the present algorithm.

2 Mathematical Formulation

Consider an arbitrarily shaped three-dimensional acous-
tically rigid body surrounded by an infinite, homo-
geneous, non-viscous medium, such as air, as shown
schematically in Fig. 1. The arbitrary body is assumed
to be orientable, may be open or closed, and may have
intersecting surfaces.

Let S represent the surface of the body, p and ¢ be the
density and speed of sound in the surrounding medium,
respectively. Let (p',u') and (p*,u*) represent the inci-
dent and scattered pressure and velocity fields, respec-
tively. It is important to note that the incident fields are
defined in the absence of the scatterer. It is customary to
introduce a velocity potential @ such that u = V@ and
p = —jopd, assuming harmonic time variation.

Let ¢ represent the simple source distribution on the scat-
terer. By following the approach of Burton and Miller
(1971) and using the potential theory [Kellog (1929)] in
conjunction with free space Green’s function, the scat-
tered velocity potential may be defined as

S

ds' (1)
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Figure 1 : Arbitrary body excited by an acoustic plane
wave

where o represents a real additive constant which is cho-
sen typically between 0 and 1. The value of o is not criti-
cal. In this work, o is set to 0 and 0.5 for open and closed
bodies, respectively. Note that this choice is automated
in the algorithm. The computer program thus developed,
automatically checks whether the body is closed or open
and sets o accordingly.

In Eq. (1)
o JkR
G(r.r') = . 2)
and
R=|r-r|, 3)

r, r and k represent the locations of the source point,
location of the observation point, and the wave number,
respectively. Both r and r’ are defined with respect to
a global coordinate origin O. Also, note that in Eq. (1),
d/0n’ represents the normal derivative with respect to the
source point #/. Noting that, at the surface of the hard
scatterer, normal derivative of the total velocity potential,
which is the sum of the incident and scattered potentials
must vanish, the integral equation may be derived, given

by
n|. dG(r,r) . d aG(r,r)] .,
[ ot [0 1o - 2EE s
5 o)
0D (r)

on ’
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where d/on represents the normal derivative with re-
spect to the observation point r. Further, in Eq. (4),
@' represents the incident velocity potential which is
related to the incident pressure field p’ by the relation
p' = —jopd'.

Next, following the procedures described in [Maue
(1949) and Mitzner (1966)], Eq. (4) may be re-written
as

joc/c(r’)iac(r’ r) ds’

on
s
+j(1—o /an a, k* 6Gds'
J(1—0) | ane s )
—|—j(1—0c)/(a£,xV’G)o(a,,xVG)ds’
s
=a,e VD'

where a, and a), represent the unit normal vectors at r
and 7/, respectively. Also, the prime on the V operator
refers to the differentiation with respect to primed coor-
dinates only.

3  Numerical Solution Procedure

In this section, the numerical solution to solve Eq. (5)
is detailed using MoM. Although the MoM procedure is
well-known, for the sake of completeness only a short
review is presented here.

Consider the deterministic equation

Lf=g, (6)

where L is a linear operator, g is a known function and f
is an unknown function to be determined. Let f be repre-
sented by a set of known functions f;, j = 1,2,....,N,
termed as basis functions in the domain of L as a linear
combination, given by

N
f=0f; (7
j=1

where o; are scalar coefficients to be determined. Sub-
stituting Eq. (7) into Eq. (6), and using the linearity of L,
we have

N

Y oLf; =g, (®)
j=1

where the equality is usually approximate. Let
(w1, w2, w3, ....) define a set of testing functions in the
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Figure 2 : Arbitrary body modeled by triangular patches

range of L. Now, taking the inner product of Eq. (8) with

each w; and using the linearity of inner product defined

as (f,8) = [ f-gds, we obtain a set of linear equations,
N

given by

N
ZOC]'<WI-7 7ij>:<wi7g>7 l:172737N (9)
=1

The set of equations in Eq. (9) may be written in the ma-
trix form as

ZX =Y, (10)

which can be solved for X using any standard linear
equation solution methodologies.

