
Computers & Fluids 38 (2009) 1973–1983
Contents lists available at ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/ locate /compfluid
A fast immersed interface method for solving Stokes flows on irregular domains

Zhijun Tan a, K.M. Lim b, B.C. Khoo a,b,*

a Singapore-MIT Alliance, 4 Engineering Drive 3, National University of Singapore, Singapore 117576, Singapore
b Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore

a r t i c l e i n f o a b s t r a c t
Article history:
Received 14 October 2008
Received in revised form 7 April 2009
Accepted 16 June 2009
Available online 21 June 2009
0045-7930/$ - see front matter � 2009 Elsevier Ltd. A
doi:10.1016/j.compfluid.2009.06.004

* Corresponding author. Address: Department
National University of Singapore, 10 Kent Ridge C
Singapore. Tel.: +65 65162889; fax: +65 67791459.

E-mail addresses: smatz@nus.edu.sg (Z. Tan), mpel
mpekbc@nus.edu.sg (B.C. Khoo).
We present a fast immersed interface method for solving the steady Stokes flows involving the rigid
boundaries. The immersed rigid boundary is represented by a set of Lagrangian control points. In order
to enforce the prescribed velocity at the rigid boundary, singular forces at the rigid boundary are applied
on the fluid. The forces are related to the jumps in pressure and the jumps in the derivatives of both pres-
sure and velocity, and are approximated using the cubic splines. The strength of singular forces is deter-
mined by solving a small system of equations via the GMRES method. The Stokes equations are
discretized using finite difference method with the incorporation of jump conditions on a staggered
Cartesian grid and solved by the conjugate gradient Uzawa-type method. Numerical results demonstrate
the accuracy and ability of the proposed method to simulate Stokes flows on irregular domains.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In many of the applications in engineering and mathematical
modelling in biology, it is often necessary to solve the Stokes equa-
tions on irregular domains. This paper considers the viscous
incompressible steady Stokes flows for two dimensional problems
involving rigid boundaries. In a two dimensional bounded domain
X that contains a immersed rigid boundary C, we consider the
steady Stokes equations formulated in the velocity–pressure vari-
ables, written as

rp ¼ lDuþ FðxÞ þ gðxÞ; x 2 X; ð1:1Þ
r � u ¼ 0; x 2 X; ð1:2Þ

with boundary conditions

ujoX ¼ ub; ð1:3Þ

where u ¼ ðu; vÞT is the fluid velocity, p is the fluid pressure, l is the
fluid viscosity, x ¼ ðx; yÞ is the Cartesian coordinate variable,
gðx; tÞ ¼ ðg1; g2Þ

T is an external force, and the effect of the rigid
boundary C immersed in the fluid results in a singular force F which
has the form

FðxÞ ¼
Z

C
fðsÞdðx� XðsÞÞds: ð1:4Þ

Here XðsÞ is the arc-length parametrization of the rigid boundary C,
s is the arc-length, f ¼ ðf1; f2ÞT is the force density, and dð�Þ is the Dir-
ll rights reserved.

of Mechanical Engineering,
rescent, Singapore 119260,

imkm@nus.edu.sg (K.M. Lim),
ac delta function defined in the distribution sense. The rigid bound-
ary C is immersed into a simpler domain and separates the fluid
region into two parts. Eq. (1.2) together with the Dirichlet condition
equation (1.3) leads to the compatibility condition that ub must
satisfyZ

oX
ub � nb dS ¼ 0; ð1:5Þ

where nb is the outer unit normal to oX. To determine p uniquely
we may impose some additional condition, such as

R
X pdx ¼ 0, see

[4,13,34].
Throughout this paper, we assume that the fluid viscosity l is

constant over the whole domain. We refer the readers to Fig. 1
for an illustration of the problem.

For the class of problems considered in the present work, the
immersed rigid boundary is fixed and the velocity on the rigid
boundary is specified, so the forcing term is used to exactly enforce
specified velocity at the rigid boundary. Conventional methods for
solving the Stokes equations with immersed rigid boundaries in-
clude the body-fitted or structured grid approach. In this approach,
the Stokes equations are discretized on a curvilinear grid that con-
forms to the immersed boundary and hence the boundary condi-
tions can be imposed easily. The disadvantage of this method is
that robust grid generation is required to account for the complex-
ity of the immersed boundaries.

An alternative approach for solving complex viscous flows is the
Cartesian grid method which solves the governing equations on a
Cartesian grid and has the advantages of retaining the simplicity
of the Stokes equations on the Cartesian coordinates and enabling
the use of fast solvers. One of the most successful Cartesian grid
methods is Peskin’s immersed boundary method [30]. This method
was originally developed to study the fluid dynamics of blood flow

http://dx.doi.org/10.1016/j.compfluid.2009.06.004
mailto:smatz@nus.edu.sg
mailto:mpelimkm@nus.edu.sg
mailto:mpekbc@nus.edu.sg
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid


1974 Z. Tan et al. / Computers & Fluids 38 (2009) 1973–1983
in the human heart [29]. The method was developed further and
has been applied to many biological problems involving flexible
boundaries [16,43]. The immersed boundary method has also been
applied to handle problems with immersed boundaries [18,38]. In
order to avoid using very small time step, Mohd-Yusof [27] and
Fadlun et al. [15] proposed a direct forcing formulation. This forc-
ing is direct in the sense that the exact velocity is imposed directly
on the rigid boundary through an interpolation procedure. Lima E.
Silva et al. [38] proposed a different approach to compute the forc-
ing term f based on the evaluation of the various terms in the
momentum (Navier–Stokes) equations at the rigid boundary. An-
other similar approach that combines the original immersed
boundary method with the direct and explicit forcing was intro-
duced by Uhlmann [42] for the simulation of particulate flows.
The forcing term at the boundary is evaluated based on the desired
velocity at the boundary which is simply given by the rigid-body
motion and a preliminary velocity obtained explicitly without
the application of a forcing term.

