COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING
Commun. Numer. Meth. Engng 2006; 22:767-780

Published online 13 January 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cnm.848

Variational boundary element acoustic modelling over mixed
quadrilateral-triangular element meshes

Ahlem Alia">*, Mhamed Souli' and Fouad Erchiqui’

LML, Boulevard Paul Langevin, Cité Scientifique, 59655 Villeneuve d’Ascq Cedex, France
2Université du Québec en Abitibi-Témiscamingue, 445 boul. de I’ Université,
Rouyn-Noranda QC, Que., Canada J9X SE4

SUMMARY

The variational indirect boundary element method is widely used in many acoustical problems such
as simulation of scattering and radiation phenomena. Although it has many advantageous features in
dealing with those problems, it suffers from the singularity problem when the double surface integral
is done over the same element. In this paper, a straightforward technique for computing the singularity
1/R over triangular element is presented. It is based on a generalized polar co-ordinates transformation
to transform the triangular master element into a square one. The singularity factor is taken as weight
function. Consequently, a single straightforward implementation without any special treatment of singu-
larity is possible for meshes involving both quadrilateral and triangular elements of higher order. The
efficiency of the proposed method is demonstrated for some numerical examples. Copyright © 2006
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The variational indirect boundary element method (VIBEM) [1-3] is extensively used in
numerical acoustics especially for solving radiation and scattering problems in infinite
domains. In fact, it can handle automatically and exactly the Sommerfield radiation condition
via fundamental solution of the Helmholtz equation. In addition, it leads to symmetric matrices
due to the double surface integration. However, it suffers from the singularity problem which
occurs when the double integral surface involves the same element. In the last years, many
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efforts have been devoted to calculate efficiently the singular integrals without sacrificing any
accuracy. In fact, special numerical treatment or analytical rearrangement of the resulting sin-
gular integrals is always needed in order to eliminate difficulties related to their integrability.
On the other hand, various approaches, mixing numerical and analytical quadrature methods
have been successfully developed; useful references are cited in Reference [4].

Hamdi [1], Erchiqui [2] and Tournour [3] computed the singular integrals semi-analytically
over triangular elements. This approach is still limited for only elements with linear shape
functions. Jeans and Mathews [5] divided quadratic element into four triangular subelements
for each integration Gauss point. The singularity occurs at the corner of the subelements.
In this case, the corresponding Jacobian relating the element to the subelement removes the
singularity of the Green function. In the same manner, Chen et al. [6] subdivided the boundary
element (triangles and quadrangles) into triangles such that the singular point becomes a
corner of these subelements. Using triangular polar co-ordinates, the corresponding master
element of these subelements can be transformed into a square of unit side length. Hence,
the singular corner point of the triangular subelement becomes an edge of the unit square,
on which non-singular integration can be performed. For singular integral, Bajaj et al. [7]
adopted an integration technique based on a fine mesh around the singular point which is
created by repeated subdivisions. The density of the mesh increases towards the singular
points, and the method gives accurate results. However, these multiple subdivisions need more
computational time. Wang and Atalla [8] proposed an algorithm for double surface integrals
with a singularity of 1/R over quadrilateral elements. This technique involves a weighted
type of integration where the singularity is taken into account in the weights. In contrast with
classical methods [1-3, 5—7] which require special treatment for singularities, Wang and Atalla
[8] describe a straightforward method for the implementation of the VIBEM for quadrilateral
elements.

In this paper, Wang’s method [8] is extended to triangular elements using a generalized
polar co-ordinates transformation proposed by Wu [9]. Hence, meshes involving both trian-
gular and quadrilateral elements with higher order can be handled by a single straightforward
implementation without any special treatment of singularities.

2. GOVERNING EQUATIONS

Let us consider a boundary surface ‘S’ enclosing a volume ‘€2’ filled and surrounded by an
ideal and homogeneous fluid medium (Figure 1).