Although, the MoM is conceptually very simple, the sim-
plicity of the method lies in defining the appropriate ba-
sis functions and applying suitable numerical procedures.
For the problem at hand, note that the unknown quantity
to be evaluated is ©.

3.1 Derivation of Matrix Equations

First of all, approximate the arbitrary body using planar
triangular patch modeling. The body is assumed to be
connected, orientable, of finite extent, and may be com-
posed of intersecting surfaces. In general, a triangulated
surface modeling an arbitrary body consists of Ny planar
triangular faces, N, vertices, and N, edges. These geo-
metrical elements are illustrated in Fig. 2. The triangular
patch modeling is the most efficient way of describing
an arbitrary body to the digital computer. Further, there
exist a variety of mesh generation codes which can be
effectively used for the present numerical scheme.

Next, it is convenient to start the development of basis
functions to represent the unknown quantity ¢ by noting
that each basis function is to be associated with an inte-
rior edge. Note that the interior edge is an edge which
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has at-least two triangles (more than two triangles for in-
tersecting bodies) connected to it.

Consider the case where exactly two triangles are con-
nected to an interior edge. For this case, the basis func-
tion associated with the /" edge is

1, res,
0, otherwise

i ={ (1n
where S, represents the region obtained by connecting
the centroids of the two triangles 7, attached to n'" edge,
to the nodes of edge n. Note that the assignment of £
designation is arbitrary.

Now, consider the case where more than two triangles
connected to a given edge. Note that when m triangles
are connected to a given edge, the number basis func-
tions associated with that edge are m — 1. Thus, to dis-
cuss multiple basis functions that are associated with an
edge, first look at the ordering scheme for multiple trian-
gles attached to an edge. Fig. 3a illustrates an edge with
three attached faces. The faces attached to this edge are
numbered F,, F;,, and F_. For this case, since three trian-
gles are connected to the given edge, one may define two
basis functions involving (F,, Fp) and (F,, F.) as shown
in Fig. 3b and Fig. 3c. Note that this discussion readily
generalizes to edges with arbitrary multiplicity.

Using these basis functions, the unknown source distri-
bution ¢ may be approximated as

N
o(r) = Y xafulr) (12)
n=1

where x,, represents the unknown coefficient to be deter-
mined. In Eq. (12), N represents the total number of basis
functions, given by

N,
N=YP-1 (13)
i=1

where P, is the total number of patches connected to /"
edge in the triangulation scheme.

Next, the testing procedure begins with defining symmet-
ric product as

<fifo>= /S A fo ds (14)

where f and f, are two scalar functions defined over a
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Figure 3 : Basis function for an intersecting surface

surface S. Thus, the testing equation may be written as

+j(l—a [<fm,/a,,oa;k206ds’>
( ) S (15)

+ < fm,/s (a, x Vo) e (a, x VG) ds' >]

=< fu, a0 VD' >

In the following, each term in Eq. (15) is evaluated.

Considering the evaluation of first term in Eq. (15), given

109

by
<fm,/s (r)—— ( 7 ds
:// aGrr Grr)
+// aG”/d’ds (16)
Mdsr

N_m /
~ 3 Sc(r) e

- aG(r..¥)
Am / m /
/S o(r') S s

where r- represents the position vector to the centroid of
Si= and A is the area of the triangle 7,;°. Note that the
double surface integration in Eq. (16) is approximated as
a single integral by evaluating the integrand at the cen-
troids of respective triangles Sias illustrated in [Chan-
drasekhar and Rao (2004)]. Thus, the Eq. (16) can be
written as

/
<fm,/<5(r’) J9G(r.r) ds' >
S on

A [o(ry) N 9G(ry.r)
N [T —/Sc(r) o ds] 17

v [@ ~ [ otr) 29T ds’]

on
where f represents the integration over the surface ex-
cluding the principal value term i.e. r = r/. Note that
the J, represents a well-behaved integral which can be
trivially evaluated using standard integration algorithms
[Wilton Rao, Glisson, Schaubert, Al-Bundak, and Butler
(1984), Hammer, Marlowe, and Stroud (1956)].