Once the forcing term is obtained at the boundary, the im-
mersed boundary method (IBM) uses a discrete delta function to
spread the force density to the nearby Cartesian grid points. Since
the immersed boundary method smears out sharp interface to a
thickness of order of the mesh width and it is only first-order accu-
rate for problems with non-smooth but continuous solutions. In
contrast, the immersed interface method (IIM) can avoid smearing
out sharp interfaces and maintains second-order accuracy by
incorporating the known jumps into the finite difference scheme
near the interface. The IIM was originally proposed by LeVeque
and Li [22] for solving elliptic equations, and later extended to
Stokes flow with elastic boundaries or surface tension [21] on reg-
ular domain. We refer the interested readers to the recently pub-
lished book by Li and Ito [23]. The method was developed
further for the Navier–Stokes equations in [19,20,24] for problems
with flexible boundaries. Recently, the immersed interface method
has been employed to solve for viscous flows with static rigid im-
mersed boundaries [5,6,19,25,33]. In [6,25], the no-slip boundary
conditions are imposed directly by determining the correct jump
conditions for the stream function and vorticity. In [33], a Cartesian
grid method for modelling multiple moving objects in incompress-
ible viscous flow is considered. Biros et al. [5] presented the
embedded boundary integral (EBI) method for Stokes equations
with distributed forces in complex geometries. The method uses
an integral formulation to compute the jumps of the velocity and
its derivatives at the interface and express the jumps as a source
term at some grid points close to the interface. Le et al. [19] has
D

n
X

s

Rigid boundary

Fig. 1. A typical irregular domain D is immersed in a simpler rectangular domain X
with a uniform Cartesian grid. We use n and s to denote the unit outward normal
and tangential directions of the rigid boundary C, respectively.
presented an immersed interface method for the incompressible
Navier–Stokes equations involving rigid and flexible boundaries.
In [19], the immersed boundaries are represented by a set of
Lagrangian controls points. The strength of singular forces is deter-
mined to impose the no-slip condition at the boundary by solving a
small system of equations at each time step. In [8], a new bihar-
monic solver has been applied to solve the incompressible Stokes
flow on an irregular domain. Recently, Rutka [34] developed the
explicit immersed interface method (EJIIM) for two-dimensional
Stokes flows on irregular domain. The EJIIM introduces unknown
jumps in the solution and its up to second order derivatives along
the interface, in contrast to our approach in this paper, while the
augmented system of equations using EJIIM in [34] will be much
larger because more unknowns are introduced as augmented
variables.

Another Cartesian grid approach has been presented by Ye et al.
[46] and Udaykumar et al. [41] using a finite volume technique.
They reshaped the immersed boundary cells and used a polyno-
mial interpolating function to approximate the fluxes and gradi-
ents on the faces of the boundary cells while preserving second-
order accuracy.

Finally, it should be noted that there are other methods to solve
Stokes flow on irregular domains, such as the method of funda-
mental solutions (MFS). The method has been used to solve Stokes
problems in multidimensional interior or exterior flow fields in the
past years. Alves and Silvestre [2], Young et al. [47,49] and Chen
et al. [9] solved 2D and 3D interior problems by MFS based on
Stokeslets. The same idea is applied by Tsai et al. [40] to 3D exte-
rior flows. In [48], Young et al. used the dual-potential of the veloc-
ity potential and the stream function vector for both 2D and 3D
Stokes equations.

To our knowledge, there are few works on IIM solving the
incompressible steady Stokes equations on irregular domains in
the literature. Most work of IIM by finite difference scheme are
based on solving a Poisson solver three times on a regular domain
with periodic boundary conditions. As such, one main objective of
the present work is to develop an efficient IIM with second-order
accuracy for solving steady Stokes flows involving the irregular do-
mains. Note that the current approach shares a common feature
with the approach of Le et al. [19] in terms of introducing the singu-
lar force as an unknown, whereas their method is used to solve only
the Navier–Stokes equation. The approach of using the method in
[19] directly to get the steady state solution for stationary Stokes
flows is generally impractical and much more expensive. The appli-
cation of the current IIM with the introduction of singular force to
steady Stoke flows on irregular domain is, however, new. Such an
implementation of IIM for steady Stokes flows in this work is
non-trivial. The current IIM is mainly based on a fast and efficient
iterative Stokes solver and therefore there is no need to use the pro-
jection method. (On the other hand, while the current IIM is of par-
ticular interest to steady Stokes flows as in this work, the present
method can be also applied to solve for the general Navier–Stokes
equation on irregular domains based on the extension to the effi-
cient generalized Stokes solver [14,35] in a fairly straightforward
manner.) In implementation, the present method combines the
IIM with a front tracking representation of the interface on a uni-
form Cartesian grid. The singular force at the rigid boundary is
determined to enforce the prescribed velocity at the rigid boundary.
The singular force is then computed implicitly by solving a small,
dense linear system of equations via the GMRES iterative method.
Once the force is computed, we next compute the jump in pressure
and jumps in the derivatives of both pressure and velocity. The
Stokes equations are discretized on a staggered Cartesian grid by
a second order finite difference method and solved by the conjugate
gradient Uzawa-type method. The jumps in the solution and its
derivatives are incorporated into the finite difference discretization



Z. Tan et al. / Computers & Fluids 38 (2009) 1973–1983 1975
to obtain a sharp interface resolution. Fast solvers from the FISH-
PACK software library [1] are then used to solve the resulting dis-
crete systems of Poisson equations. The numerical results show
that the overall scheme is second order accurate for the velocity
and nearly second order accurate for the pressure.

The rest of the paper is organized as follows. In Section 2, we
present the jump relations along the immersed interface via the
singular force f and the jumps in the velocity and pressure and
their derivatives. In Section 3, we describe the generalized finite
difference approximations to the solution derivatives, which incor-
porate the solution jumps. The numerical algorithm and numerical
implementation are presented in Sections 4 and 5, respectively. In
Section 6, several numerical examples are presented. Some con-
cluding remarks will be made in Section 7.

2. Jump conditions across the interface

Let n ¼ ðn1;n2Þ and s ¼ ðs1; s2Þ be the unit outward normal and
tangential vectors to the interface, respectively. The jump of an
arbitrary function qðXÞ across C at X is denoted by

½q� ¼ lim
�!0þ

qðXþ �nÞ � lim
�!0þ

qðX� �nÞ: ð2:1Þ

Denoting ðn;gÞ the local coordinates associated with the directions
of n and s, respectively, we have the following jump conditions for
the velocity and pressure across the interface (see [19,20] for
details):

½u� ¼ 0; ½ug� ¼ 0; ½un� ¼ �
1
l

f̂ 2s; ½ugg� ¼
1
l

jf̂ 2s; ð2:2Þ

½ung� ¼ �
1
l

of̂ 2

og
s� 1

l
jf̂ 2n; ½unn� ¼ �½ugg� þ

1
l
½pn�nþ

1
l
½pg�s�

1
l
½g�;