For a harmonic disturbance of frequency ‘f’ without any source or loss mechanisms, the
pressure ‘p’ satisfies the Helmholtz equation:

Ap(x) + & p(x)=0 (1)

where k= w/c denotes the wave number, ¢ is the sound velocity, w =2nf is the pulsation
and x is the field point position. For Neumann boundary condition which implies that the
velocity is continuous across the surface S:

.
e —JjpaV, (2)
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Figure 1. Acoustic domain and its boundary.

the pressure at any point within either one of the two acoustic domains can be expressed as

follows:
)= / u(y )aG(" ) 45 3)

where p is the fluid density, ¥, is the normal velocity, = p;— p, is the double potential layer,
n, is the unit normal at the location of the source point, G =e~*®/4zR is the Green’s function
with j=+/—1 and R=||x— y|| is the distance between the field point x and the source point y.

Equation (3) states that the sound pressure at any point inside the acoustic domain can be
obtained by integrating the equation on the boundary. This is the main idea of the BEM in
which only the boundary information is needed to obtain the solution. However, Equation (3)
is not ready to be used because the double potential layer p on the boundary is unknown.
In order to find it, we applied in what follows the boundary condition on the surface of the
acoustic domain.

By taking into account Neumann boundary condition given by Equation (2), an integral
equation can be derived for the velocity from Equation (3).

2
—ipwV, = HFP/ u(y )aaG(g ) g, 4)

This integral over the single surface S,, which is associated with the second derivative of the
Green function, should be defined in the sense of Hadamard finite part (HFP) [4]. An increas-
ing number of researchers have focused on hypersingularity and proposed both analytical and
numerical techniques to handle it. A summary on regularization methods for hypersingularity
can be found in Reference [10].

In order to solve simultaneously interior and exterior problems, we will associate to
Equation (4) a variational formulation that presents a double advantage. First, it allows avoid-
ing evaluation of HFP. On the other hand, it leads to a symmetric algebraic system.

The variational formulation can be derived by multiplying the integral equation
(Equation (4)) by u(x) and integrating it over the BE model with velocity boundary condition
on S. This formulation is based on the principle that the solution of the obtained equation will
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also minimize the following functional:

F(u)=2 /ijpwu(x)vn<x)dsx+ / (u(x) / (525(’“ 2Dy )) ) 5)

The singularity which appears in the functional F' can be reduced to a less singular form that
is better suited to numerical calculations [1-3]:

F =2 [ ipotouds.+ [ [ @onnun,

= (Vepu(x) x ne)(Vypu(y) x ny))G(x, y) dS, dS; (6)

By discretizing Equation (6) using BEM, the final numerical system is derived by imposing a
stationary condition on F with respect to unknown primary variable u. Solving the obtained
system allows to get the double layer potential at the boundary. Consequently, Equation (3)
can be used to compute the pressure at any point in the acoustic domain.

3. DISCRETIZATION

In order to achieve a numerical solution of Equation (6), the surface is divided into boundary
elements such as

Elements
S=S"= U S
i=1
Elements X
S()de= ; v()dS)lc (7)

Elements Elements
//()dSdex— / ()dS: ds]
S, JS, iJs)

The double potential layers p(x) and u(y) on the surface of the boundary element model are
expressed as a product between their unknown nodal values and the element shape functions as

w(y) = N;(&i,m)w
u(x) = Ni(&a, 2 ) i

with (&1,11) and (&, ) represent, respectively, the local co-ordinates on the elements ‘i
and ‘j’, Ni(¢1,m1) and N;(&, 1) are the shape functions, x and y are position vectors on the
elements ‘i’ and ‘j°. For clarity, we drop the superscript ‘4’ in S”.

In order to discretize the second term of Equation (6), we use Equation (9) that is proved
in Reference [3]:

8)

1
[ny X qu][ny X VJ’M] = Mij{(x,'1l'y,'12 )]Vi,ffl]vj,éz - (x,ﬂl'y,fz )]Vi,il]vj,’h

1
- (xaél Vo )Ni,mNj,éz + (x,fl Ve )Ni,mNj,nz }7 L (9)
»
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where Xa =X X x,m:y,;z =)& X y,’727 Jx = ‘x&l || and Jy = Hy:€2||' The SUbSCTiptS 951 >N 5G1s
& ,m ,¢o are, respectively, the partial derivatives with respect to &,#1,61,&,m and ¢;.
By replacing Equation (9) in the discretized form of Equation (6), and by using the fact that
the area of infinitesimal surfaces are given by dSj =J,d& di; and dSi=J, d&, dn,, the two
terms of the discretized functional can be written as