Next, consider

<fm,/a,,oa KoGds >
- / Fnlr / a,ed. K2o(r)G(r,F)ds ds

m + A, /12 / / !
~ mt—=a, /a,,k o(r')G(ry,r')ds

3 3

where a:t and r,, represents the unit normal vectors of the
triangles connected to the m'"-edge and the position vec-
tor to the mid-point of the m"-edge, respectively. Note
that the double surface integration in Eq. (18) is con-
verted to single surface integral by approximating the in-
tegrand at the center of the m'"-edge and multiplying by
the area of the sub-domain patch, as done for Eq. (16).

(18)
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Next, using the same logic and assuming the incident
field to be a slowly varying function, the right hand side
of Eq. (15) may be approximated as

< for @ VD >— / Fn(F)an o VO (F)ds
> (19)

At A, :
~ (Tma; + %a;) o V' (1)

Now, consider the evaluation of < f,, [(a), x Vo) e
(a, xVG) ds' > term in Eq. (15). Following the nu-
merical procedure developed in [Chandrasekhar and Rao
(20044a), we have

< fm,/ (@, x Vo) e (a, x VG)ds' >
s

_ / a,eV x Ads
S (20)
=¢ Aedl
Con
~ Ly e [A(rs ) —A(rsh)]
where
A:/(a;ch) G ds, (21)
S

C,, and £,, are the contour of the basis function and the
vector along the length associated with the m'"-edge, re-
spectively.
Finally, combining Eqgs. (17), (18), (19), and (20), the
testing equation Eq. (15) may be written as

IG(r,,.r)

o % {G(?) — /Sc(r’) P ds’}
oln (OR)_ [ o) 0re) )

732
) —A(ry)]

A-
Tma;l o/a;kzc(r’)G(rm,r’)ds’}
s

(22)

for m =1,2,---,N. Substituting the source expansion
Egs. (12) into Eq. (22) yields an N x N system of linear
equations which may be written in matrix form as

ZX =Y (23)
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where Z = [Z,,] is an N x N matrix and X = [X,,] and
Y = [Y,,] are column vectors of length N. Elements of
Z-matrix are given by

. 1[AF+A _
Zmn =Jjo {5 [%] _sz_Gmm}

AT A
Iy (Tma;Jr?’"a;l) of, Y
+j(1—0)ly e (A, —Ast ]
when m = n and
Ziun = —jOC {Gjn_n +Gr71n}
- 2 (A v Aw -
+j(l—o)k 7%4‘?% ®fom (25)
+i(1— o)l e A7, — A7
when m # n. Further,
AT A .
Y, = (7’"0;} + ?‘%) o VOD'(r,,) (26)
In Egs. (24), (25), and (26),
L[ e TR e MRy
= ——d - d 27
S =@y /s,,+ 47R,, sta, /5; 47R,, s 27)
AL oG(r,r) oG(rt,r')
+ _Om ZNm” g Mmoot ) 40
G = 3 [/S,T e ds - ont ds (28)
. 1 — jkRGE 1 — jkRGE
A=ty | = | S—as+— | S —ra
Ay JTr ATRy; Ay J1; 4ATR;,
(29)
Ry = |1y — 1| (30)
Ry = |rs = 7| 31)

Integrals, appearing in Eqgs. (27) and (29), are straight
forward integrals over a triangular region. However,
it is cautioned that the integrals have singular kernels
and, for accurate solution, may be evaluated using the
methods described in [Wilton Rao, Glisson, Schaubert,
Al-Bundak, and Butler (1984), Hammer, Marlowe, and
Stroud (1956)].

For the plane wave incidence, set

O — ejkk'r (32)
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where the propagation vector k is

k = sin@,cos Goa, +sinB,sinpoa, +cos 6,a; (33)

and (8, 0¢) defines the angle of incidence of the plane
wave in terms of the usual spherical coordinate conven-
tion.

Once the elements of the moment matrix Z and the forc-
ing vector Y are determined, one may solve the result-
ing system of linear equations, Eq. (23), for the unknown
column vector X.