ð2:3Þ

½p� ¼ f̂ 1; ½pn� ¼ ½g� � nþ
of̂ 2

og
; ½pg� ¼

of̂ 1

og
; ð2:4Þ

½pgg� ¼
o2 f̂ 1

og2 � j½pn�; ½png� ¼
oð½g� � nÞ

og
þ o2 f̂ 2

og2 þ j½pg�; ½pnn�

¼ ½r � g� � ½pgg�: ð2:5Þ

Here, f̂ 1 and f̂ 2 are the components of the force density in the nor-
mal and tangential directions of the interface, denoting f̂ ¼ f̂ 1; f̂ 2

� �
,

and j is the signed valued of the curvature of the interface. In this
work, we shall incorporate the jump conditions of higher-order spa-
tial derivatives for the pressure into the finite difference scheme as
compared to the literature. By differentiating the first equality twice
and the second equality once in (2.4) along the tangential direction
of the interface, we can get the first equality and second equality of
(2.5), respectively. The third equality of (2.5) is derived by applying
the divergence operator to Eq. (1.1) in the local coordinate. We note
that from expressions (2.2)–(2.5) the values of the jumps of the first
and second derivatives of velocity and pressure taken with respect
to the ðx; yÞ coordinates are easily obtained by a simple coordinate
transformation. For instance, we have

½ux� ¼ ½un�n1 þ ½ug�s1; ½uy� ¼ ½un�n2 þ ½ug�s2; ð2:6Þ
½uxx� ¼ ½unn�n2

1 þ 2½ung�n1s1 þ ½ugg�s2
1; ð2:7Þ

½uyy� ¼ ½unn�n2
2 þ 2½ung�n2s2 þ ½ugg�s2

2: ð2:8Þ
3. Generalized finite difference formulas

One of the basic components for determining the correction
terms in the next section is the generalized finite difference formu-
las. We shall briefly review the generalized finite difference formu-
las in this section. Here, we show two particular generalized finite
difference formulas for demonstration. Assume that the interface
cuts a grid line between two grid points at x ¼ a, xi 6 a < xiþ1,
xi 2 X�, xiþ1 2 Xþ, where X� and Xþ denote the region inside and
outside the interface, respectively. Then, the following approxima-
tions hold for a piecewise twice differentiable function qðxÞ:

qxðxiÞ ¼
qiþ1 � qi�1

2h
� 1

2h

X2

m¼0

ðhþÞm

m!
½qðmÞ�a þ Oðh2Þ; ð3:1aÞ

qxxðxiÞ ¼
qiþ1 � 2qi þ qi�1

h2 � 1

h2

X2

m¼0

ðhþÞm

m!
½qðmÞ�a þ OðhÞ; ð3:1bÞ

where qðmÞ denotes the mth derivative of q, qi ¼ qðxiÞ, hþ ¼ xiþ1 � a,
h� ¼ xi � a and h is the mesh width in x-direction. The jump in q
and its derivatives are defined as

½qðmÞ�a ¼ lim
x!a;x2Xþ

qðmÞðxÞ � lim
x!a;x2X�

qðmÞðxÞ; ð3:2Þ

in short, ½�� ¼ ½��a, and qð0Þ ¼ q. Note that if the interface cuts a grid
line between two grid points xi 2 Xþ and xiþ1 2 X�, these expres-
sions need to be modified by changing the sign of the second terms
on the respective right-hand sides. Expressions involving two or
more interface crossings could also be derived, we refer the readers
to [45] for details. From Eqs. (3.1a) and (3.1b) the correction terms
for qxðxiÞ and qxxðxiÞ can be defined as

C qxðxiÞf g ¼ � 1
2h

X2

m¼0

ðhþÞm

m!
qðmÞ
� �

;

C qxxðxiÞf g ¼ � 1

h2

X2

m¼0

ðhþÞm

m!
qðmÞ
� �

:

Thus, the finite difference approximation near the interface, for the
derivatives of a function q, includes the standard central difference
terms plus the additional correction terms.

4. Numerical algorithm

Our numerical algorithm is based on the conjugate gradient
Uzawa-type algorithm for the discretization of the Stokes equa-
tions with special treatment at the irregular grid points near the
interface. The spatial discretization is carried out on a standard
marker-and-cell (MAC) staggered grid similar to that found in
Tau [39]. We use a uniform MAC grid with mesh width
h ¼ Dx ¼ Dy in the computation. With the MAC mesh, the pressure
field is defined at the cell center ði; jÞ, where i 2 f1;2; . . . ;Nxg
and j 2 f1;2; . . . ;Nyg. The velocity fields u and v are defined at
the vertical edges and horizontal edges of a cell, respectively. The
pressure and the velocity components u and v are arranged as in
Fig. 2. An advantage of the staggered grid is that there is no need
for pressure boundary conditions while dealing only with the
derivative of pressure since the pressure nodes are at the cell
center. Based on the MAC grid, the irregular grid points can be
distinguished as in [50].

4.1. Fast Stokes solver with IIM-based

Discretization of Eqs. (1.1)–(1.3) by MAC finite difference
scheme leads to the following linear system:

GMACp ¼ lDhuþ gðxÞ þ C1; ð4:1Þ
DMACu ¼ C2 � bC 2; ujoX ¼ ub: ð4:2Þ

The above discretization of the Stokes equations at those grid points
near the interface has been modified to account for the jump



,i jp
,i ju

,i jv

1,i jp

, 1i jv

1,i ju

Fig. 2. A diagram of the interface cutting through a staggered grid with a uniform
mesh width h, where the velocity component u is at the left-right face of the cell
and v is at the top-bottom face, and the pressure is at the cell center.

Fig. 3. Interface and mesh geometry near the grid point ði; jÞ.

1976 Z. Tan et al. / Computers & Fluids 38 (2009) 1973–1983
conditions across the interface due to the presence of singular
forces at the interface. The coefficients C1 and C2 are the spatial cor-
rection terms added to the finite difference equations at the points
near the interface to improve the accuracy of the local finite differ-
ence approximations. In order to satisfy the discrete compatibility
condition corresponding to (1.5) to thereby ensure the solvability
of system equations (4.1) and (4.2), we employed a solvable per-
turbed system with similar approach as in [21] via perturbing C2

to C2 � bC2 on the right hand of Eq. (4.2), where bC2 is the mean value
of the correction term C2. We refer the readers to [21] for details.
The above correction terms can be computed by using the general-
ized finite difference formulas in the previous section if we know
the jumps in the solution and their derivatives. We will review
how to compute the correction terms in the next section. In the
above expressions, Dh is the standard central difference operator,
and GMAC and DMAC are the MAC gradient and divergence operators,
respectively. These operators are defined as

Dhui;j ¼
uiþ1;j þ ui�1;j þ ui;jþ1 þ ui;j�1 � 4uij

h2 ;