/s; s;(kz(nx.ny)ﬂxuy — (Vy(x) x n )(Vyu(y) x 1,))G(x, ) dS), dS] = piai;p
— /Sijpwu(X)Vn(X)dSi = pibi (10)
where
ayj = /C /, /c /,1 G W,y NG DN (G2 12) = - Yo )i, (1,106, (E2,12)

+ (V.5 )Nie (S0, MD)Njp, (82, 1m2) + (X - Yoy WNi (E1,m1)Nj 2, (82, 112)
— (XY )Ni,m (Cim )Nj,rlz(éz, '12)} déydnidé, dy,

f’ b b
= [ [ [ et g, 4y, g an (112)
HJdm S I
by = —jpw / Ni( &) Vady déy digy = / 9(&2,m2) dEz dny (11b)
& I & I

Finally, the discretized form of the functional F (Equation (6)) noted F" may then be
written as

Fh:ZZ,“iazjﬂ_/*zz,Uibi (12)
i i
or in a matrix form:
F'=u"4p —2u"B (13)

F" is a bilinear function of the unknown nodal potentials. Imposing stationary condition on F"
with respect to unknown primary variables

OF"
—-—= Apu=B 14
P 0= Au (14)
leads to the following system of equations:
Au=B (15)

where the global matrix 4 is resulting from assembling the elementary matrices a;; and the
right-hand side B results from assembling the elementary vectors b;. The system matrix 4
is square and symmetric since it is derived using a variational formulation. Once the double
potential layer is calculated by solving the linear system given by Equation (15), the acoustic
pressure at any field point in the domain can be computed via integral equation (3). It is to
be emphasized that the numerical integration over two different elements can be calculated
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without any difficulty. However, when it involves only one element, a singularity appears. In
this case, the singularity may be correctly evaluated in order to obtain good pressure.

4. NUMERICAL INTEGRATION

The purpose of this section is to process numerically triangular and quadrilateral elements into
the same algorithm. To do so, master element of triangles is transformed into square element.
Consequently, this transformation allows us to extend any quadrilateral element algorithm to
a triangular one with only few modifications.

For triangular element, we first use the following generalized polar transformation in

Reference [9] to transform the triangular master element into a unit side-length square:
¢=p(1-0)
(16)
n=pb

where 0<p<1,0<6<1 (Figure 2). The radial co-ordinate p is equal to zero at the ori-
gin of the generalized polar co-ordinate system (node 3 in Figure 2), and is equal to one

M
3 20,1
8=1 =1
5 —» Q
1 g
p=0
3,00 8=0 1(1,0)
Triangular element Triangular master element
T
0
2(1,1 2(1,1)
3 S
3
—
P
1(1,-1 1(1,0)
Quadrilateral master element Unit square

Figure 2. Generalized polar co-ordinate transformation.
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at any point on the hypotenuse. The angle 0 is equal to zero on the £-axis and is equal to one
on the y-axis. This transformation, obtained from vectors addition, allows to get any point Q
inside the parent element. We can show that the Jacobian of this transformation is equal
to p. To transform the (1 x 1) square to (2 x 2) square, let us consider the following simple
transformation:

%(l—i-r)
a+0

o

1
0 a7)

for which the Jacobian is equal to ;. The global Jacobian of the two is given by J = p/4.
Hence, the discretized form associated to a triangular master element could be rewritten over
the corresponding square master element. Consequently, for meshes containing both triangular
and quadrilateral elements, the corresponding integral can be rewritten as

a,—//T/g /nlwdfld”lldfzdﬂz
:////_IIWJIJNS] ds, (18a)

1
bl-:/ 9(Eas2) A&y dipy = // I(E, ) dS, (18b)
&I JJ-1
where
dé;dny; if (i) is quadrangle
S, = ! (s £ with i=1,2
dr;d{; if (i) is triangle
¢ &i if (7) is quadrangle
=\ &t if (i) s triangle
and