3.2 Near-Field Calculation

Once the source distribution on the object is known, the
scattered velocity potential at any point in space may
be calculated using Eq. (1). Obviously, for the near-
field calculation i.e. at any point whose furtherest dis-
tance from the scatterer is small compared to wave-
length, the integrals in Eq. (1) may be evaluated using the
numerical procedures developed in [Wilton Rao, Glis-
son, Schaubert, Al-Bundak, and Butler (1984), Hammer,
Marlowe, and Stroud (1956)]. Note that, although the in-
tegrals involved are not singular the evaluation of these
must be done carefully to obtain accurate results. How-
ever in the following, a simple numerical procedure is
presented to calculate the near-fields which may be suffi-
cient for many situations.

Let P denote the point of observation and let r represent
the the position vector to P. Then, using Eq. (1), ®° may
be written as

@*(r) :/G(r’) [jocG(r,r’)+j(1 —0‘)%:/#)] ds’
5

N jo : :
~Yo, [? [Glr, )AL +Glr v Ay }
n=1
j(-a
+ 3

) {BG(r,rf;*)AJr_i_aG(r,r;_)A;H

ont " on~
(34)

where r$* represents the position vector to the centroid

of S£. Note that since 6, is known, one can evaluate the
expression Eq. (34) very easily.

3.3 Far-Field Calculation

For the far-field calculation, it is common to assume the
observation point r — oo, and, hence, the following pro-
cedure may be adopted which is fast and simple.

111

First of all, note that, for a far-field observation point,

1
R=|r—r|=[r+/"*-2r-r]?

r-r 2
~r|l —2
-2
~r—a,r,
o JkR P
Glr ) — ~ ¢ jka.r 35
(r.r) 47R anr € (35)
and
oG(r,r') 1+ jkR e /*® | ,
o~ R amg 9 (0T
36)
~ T @ ika )

Thus, for far-field observation point, Eq. (1) may be writ-
ten as

— jkr i ,
@ = [ o) i{an+ [ - o) [jka, -]} 4T as
N
e

—jkr
- /G(r'){ja—k(l—oc)a;-r’}efk“r'r/ds’
S
(37)

Next, utilizing Eq. (12), the far-scattered velocity poten-
tial may be written as

e X . o
*= 4mr le” X/{-](x_k(l_a)(a;l-r,)}e]karrdsl
n= 5

_ eIk ixn (A;,Ir +A,
dnr = 3

n=
x {jo—k(1—o)(a) +a,) r,}e a7

(38)

Finally, scattering cross section S may be defined as

o |
S =d4mnr? | — (39)
(I)l

assuming | @' = 1.
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Figure 4 : Complex bodies modeled
patches

with triangular

4 Numerical results

In this section, numerical examples for a few complex
bodies depicted in Fig 4 are presented. It may be noted
that the present formulation has been extensively tested
with canonical shapes and found to be accurate in each
case. Only few selected geometrical shapes are presented
here for illustration purposes. However, the present al-
gorithm has not been optimized and hence not com-
pared with other standard methods such as CONDOR or
CHIEEF for efficiency purposes.

As a first example, consider a spherical body (ka = 5.0),
as shown in Fig. 4a excited by an axially incident plane
wave. Fig. 5 shows the far-field scattering cross section §
as a function of the polar angle 6 and compared with the
exact solution [Bowman, Senior and Uslenghi (1969)].
The sphere is modeled by 760 triangular patches result-
ing in 1140 edges. The modeling is done by first divid-
ing the 0 and ¢ directions into 20 equal segments each

CMES, vol.8, no.2, pp.105-117, 2005

10.0

Figure 5 : Scattering cross section versus polar angle
for an acoustically hard sphere (ka = 5)subjected to an
axially incident plane wave

which results in triangular patches at the sphere caps and
quadrilateral patches in between. By joining the diago-
nal of the quadrilateral patch, the triangular discretization
may be obtained. Note a good comparison between the
exact solution and the present method.

As a next example, consider again a sphere (ka = 2.0)
excited by an axially incident plane wave. In this ex-
ample, convergence of the numerical solution is investi-
gated. Fig. 6 shows the far-field scattering cross section S
as a function of the polar angle 6 and compared with the
exact solution [Bowman, Senior, and Uslenghi (1969)].
In this figure, three cases of the numerical solution is
presented with the number of unknowns 396, 630, and
1140 and compared with the exact solution. Note that
the accuracy of the solution improves as the number of
unknowns are increased.