GMACp
� �

i;j
¼

piþ1;j � pi;j

h
;
pi;jþ1 � pi;j

h

� �
;

DMACu
� �

i;j
¼ uiþ1;j � ui;j

h
þ v i;jþ1 � v i;j

h
:

ð4:3Þ

Denoting G1 ¼ gðxÞ þ C1 and G2 ¼ C2 � bC2 as the right-hand equiv-
alent of Eqs. (4.1) and (4.2), the linear systems (4.1) and (4.2) can be
written in the matrix–vector form as

�lDh GMAC

DMAC 0

 !
u
p

� �
¼

G1

G2

� �
; ð4:4Þ

and system (4.4) can be solved using some fast solvers, for example,
the PCG method [13,31], the PMINRES method [13,31], the FFT-
based method [12], multigrid method [13,28,31], and so on. In this
work, we shall employ the CG-Uzawa method. The Uzawa proce-
dure for problems with immersed interfaces is analogous to the fast
iterative method presented in [37,39] and consists of two steps:

Step 1. Solve DMACD�1
h GMACp ¼ lG2 þ DMACD�1

h G1 for the pressure p.
Step 2. Solve lDhu ¼ G1 � GMACp for the velocity u.

Here, the DMACD�1
h GMAC is the Schur complement of system (4.4).

In Step 1, the system is solved by the conjugate gradient method
(CG) in this work. In the CG method, each matrix–vector product
with DMACD�1

h GMAC requires one application of D�1
h which corre-

sponds to solving one Poisson equation, and which can be solved
by several efficient methods, for example, ICCG method, the FFT
method and multigrid method. In the present work, we take
advantage of the fast solvers from FISHPACK [1] to solve these Pois-
son equations very efficiently. Once the pressure is obtained, the
velocity field u can be again solved by the fast solvers from FISH-
PACK [1] via Step 2. The computational complexity for the Poisson
solver from FISHPACK is OðM logðMÞÞ, where M is the number of
interior grid points of the embedded domain. Note that the present
CG method converges fast since the number of iterations in the CG
method is very small and are essentially independent of the mesh
size, which can be seen from the various numerical examples in
Section 6. As such, the present Stokes solver is fast and efficient
as also discussed in [37,39].

4.2. Correction terms calculation

In this section, we will illustrate how to evaluate the above cor-
rection terms C1 and C2. The correction terms C1 and C2 are eval-
uated as follows:

C1 ¼ l CfDugð Þ � Cfrpg; ð4:5aÞ
C2 ¼ �Cfr � ug: ð4:5bÞ

We note that all the correction terms are evaluated at least to first
order accuracy. This is sufficient to guarantee second order accuracy
globally since our numerical scheme is second order away from the
boundary and only the irregular points near the boundary are trea-
ted with a first order scheme. To evaluate the correction term
CfDug of (4.5a) at an irregular point ði; jÞ as depicted in Fig. 3, we
need to compute ½ux� and ½uxx� at the intersection point a of the
interface with the grid lines, and ½uy� and ½uyy� at b using the force
strength. The correction term CfDug is calculated as follows:

CfDugi;j ¼ �
½u� þ hþ½ux�a þ

ðhþÞ2
2 ½uxx�a

h2 �
½u� þ k�½uy�b þ

ðk�Þ2
2 ½uyy�b

h2 ;

where hþ ¼ xiþ1 � xa, k� ¼ yj�1 � yb, and xa and yb are the x-coordi-
nate of the intersection point a and the y-coordinate of the intersec-
tion point b as shown in Fig. 3, respectively. Du is approximated at
the irregular point ði; jÞ as

Duði; jÞ ¼ Dhui;j þ CfDugi;j þ OðhÞ:

Similarly, we can compute for the other correction terms in (4.5a)
and (4.5b) as in [19].



Z. Tan et al. / Computers & Fluids 38 (2009) 1973–1983 1977
4.3. Determinant of singular force at control points

Assuming that the singular force f at the rigid boundary is
known, the velocity field u at all the grid points can be com-
puted via the CG-Uzawa method as discussed in Section 4.1.
The velocity at the control points, Uk, can be interpolated from
the velocity u at the grid points as shown in [19]. Thus, we
can write

Uk ¼ UðXkÞ ¼ BðuÞ; ð4:6Þ

where B is the interpolation operator which includes the appropri-
ate correction terms required to guarantee at least second order
accuracy when the derivatives of the velocity are discontinuous.
Two possible ways are to use the third-order accurate least square
interpolation scheme in [23] or the modified bilinear interpolation
with jump conditions in [19]. In order to save computational cost,
we employ the latter in this work. Since the relationships between
the singular forces and the jumps in the solution or its derivatives
are linear and all the equations solved are linear, we can write
the velocity at the rigid boundary as,

Uk ¼ U0
k þ Af; ð4:7Þ

where U0
k corresponds to the velocity at the control points obtained

by solving Eqs. (1.1) and (1.2) with f = 0. A is a 2Nb � 2Nb matrix,
where Nb is the number of control points. The vector Af is the veloc-
ity at the control points obtained by solving the following
equations:

rhpf ¼ lDhuf þ C1; ð4:8Þ
rh � uf ¼ C2; uf joX ¼ 0; ð4:9Þ
Af ¼ BðufÞ; ð4:10Þ

with f being the singular force at the rigid boundary. Here,
C1 and C2 are the correction terms which take into account the ef-
fect of the singular force f at the rigid boundary. From Eq. (4.7), with
the prescribed velocity Up at the rigid boundary, the singular force f
at the rigid boundary is determined by solving

Af ¼ Up � U0
k : ð4:11Þ

Note that the matrix A depends on the location of the boundary.
In the present work, the boundary is fixed, therefore, the matrix A
can be formed and factorized. In order to compute the coefficients
−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−1.5

−1

−0.5

0

0.5

1

1.5

xy

u

Fig. 4. The x-component of velocity field u for Example 6.1.
of A, one can solve Eqs. (4.8)–(4.10) for 2Nb times, i.e., once for each
column. Each time, the singular force f is set to zero except for the
entry corresponding to the column we want to calculate, which is
set to one. Once the matrix A has been calculated, the terms on the
right-hand side, Up � U0

k , can be computed. The resulting small sys-
tem of Eq. (4.11) is then solved for f via back substitution. Note that
the matrix is singular for a closed immersed boundary since an
arbitrary constant can be added to the normal component of the
forces. We can add the constraint that the normal component of
the forces sum to zero or the normal force at one of control points
is set to zero. In actual computation, we can use the GMRES meth-
od to solve the system of Eq. (4.11), which only requires the matrix
vector multiplication and is more efficient than forming the matrix
explicitly for the present problem. In our simulations, only a few
iterations are needed in the GMRES method, so the algorithm is
efficient.