1 if (i) is quadrilateral element

) if (i) is triangular element

When the double surface integral is done over different elements (i#j), Gauss quadra-
ture rule can be directly applied. However, when the integral involves the same element, it
becomes singular. In this case, the Wang and Atalla [8] integration technique, proposed first
for quadratic elements, can be easily extended to triangles since these ones are transformed
above into square master elements. A simple way to distinguish a triangular element from
a quadrilateral one is to define the triangle by a degenerated quadrangle where the last two
nodes are identical. To extend a previous variational boundary quadrilateral element imple-
mentation to a mixed quadrilateraltriangular element meshes, Equations (16) and (17) can
be easily developed and included in existing acoustic codes.

Copyright © 2006 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2006; 22:767-780



774 A. ALIA, M. SOULI AND F. ERCHIQUI

By denoting r=,/(§, = &,)* +(n n,—n, )? the distance over the master element and since

r/R is bounded over the element [8], integral (18a) is equivalent to the following one:

/// f(él,nl,éz,nz)ds ds, (19)

where f(S.n.,¢,.0,)= (r/R)g(fl,n ¢,.1,)/1/2. By using the weighted integration [8] in
which the factor of singularity in tile integrand is taken as weight function W, the last
integral becomes

M; M,

1

M,
; (é nlaézanz)Wmnrl (20)

HM§

m=1n=1

=

where M: , M, ,M:, M, are equal to 2,3 or 4 and denote the Wang’s integration order. The
weighted function W,,,,; and the integration points (&7, n7, &, n) for quadrangles or 7, (%, 15, ¢}
for triangles) are listed in Reference [8]. Wang and Atalla [8] showed that results obtained
for the fourth order are the most accurate. In the following, the numerical computations of
singular integrals were done using 4 x 4 x 4 x 4 integration scheme. For non-singular integral,
numerical results were obtained using 4 x 4 x 4 x 4 Gauss quadrature points.

5. NUMERICAL RESULTS

To demonstrate the accuracy and the efficiency of the present approach, several numerical
applications are presented in this section. In the following, the accuracy of the extended
method to triangles is examined for this integral:

1://%dSldSz (21)
S] SZ

calculated directly on triangular master elements. The obtained results are summarized
in Table I.

When the integration is evaluated on the same element, the error is about 1.7%. However, it
is about 4.3% when the singularity is concentred at the common edge of two adjacent elements
and it becomes very weak (less than 0.2%) when the elements have one node in common.
From Table I, we can conclude that the presented method leads to good results, in particular,
for the first and the last cases. For the second case, the error is relatively large compared to
the other cases. This same behaviour has been observed by Hamdi when he evaluated semi-
analytically the singular double integrals [1]. To reduce this error, he suggested evaluating
the integral semi-analytically as he treated the first case. In what follows it will be seen that
these errors do not affect dramatically the calculated acoustic pressure.

The radiation of a unit pulsating sphere is analysed using two BE models. The example of
the sphere is selected because analytical solution is available and irregular frequencies can be
predicted. In this second application, irregular frequencies are avoided and consequently no
special treatment is needed.

The sphere has a radius of ‘a=1m’. It is excited by a unit velocity at frequency f =100 Hz.
It is surrounded by air (p=1.21Kg/m’, ¢ =343 m/s). Two meshes are considered (Figure 3).
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Table 1. Numerical integration of Equation (21) using the presented method
in comparison with exact solution.

Exact integration Numerical integration
1.0030 0.9853
0.4835 0.5041
0.26833 0.26838
L
b K

Figure 3. Boundary element models of pulsating sphere mesh (1): 972 triangles;
mesh (2): 486 triangles and 243 quadratic elements.
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Figure 4. Sound pressure radiated by pulsating sphere (mesh (1)).

The first one involves only triangular elements while the second contains both triangles
and quadrangles.

Figure 4 depicts, for the first mesh, the variation of the radiated pressure with the radial
distance computed analytically and by using VIBEM as presented in this paper. Good agree-
ment is observed between numerical and analytical solutions. Even if mesh contains both
triangles and quadrangles, the VIBEM is still in good agreement with the analytical solution
(Figure 5).