Next, consider a circular cylinder with spherical end caps
as shown in Fig. 4b subjected to an axially incident plane
wave with wavelength equal to 2w meters. The object
is placed at the center of the coordinate system with the
cylinder axis coinciding with the x-axis. The radius and
lengths of the cylinder are 0.5m and 2.0m, respectively.
Fig. 7 shows the far-field scattering cross section S as a
function of the polar angle 0 in the xz-plane (i.e. ¢ =
0) and compared with the numerical solution [Rao and
Raju (1989)] using triangular patches as unknowns.The
sphere-cylinder body is approximated by 360 triangular
patches resulting in 540 unknowns. It is evident from the
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S
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Figure 6 : Scattering cross section versus polar angle
for an acoustically hard sphere (ka = 2) subjected to an
axially incident plane wave

figure that both solutions compare very well.

Next, consider a cone-cylinder as shown in Fig. 4c sub-
jected to an axially incident plane wave. The cone-sphere
is approximated by 560 triangular patches. The cylinder
is 4m long, closed at one end by a circular plate of ra-
dius 2m and the other end connected to a cone of length
3m. The body is with the center of the base coinciding
with the origin. The wavelength of the incident acoustic
plane wave is 2rwm. Fig. 8 shows the far-field scattering
cross section S as a function of the polar angle 0 in the xz-
plane (i.e. ¢ =0). For comparison, again the numerical
solution obtained by triangular patch solution [Rao and
Raju (1989)] is also presented. Note that both solutions
compare well with each other.

In the following, numerical results for several complex
body shapes are presented without comparing with other
methods basically because no results are available for
such geometrical shapes in open literature. It may be
noted that these examples are carefully selected to high-
light the capabilities of the present method. If one at-
tempts to solve these problems using CHIEF or CON-
DOR, the methods either fail or extremely expensive.
The simple reason being the open surfaces have to be
modeled as closed structures using extremely small tri-
angles.

Consider a cube with a small aperture at the top face as
shown in Fig. 4d. This particular example highlights the
present algorithm’s capability to handle open bodies. It
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Figure 7 : Scattering cross section versus polar angle
for an acoustically hard cylinder with spherical end caps
subjected to an axially incident plane wave

may be noted that every practically realizable body has
certain finite thickness associated with the surface and
hence can be modeled as a closed body by placing tri-
angles on both sides of the surface. However, it is very
inefficient to do so, specially when the thickness is very
small. In these cases, it may be prudent to treat the body
as on open body. The side of the cube is 1m and the
aperture is 0.2mx 0.2m. The cube is placed at the center
of the coordinate origin and excited by an axially inci-
dent plane wave. For the numerical solution, the cube is
approximated by 1348 triangles resulting in 2026 edges.
Fig. 9 shows the scattering cross section as a function of
polar angle 6 for this case. Also, for comparison, the
case of a closed cube is also presented. Here, note that
the scattering cross section remains same for both cases.
Intuitively this makes sense because for the observer at
infinity both cases appear same.

As a next example, consider a long cylinder, 1m length
and 0.1m radius, with a circular aperture of 0.03m ra-
dius on the top face as shown in Fig. 4e. The cylinder
is placed with the center of the base at the origin and
the axis coinciding with the z-axis of the Cartesian co-
ordinate system. The cylinder is excited by an incoming
plane wave (k = 1 m™!) traveling at 15° angle with re-
spect to the z-axis. In Fig. 10, the total field, which is
the sum of the incident and scattered fields, along the po-
lar axis is presented. Notice the large value of the field
within the cylinder (z < 1) and a slowly decaying field
outside (z > 1). The large field is due to the effect of
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Figure 8 : Scattering cross section versus polar angle for
an acoustically hard cone-cylinder subjected to an axially
incident plane wave

the cavity acting as a resonator. For numerical purposes
the cylinder is modeled by 490 triangles resulting in 740
edges. It may be noted that the geometry presented in this
example is not easily amenable to either CHIEF or CON-
DOR algorithms since the surface grid must encompass
outside surface, inside surface as well as along the thick
wall.