5. Numerical implementation

In this section, we shall describe a basic implementation of our
algorithm. The singular force f to enforce the prescribed velocity Up

at the immersed boundary can be summarized as follows:

Algorithm. The implementation of the IIM on irregular domains

Step 1: Compute the right-hand side of (4.11) by calculating Up � U0
k .

� Set f = 0, and solve (4.1) and (4.2) for the velocity at all the grid points.

� Interpolate the velocity at the control points U0
k as in (4.6).

� Compute the right-hand side vector b ¼ Up � U0
k .

Step 2: Compute the singular force f by solving (4.11) using the GMRES method.
Step 3: Compute u and p using the CG-Uzawa method with incorporating some

appropriate correction terms as described in Section 4.1.
6. Numerical examples

In this section, several numerical experiments are carried out to
demonstrate the capabilities and the accuracy of our proposed
algorithm in this work. All the simulations are done on a Pentium
4 PC with 3.00 GHz. The stop tolerance for the CG method and the
GMRES method are set as 10�8.

Example 6.1 (Circular flow). We start our numerical tests by
checking the accuracy of the algorithm. In this example, there is
provided exact solution [24] and the exact velocity and pressure
are given by

uðx; yÞ ¼
y
r �

y
r0

� �
r > r0;

0 r 6 r0;

(
ð6:1Þ

vðx; yÞ ¼ � x
r þ x

r0

� �
r > r0;

0 r 6 r0;

(
ð6:2Þ

pðx; yÞ ¼
cosðpxÞ cosðpyÞ r > r0;

0 r 6 r0;

�
ð6:3Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The interface is the circle with the radius r0. It

is easy to verify that the velocity satisfies the incompressibility con-
straint, and it is continuous but has a finite jump in the normal
derivative across the interface [24]. The external force term g is
Table 1
Grid refinement analysis for Example 6.1.

N kEuk1 Order kEpk1 Order NCG NGMRES CPU (s)

32 1.3433E�03 – 6.9325E�03 – 11 22 0.56
64 3.3438E�04 2.01 1.8447E�03 1.91 11 19 1.81

128 7.4946E�05 2.16 5.3715E�04 1.78 12 17 7.38
256 1.8199E�05 2.04 1.4493E�04 1.89 13 15 31.86



−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

xy

u

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Velocity fieldba

Fig. 5. (a) The x-component of velocity field u and (b) the velocity field u for Example 6.2.

1978 Z. Tan et al. / Computers & Fluids 38 (2009) 1973–1983
computed to satisfy the Stokes equation (1.1), which also has a fi-
nite jump across the interface.

In the computations, we use the exterior geometry of the circle
in the domain ½�1;1� � ½�1;1� and the radius of the circle is taken
as r0 ¼ 0:5. The prescribed velocity at the circular interface is no-
slip condition. The simulation is performed with a 64 � 64 grid
and l ¼ 0:1. In Fig. 4, we present the plots for the computed u-
component velocity. We perform the grid refinement analysis to
determine the order of convergence of the algorithm. The order
of accuracy is estimated as

order ¼ logðkEuðNÞk1=kEuð2NÞk1Þ
log 2

: ð6:4Þ
Table 2
Grid refinement analysis for Example 6.2.

N kEuk1 Order kEpk1 Order NCG NGMRES CPU (s)

64 1.5703E�03 – 4.2703E�03 – 7 10 0.67
128 3.7398E�04 2.07 1.1763E�03 1.86 7 9 2.65
256 9.2208E�05 2.02 3.4015E�04 1.79 8 9 10.83

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

xy

P

Fig. 6. Pressure distribution for Example 6.2.
Here, kEuðNÞk1 is the maximum error

kEuðNÞk1 ¼max
i;j
jUij � uðxi; yjÞj; ð6:5Þ

where uðxi; xjÞ is the exact solution at ðxi; xjÞ and Uij is the numerical
solution.

The result of the convergence rate analysis is shown in Table 1.
From Table 1, one can easily see that the velocity is second order
accurate, and the pressure is nearly second order accurate. The
sixth column shows the number of average CG iterations and the
seventh column shows the number of the GMRES iterations, which
indicates that a limited number of iterations are needed in CG and
GMRES and the number of iterations is almost independent of the
mesh size. The CPU time in seconds is listed in the eighth column,
which shows that the present method is reasonably fast.

Example 6.2 (Rotational flow). In this example, we consider a fixed
interface problem with no exact solution taken from [19]. The
interface is a circle with radius r ¼ 0:4, which is located at the
center of the square domain ½�1;1� � ½�1;1�. On the boundary of X,
we set the no-slip boundary conditions. We prescribe the interface
to rotate with angular velocity x ¼ 2.
1B

2r

2

x

2B

1r

1

e

y

Fig. 7. Schematic diagram of the geometry and fluid domain between eccentric
rotating cylinders. x1 and x2 represent the angular velocity of the inner and outer
boundaries, respectively.



−4−3−2−101234

−4

−2

0

2

4

−5

0

5

xy

u

X

Y

-2 0 2

-2

0

2

a b

Fig. 8. (a) The x-component of velocity field u and (b) the velocity field between concentric cylinders for Example 6.3.

r

u s

2 2.2 2.4 2.6 2.8 3
0

1

2

3

4

5

IIM solution
Analytical solution

Fig. 9. Circumferential velocity solution for the flow between the concentric
cylinders.

Table 3
Configuration of eccentric rotating cylinders for Example 6.3.

r1 r2 e x1 x2

Case 1 0.5 1 0.25 2 0
Case 2 0.5 1 0.25 0 2
Case 3 0.5 1 0.25 �2 1
Case 4 0.5 1 0.35 �2 �1

Z. Tan et al. / Computers & Fluids 38 (2009) 1973–1983 1979
In the computations, we use a 64 � 64 grid and set l ¼ 0:1. The
steady solution is shown in Fig. 5, which corresponds to a rigid
body motion inside the interface. Fig. 5(a) and (b) shows the x-
component of the velocity field u and the velocity field, respec-
tively. The plot of the pressure is presented in Fig. 6. From these
figures, we can observe that the velocity u is continuous but not
smooth due to imposition of singular force at the rigid boundary,
as expected, while the pressure is discontinuous. The sharp solu-
tion of the pressure is captured well by our method. Finally, we
carry out a grid refinement analysis, using a referenced grid of
512� 512, to determine the order of the convergence of the algo-
rithm. The results in Table 2 indicate that the velocity is second or-
der accurate and the pressure is nearly second order accurate. We
can also see from this table that the present method for this exam-
ple requires fairly small number of iterations and is almost inde-
pendent of mesh size, and therefore it is very fast in terms of the
CPU time. In particular, the CPU time is 0.67 s on a 64 � 64 grid,
which can be compared to the computational cost of 26.03 s by
using the method [19] directly to get the steady state solution
for this same problem. From the comparison, it is clear that the
computational cost is fairly low using the present method to solve
steady Stokes flows directly.