In a third example, let us calculate the radiated pressure for different frequencies at a
point located at ¥ =4 m from the sphere centre. From Figure 6, many peaks occur. They are
related to the resonance of the interior volume of the sphere [11]. If we refine the mesh,
the solution still does not converge and we will get non-physical resonances. These peaks
do not have any physical meaning at the considered frequencies. Since the interior region
resonates and since both interior and exterior problems share the same integral operator, the
integral equation governing exterior problem should break down at the natural frequencies of
the interior problem. To overcome this problem, it is necessary to discretize some additional
elements inside the sphere on which the impedance boundary condition is prescribed in order
to eliminate the highly resonant interior effects from the solution [12]. Away from irregular
frequencies, the presented numerical result shows good correlation with analytical solution as
seen in Figure 6. The numerical algorithm for solving irregular frequencies is not implemented
yet in the code we developed to validate the presented the singular integration method. It is our
goal to implement in the near future an algorithm to solve irregular frequencies problem. The
treatment of this problem in case of VIBEM is described in details in Reference [13]. Users
of the VIBEM with mixed quadrilateral and triangular elements need to take into consideration
the irregular frequencies problem.
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Figure 6. Irregular frequencies effect on sound pressure radiated by unit pulsating sphere
for mesh (2) at a point situated at » =4 m.
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A parallelepiped box of (1 x 0.2 x 0.2)m? containing air was considered as a test example
for interior problem. It was assumed that an end surface at x =0 was vibrating as a rigid
piston with a harmonic amplitude velocity of 1 m/s at a frequency of f =200Hz whereas
all other walls were rigid. In order to study the effect of the element aspect ratio on the
results, the pressure field on the longitudinal axis were calculated for four meshes of element

Copyright © 2006 John Wiley & Sons, Ltd.
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Element aspect ratio=2.5 Element aspect ratio=3

Element aspect ratio=20

Figure 7. BE models for different element aspect ratio.
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Figure 8. Effect of the element aspect ratio on the acoustic pressure for f =200 Hz.

aspect ratio of 2.5,5,10 and 20 (Figure 7). It can be shown in Figure 8 that even for meshes
involving large values of the element aspect ratio (10 for mesh 3 and 20 for mesh 4), the
predicted pressure coincides with the exact theory. This indicates that the presented method
is still applicable for meshes presenting large values of element aspect ratio.
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Figure 9. (a) Wheel model; (b) wheel surface on which the normal velocity is applied; and
(c) plan on which the pressure is to be computed.

Figure 10. Wheel BE models (1946 nodes): (a) mesh (1) containing 3888 triangles; and
(b) mesh (2) containing 1920 quadrangles and 48 triangles.

In order to check the efficiency of the presented method for complex geometry, radiation
of a wheel using two BE models is analysed in this last application. The wheel (Figure 9(a))
is excited at a frequency f =200Hz by a normal velocity V,=4 x 103 m/s only applied
on the surface shown in Figure 9(b). The remaining parts of the wheel are assumed to
be perfectly rigid. The presented method is applied to calculate the pressure in the plane
depicted in Figure 9(c). Both meshes, involving 1946 nodes, are shown in Figure 10. The
first one contains 3888 triangular elements whereas the second is constituted by 1968 elements
where 48 are triangular elements. In Figure 11, we presented the acoustic pressure radiated
in interior and exterior wheel using both meshes (1) and (2). The two results compare well
although the small difference in amplitude. This can be explained by the fact that mesh (1)
is very fine compared to the second mesh.
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Figure 11. Pressure in dB calculated on plane by using (left) mesh (1), (right) mesh (2).

6. CONCLUSION

In this paper, the straightforward technique proposed by Wang and Atalla [8] for computing
the singularity 1/R over quadrilateral element is extended to triangular one by using the
generalized polar co-ordinates transformation presented by Wu [9]. Hence, this method can
handle meshes involving both triangles and quadrangles without any special treatment of
singularity. The integration method developed in this paper can be easily implemented in
existing acoustic VIBEM codes in order to handle both quadrilateral and triangular elements
in the same problem. Numerical examples demonstrating the efficiency of the extended method
have been presented.
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