Next, consider the geometry of an infinitely thin, inter-
secting plate as shown in Fig. 4f. The horizontal square
plate, length 1m, is intersected at the center by a vertical
plate of Im length and 0.5m height. The entire struc-
ture is placed in the Cartesian coordinate system such
that the origin coincides with the center of the horizon-
tal plate and impinged upon by an incoming, z-traveling
plane wave (k = 1 m~'). The entire body is modeled by
400 triangular patches resulting in 630 edges. The scat-
tering cross section S as a function of polar angle 0 is
presented in Fig. 11. For comparison, the solution using
the method described in [Rao and Raju (1989)] is also
presented. Since the algorithm described Rao and Raju
(1989) is valid only for closed bodies, assume a finite
thickness for the plates as shown in Fig. 4g. The triangu-
lar patch model for this geometry involves 822 patches.
In the Fig. 11 the results for thickness t = 0.01m and
t = 0.002m are presented. Note from Fig. 11 that as the
thickness is reduced the result compares better with the
present solution method. Also, note that the thick plate
model involves triangles with high aspect ratio and hence
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Figure 9 : Scattering cross section versus polar angle for
an acoustically hard cube with an aperture subjected to
an axially incident plane wave.

is not a good model. Unfortunately, if a better model in-
volving more or less equal area triangles is desired, then
the number of triangles are too large and requires enor-
mous computer resources.

Next, consider a missile-like structure as shown in
Fig. 4h. The structure has a conical front-end backed by
a cylinder. Further, four infinitely-thin fins are attached
to the cylinder. The length and radius of the cylinder
are 10m and 1m, respectively. The conical section is 2m
long. The fins are 2.5mXx 3m rectangular plates attached
at the base. The triangulation of this body results in 1288
edges. The structure is placed in the Cartesian coordinate
system such that the origin coincides with the center of
the circular base. Fig 12 shows the scattered cross section
as a function of polar angle 6 when the body is excited
by an acoustic plane wave withk = 1 m~'.

Finally, consider an aircraft modeled by triangular
patches as shown in Fig 4. The aircraft is placed such
that the x-axis runs along the nose direction and y-axis
along the wings. The aircraft dimensions are 9.4m, 7.0m,
and 2.75m along x, y, z-directions, respectively. The air-
craft is modeled by 1982 triangular patches resulting in
2673 edges. Here two cases are considered. In the first
case, the acoustic plane wave, at 100-Hz frequency, trav-
eling along the z-axis is incident on the body and Fig 14
shows the scattering cross section as a function of the po-
lar angle O. In the second case, the plane wave, traveling
along the x-axis, is incident from the nose side. In Fig 15,
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Figure 10 : Total velocity potential versus distance
from the center for an acoustically hard open cylinder
with an aperture in the top plate subjected to an axially
incident plane wave
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Figure 12 : Scattering cross section versus polar angle
for a missile-like structure subjected to an axially inci-
dent plane wave

180

the scattering cross section as a function of the elevation
angle 0 for ¢ = 0° and ¢ = 90° cuts is presented. Al-
though, only the low-frequency case is considered here,
itis obvious that the same algorithm can be used at higher
frequencies using a more dense triangulation scheme.

5 Conclusions

In this work, a numerical solution algorithm is presented,
based on the method of moments, to the acoustic scat-
tering problem by arbitrarily-shaped, three-dimensional,
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Figure 11 : Scattering cross section versus polar angle
for an acoustically hard intersecting plate subjected to
an axially incident plane wave
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Figure 13 : Triangulated model of an aircraft

complex rigid bodies. The governing integral equation
is derived using the source distribution concept and the
potential theory. Note that the present numerical method
is valid at all frequencies, free from the so-called inter-
nal resonance problem, and valid for open, closed, and a
combination of open/closed bodies. Further, the method-
ology is simple, efficient and applicable to a large class
of problems.
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Figure 14 : Scattering cross section versus polar angle
for an acoustically hard aircraft subjected to an axially
incident plane wave
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