Example 6.3 (Flow between two cylinders). In this example, we
shall consider two-dimensional Stokes flow confined in the two
cylinders of which at least one is allowed to rotate about its axis,
thereby inducing a flow in the region between the cylinders. These
flows are related to the lubrication studies of journal bearing,
which was already studied by some researchers [3,10,11,34,44,48].

Our flow domain is the annular region as shown in Fig. 7. The
inner and outer cylinders have radius r1 and r2, respectively. Their
centers are at ð0;0Þ and ð0;�eÞ, respectively, where e,
0 6 e < r2 � r1, is the distance between the centers of two cylin-
ders. This configuration yields an eccentricity ratio
k ¼ e=ðr2 � r1Þ. In case of e ¼ 0, it indicates that these two cylinders
are concentric; otherwise they are eccentric. The parameters
U1 and U2 are defined for the circumferential velocities of the out-
er and inner cylinders, respectively. The constant angular velocities
along the inner and outer cylinders are denoted by x1 and x2,
respectively. The signs of x1 and x2 indicate their respective
senses of rotation (e.g. positive sign means anti-clockwise rota-
tion). In particular, when no-slip stationary boundary condition is
specified on the fluid–solid interface along the inner or outer cylin-
der, it indicates that the corresponding inner or outer cylinder is
stationary ðx1 ¼ 0 or x2 ¼ 0Þ. In the computations, we use a
64 � 64 grid and set l ¼ 0:1. We use 48 control points and 64 con-
trol points to represent the inner circular cylinder and the outer
circular cylinder, respectively, unless it is stated otherwise.

We first consider the flow between two concentric cylinders as
in [17,32], i.e., e ¼ 0. In this study, the inner cylinder is kept sta-



−1.5
−1

−0.5
0

0.5
1

1.5

−1.5
−1

−0.5
0

0.5
1

1.5

−1

−0.5

0

0.5

1

x
y

u

X

Y

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1a b

Fig. 10. (a) The x-component of velocity field u and (b) the velocity field u for case 3 listed in Table 3 for Example 6.3.

1980 Z. Tan et al. / Computers & Fluids 38 (2009) 1973–1983
tionary, while the outer cylinder rotates at a constant angular
velocity. We take the radius of the inner cylinder and the outer
cylinder as r1 ¼ 2 and r2 ¼ 3, respectively, and take the circumfer-
X

Y

-1 -0.5 0 0.5 1
X

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Y

-1

-0.5

0

0.5

1
a b c

Fig. 12. Streamlines for cases 1–4 in Table 3 corres

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

xy

p

Fig. 11. Pressure distribution for case 3 listed in Table 3 for Example 6.3.
ential velocity Us ¼ 5 along the outer cylinder. Fig. 8 shows the
x-component of the velocity field and velocity vector between
two concentric cylinders. The numerical result for the circumferen-
tial velocity is compared with analytical solution given in [32,36].
The results are found in very good agreement with analytical solu-
tion (see Fig. 9) and computed solution in [32].

Next, we consider the flow between two eccentric cylinders, i.e.,
e – 0. The flow is simulated under the setting summarized in Table
3. In particular, for case 3, we show the x-component of the veloc-
ity u and the velocity field in Fig. 10(a) and (b), respectively. The
corresponding pressure distribution is present in Fig. 11 for this
case. We shall next consider the flow of different cases. The
streamlines patterns are created by the rotation of the inner and
outer cylinders. In Fig. 12, we show streamlines for the four differ-
ent cases of steady boundary motion. The comparisons of the cor-
responding pressure contours for the four different flows are
shown in Fig. 13. Note that the flow separates into several regions
with the streamline pattern depicting the general demarcation of
the vortex and the main flow; further detailed discussions are pro-
vided below. From these figures, it is also observed that the flow
patterns are symmetric with respect to the y-axis passing through
the centers of both cylinders due to the reversibility of the Stokes
flows, and a single recirculating eddy appears in the interior of the
annular region.

Close examination reveals that different types of recirculation
region are formed which are closely related to the rotation modes
of the cylinders. In case 1, corresponding to inner cylinder rotation
X
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Y

-1

-0.5

0

0.5

1

X

Y

-1

-0.5

0

0.5

1
d

ponding to (a–d), respectively for Example 6.3.



X

Y

-1 -0.5 0 0.5 1
X

1 -0.5 0 0.5 1
X

1 -0.5 0 0.5 1
X

1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Y

-1

-0.5

0

0.5

1

Y

-1

-0.5

0

0.5

1

Y

-1

-0.5

0

0.5

1
a b c d

Fig. 13. Pressure contours corresponding to Fig. 12 for Example 6.3.

X

Y

-1

-0.5

0

0.5

1

X

Y

-1

-0.5

0

0.5

1

X
Y

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
a b c

Fig. 14. Streamlines for the eccentricity ratio (a) k ¼ 0:3; (b) k ¼ 0:5; and (c) k ¼ 0:9 for Example 6.3.

X

Y

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

X

Y

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

X

Y

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
a b c

Fig. 15. Pressure contours corresponding to Fig. 14 for Example 6.3.

Z. Tan et al. / Computers & Fluids 38 (2009) 1973–1983 1981
(i.e., the outer cylinder is stationary while the inner cylinder ro-
tates with a constant angular velocity), flow separates into two re-
gions: one rotating with the inner cylinder and a vortex zone. The
direction of the vortex is opposite to the direction of the inner cyl-
inder’s rotation, see Fig. 12(a). In case 2, corresponding to outer
cylinder rotation (i.e., the inner cylinder is stationary while the
outer cylinder rotates with a constant angular velocity), there are
also two flow regions. The directions of the vortex and the outer
cylinder’s rotation are the same as shown in Fig. 12(b) in contrast
to case 1. In case 3, corresponding to counter-rotation (i.e., the cyl-
inders rotate in the opposite directions), there are three flow re-
gions: one rotating with the inner cylinder, one rotating with the
outer cylinder and a vortex zone. The direction of vortex is oppo-
site to the direction of the inner cylinder’s rotation, see Fig. 12(c).
In case 4, corresponding to co-rotation (i.e., the cylinders rotates
in the same directions), compared with case 3, the direction of vor-
tex is the same as the direction of the inner cylinder’s rotation for
this case as shown in Fig. 12(d). The results obtained by our meth-
od can be compared with those in [6,34]. These results are also
comparable to those found in [10,11,48]. All are found to be in good
agreement.

Finally, we want to study the effect of eccentricity ratio on the
flow patterns. In Figs. 14 and 15, we shows the comparison of
streamlines and the corresponding pressure contours for a rotating
inner ðx1 ¼ 1Þ and a stationary outer cylinder at different values of
eccentricity ratio, respectively. These results can be compared with
those given in [7,17]. Again they are found to be in reasonably good
agreement. When two cylinders are very close together (i.e., the



−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−5

0

5

x
y

p

X

-1

-0.5

0

0.5

1

Y

-1

-0.5

0

0.5

1

u

-0.4

-0.2

0

0.2

0.4

X Y

Za b

Fig. 16. (a) The x-component of velocity field u and (b) the pressure distribution with k ¼ 0:9 for Example 6.3.

X

Y

0 0.5 1 1.5 2 2.5 3

-0.5

0

0.5

Fig. 17. Example 6.4 on flow past a circular cylinder. Vector plot of the velocity
field.

X

Y

0 0.5 1 1.5 2 2.5 3

-0.5

0

0.5

Fig. 18. Example 6.4 on flow past a circular cylinder. Streamlines.

X

Y

-0.5

0

0.5

Fig. 19. Example 6.4 on flow past a circular cylinder. Pressure contours.

1982 Z. Tan et al. / Computers & Fluids 38 (2009) 1973–1983
eccentricity ratio k is close to 1), we choose a finer grid size to guar-
antee that a few grids exist within this gap. In particular, for the
eccentricity ratio k ¼ 0:9, we use a 128 � 128 grid. The x-compo-
nent of the velocity u and the pressure distribution are presented
in Fig. 16(a) and (b), respectively. From these figures, we can see
that the non-smooth solution of the velocity and sharp interface
solution of the pressure caused by the singularity at the rigid
boundaries are captured very well by our method. This example
demonstrates good capability of the present method to solve
Stokes flow in multi-connected domains.
Example 6.4 (Flow past a circular cylinder). In this final example
taken from [26], we simulate Stokes flows through a circular
cylinder immersed in a rectangular domain X ¼ ½0;3��
½�0:75;0:75�. The cylinder has a diameter d ¼ 0:3 and its center
is located at (1.5,0). At the inlet of the channel, the flow has a
parabolic velocity profile with Umax ¼ 1, where Umax is the
maximum value of the velocity. At the outlet of the channel, the
same velocity profile is assumed, that is, the flow is assumed to
have recovered from the disturbances by the cylinder placed in the
middle section of the channel. On the upper and lower boundaries
and all cylinder boundaries, no slip boundary conditions are
assumed. We set the viscosity l ¼ 1 and use 40 control points to
represent the circular cylinder. Figs. 17 and 18 show the velocity
vector and streamline plots within the fluid, respectively. From
these figures it is observed that the flow is symmetric. The plot of
the pressure contour is shown in Fig. 19. The pressure patterns are
symmetric about the streamwise axis as expected. These results
compare very well with that given in [26].
7. Concluding remarks

In this paper, we have presented an immersed interface algo-
rithm for solving the incompressible steady Stokes equations on
irregular domains. The method combines the immersed interface
method with a front tacking representation of the boundary on a
uniform Cartesian grid. The main advantage of the method is that
the prescribed velocity condition at the rigid boundary is exactly



Z. Tan et al. / Computers & Fluids 38 (2009) 1973–1983 1983
satisfied. The grid convergence analysis shows that current algo-
rithm can achieve second order accuracy in both the velocity and
pressure. We also show the capability of the present method to
simulate the Stokes flow in multi-connected domains through
the simulation of flow between two cylinders. It is rather straight-
forward to extend the current algorithm to solve for the problems
with moving rigid geometry having prescribed velocity, which is
our future work. Also as a next step, we will extend the present
method to solve the incompressible Stokes flow problems involv-
ing deformable interfaces on irregular domains. As a very impor-
tant application of that, in particular, we will study and simulate
the realistic biological flow problems with low Reynolds number
like the motion of the deformable cell and cell-trap simulation of
red blood cell (RBC) in the complex micro-channel geometry. That
will be reported in the near future.

Acknowledgements

The authors thank the referees for the valuable suggestions on
the revision of the manuscript.

References

[1] Adams J, Swarztrauber P, Sweet R. FISHPACK: efficient FORTRAN subprograms
for the solution of separable eliptic partial differential equations; 1999.
Available from: http://www.scd.ucar.edu/css/software/fishpack/.

[2] Alves CJS, Silvestre AL. Density results using Stokeslets and a method of
fundamental solutions for the Stokes equations. Eng Anal Bound Elem
2004;28:1245–52.

[3] Ballal BY, Rivlin RS. Flow of a Newtonian fluid between eccentric, rotating
cylinders: inertial effects. Arch Rational Mech Anal 1976;62:237–94.

[4] Benzi M, Golub GH, Liesen J. Numerical solution of saddle point problems. Acta
Numer 2005;14:1–137.

[5] Biros G, Ying L, Zorin D. A fast solver for the Stokes equations with distributed
forces in complex geometries. J Comput Phys 2003;193:317–48.

[6] Calhoun D. A Cartesian grid method for solving the two-dimensional stream
function–vorticity equations in irregular regions. J Comput Phys
2002;176:231–75.

[7] Chen JT, Hsiao CC, Leu SY. A new method for Stokes problems with circular
boundaries using degenerate kernel and Fourier series. Int J Numer Meth Eng
2008;74:1955–87.

[8] Chen G, Li Z, Lin P. A fast finite difference method for biharmonic equations on
irregular domains. Adv Comput Math 2008;29:113–33.

[9] Chen CW, Young DL, Tsai CC, Murugesan K. The method of fundamental
solutions for inverse 2D Stokes problems. Comput Mech 2005;37:2–14.

[10] Chou MH. A multigrid finite difference approach to steady flow between
eccentric rotating cylinders. Int J Numer Meth Fluids 2000;34:479–94.

[11] Chou MH. A multigrid pseudospectral method for steady flow computation. Int
J Numer Meth Fluids 2003;43:25–42.

[12] Christoph B. Domain imbedding methods for the Stokes equations. Numer
Math 1990;57:435–51.

[13] Elman HC. Multigrid and Krylov subspace methods for the discrete Stokes
equations. Int J Numer Meth Fluids 1996;227:755–70.

[14] Elman HC. Preconditioners for saddle point problems arising in computational
fluid dynamics. Appl Numer Math 2002;43:75–89.

[15] Fadlun EA, Verzicco R, Orlandi P. Combined immersed boundary finite-
difference methods for three-dimensional complex flows simulations. J
Comput Phys 2000;161:35–60.

[16] Fogelson AL. Continuum models of platelet aggregation: Formulation and
mechanical properties. SIAM J Appl Math 1992;52:1089–110.

[17] Kim E. A mixed Galerkin method for computing the flow between eccentric
rotation cylinders. Int J Numer Meth Fluids 1998;26:877–85.

[18] Lai M-C, Peskin CS. An immersed boundary method with formal second order
accuracy and reduced numerical viscosity. J Comput Phys 2000;160:707–19.

[19] Le DV, Khoo BC, Peraire J. An immersed interface method for viscous
incompressible flows involving rigid and flexible boundaries. J Comput Phys
2006;220:109–38.
[20] Lee L, LeVeque RJ. An immersed interface method for incompressible Navier–
Stokes equations. SIAM J Sci Comput 2003;25:832–56.

[21] LeVeque RJ, Li Z. Immersed interface methods for Stokes flow with elastic
boundaries or surface tension. SIAM J Sci Comput 1997;18:709–35.

[22] LeVeque RJ, Li Z. The immersed interface method for elliptic equations with
discontinuous coefficients and singular sources. SIAM J Numer Anal
1994;31:1019–44.

[23] Li Z, Ito K. The immersed interface method-numerical solutions of PDEs
involving interfaces and irregular domains. SIAM Frontiers Appl Math
2006:33.

[24] Li Z, Lai MC. The immersed interface method for the Navier–Stokes equations
with singular forces. J Comput Phys 2001;171:822–42.

[25] Li Z, Wang C. A fast finite difference method for solving Navier–Stokes
equations on irregular domains. Commun Math Sci 2003;1:180–96.

[26] Liu YJ. A new fast multipole boundary element for solving 2-D stokes flow
problems based on a dual formulation. Eng Anal Bound Elem 2008;32:
139–51.

[27] Mohd-Yusof J. Combined immersed boundary/B-splines methods for
simulations of flows in complex geometry, Annual Research Briefs, Center
for Turbulence Research; 1997. p. 317–27.

[28] Oosterlee CW, Lorenz FJG. Multigrid methods for the Stokes system. Comput
Sci Eng 2006;8:34–43.

[29] Peskin CS. Numerical analysis of blood flow in the heart. J Comput Phys
1977;25:220–52.

[30] Peskin CS. The immersed boundary method. Acta Numer 2002;11:479–517.
[31] Peters J, Reichelt V, Reusken A. Fast iterative solvers for discrete Stokes

equations. SIAM J Sci Comput 2005;27:646–66.
[32] Phan A-V, Gray LJ, Kaplan T, Phan T-N. The boundary contour method for two-

dimensional stokes flow and incompressible elastic materials. Comput Mech
2002;28:425–33.

[33] Russell D, Wang ZJ. A Cartesian grid method for modeling multiple moving
objects in 2D incompressible viscous flow. J Comput Phys 2003;191:
177–205.

[34] Rutka V. A staggered grid-based explicit jump immersed interface method
for two-dimensional Stokes flows. Int J Numer Meth Fluids
2008;57:1527–43.

[35] Sarin V, Sameh A. An efficient iterative method for the generalized Stokes
problem. SIAM J Sci Comput 1998;19:206–26.

[36] Schlichting H. Boundary-layer theory. New York: McGraw-Hill; 1987.
[37] Shin D, Strikwerda JC. Fast solvers for finite difference approximations for the

Stokes and Navier–Stokes equations. J Aust Math Soc 1996;38:274–90.
[38] Lima E. Silva ALF, Silveira-Neto A, Damasceno JJR. Numerical simulation of

two-dimensional flows over a circular cylinder using the immersed boundary
method. J Comput Phys 2003;189:351–70.

[39] Tau EY. Numerical solution of the steady Stokes equations. J Comput Phys
1992;99:190–5.

[40] Tsai CC, Young DL, Lo DC, Wong TK. Method of fundamental solutions for
three-dimensional Stokes flow in exterior field. J Eng Mech ASCE
2006;132:317–26.

[41] Udaykumar HS, Mittal R, Rampunggoon P, Khanna A. A sharp interface
Cartesian grid method for simulating flows with complex moving boundaries. J
Comput Phys 2001;174:345–80.

[42] Uhlmann M. An immersed boundary method with direct forcing for the
simulation of particulate flows. J Comput Phys 2005;209:448–76.

[43] Wang NT, Fogelson AL. Computational methods for continuum models of
platelet aggregation. J Comput Phys 1999;151:649–75.

[44] Wannier GH. A contribution to the hydrodynamics of lubrication. Q Appl Math
1950;8:1–32.

[45] Wiegmann A, Bube KP. The explicit-jump immersed interface method: finite
difference methods for PDEs with piecewise smooth solutions. SIAM J Numer
Anal 2000;37:827–62.

[46] Ye T, Mittal R, Udaykumar HS, Shyy W. An accurate Cartesian grid method for
viscous incompressible flows with complex immersed boundary. J Comput
Phys 1999;156:209–40.

[47] Young DL, Chen CW, Fan CM, Murugesan K, Tsai CC. Method of fundamental
solutions for Stokes flows in a rectangular cavity with cylinders. Eur J Mech B
2005;24:703–16.

[48] Young DL, Chiu CL, Fan CM, Tsai CC, Lin YC. Method of fundamental solutions
for multidimensional Stokes equations by the dual-potential formulation. Eur J
Mech B 2006;25:877–93.

[49] Young DL, Jane SJ, Fan CM, Murugesan K, Tsai CC. The method of fundamental
solutions for 2D and 3D Stokes problems. J Comput Phys 2006;211:1–8.

[50] Xu S, Wang ZJ. An immersed interface method for simulating the interaction of
a fluid with moving boundaries. J Comput Phys 2006;216:454–93.

http://www.scd.ucar.edu/css/software/fishpack/

	A fast immersed interface method for solving Stokes flows on irregular domains
	Introduction
	Jump conditions across the interface
	Generalized finite difference formulas
	Numerical algorithm
	Fast Stokes solver with IIM-based
	Correction terms calculation
	Determinant of singular force at control points

	Numerical implementation
	Numerical examples
	Concluding remarks
	Acknowledgements
	References


