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Abstract

A simple, yet accurate, meshless method for the solution of thin plates undergoing large deflections is presented. The solution is based

on the use of fifth order polynomial radial basis function to build an approximation for the solution of two coupled nonlinear differential

equations governing the finite deflection of thin plates. The resulted nonlinear algebraic equations are solved using an incremental-

iterative procedure. The accuracy and efficiency of the method is verified through several numerical examples.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In some applications of thin elastic plates, the deflections
may increase under loading conditions beyond a certain
limit recognized as large deformations. Because of these
large deformations, the midplane stretches and hence
produces considerable in-plane stresses that are neglected
by the small-deflection bending theory. For instance, in the
case of a a clamped circular plate subjected to a uniform
load that produces a central deflection of 100% of its
thickness, the maximum stretching stress is approximately
40% of the maximum bending stress [1]. For such
situations, an extended plate theory must be employed,
accounting for the effect of large deflection. Large elastic
deflection of a thin elastic plate is governed by coupled
nonlinear differential equations for which analytical solu-
tions are available only for very few cases involving simple
geometries and loading conditions [1–5]. For other cases,
the problem has to be solved using numerical techniques
such as the finite-difference method (FDM), the finite-
element method (FEM) and the boundary-element method
(BEM).
e front matter r 2006 Elsevier Ltd. All rights reserved.
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Nevertheless, the possibility of obtaining numerical
solutions without resorting to the mesh-based techniques
mentioned above, has been the goal of many researchers
throughout the computational mechanics community for
the past two decades or so. Radial basis function (RBF) is
one of the most recently developed meshless methods that
has attracted attention in recent years, especially in the area
of computational mechanics [6–8]. This method does not
require mesh generation which makes them advantageous
for 3-D problems as well as problems that require frequent
re-meshing such as those arising in nonlinear analysis. Due
to its simplicity to implement, it represents an attractive
alternative to FDM, FEM and BEM as a solution method
of nonlinear differential equations. However, it is only
since rather recently that RBF has been used to approx-
imate solutions for partial differential equations and
therefore this area is still relatively unexplored.
The roots of RBF goes back to the early 1970s, when it

was used for fitting scattered data [9]. In 1982, Nardini and
Brebbia [10] coupled RBF with BEM in a technique called
dual-reciprocity BEM to solve free-vibration problems,
where the RBF was used to transform the domain integrals
into boundary integrals. Thereafter, many researchers have
used RBF in conjunction with BEM to solve various
problems in computational mechanics. The method,
however has not been applied directly to solve partial
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differential equations until 1990 by Kansa [11,12]. Since
then, many researchers have suggested several variations to
the original method, e.g., Refs. [13–18] not to mention
many others. In general, RBF method expands the solution
of a problem in terms of RBFs and chooses expansion
coefficients such that the governing equations and bound-
ary conditions are satisfied at some selected domain and
boundary points. However, one of the important issues in
applying this technique is the determination of the proper
form of RBF for a given differential equation. Most of the
available RBFs involve a parameter, called shape factor,
which needs to be selected so that the required accuracy of
the solution is attained. In this paper, the simple fifth order
polynomial RBF that does not involve a shape factor is
considered. The objective of this paper is to offer a simple
mesh-free method for the solution of thin elastic plates
undergoing large deflection. The method is also applicable
to other nonlinear problems in various areas of computa-
tional mechanics. The paper is organized as follows. The
governing equations based on w–F formulation are
presented in Section 2. In Section 3, the RBF method as
applied to the large deflection of thin plates is illustrated.
The incremental-iterative procedure for solving the result-
ing RBF coupled nonlinear equations is explained in
Section 4. The efficiency of the method is demonstrated by
numerical examples in Section 5, followed by some
concluding remarks in Section 6.
2. Governing equations

The details of the derivation of equations governing the
finite deflection of thin plates are given in the classical book
by Timoshenko [1]. The equations are represented here for
clarity and in order to refer to them during various stages
of the numerical solution.

Let us denote the membrane forces acting in the middle
plane of the plate by Nx, Ny and Nxy. In the absence of
body forces, the equations of equilibrium along x and y are
given by

qNx

qx
þ

qNxy

qy
¼ 0, (1)

qNxy

qx
þ

qNy

qy
¼ 0. (2)

The third equation necessary to determine the three
quantities Nx, Ny and Nxy is obtained from a consideration
of the strain in the middle surface of the plate during
bending. The corresponding strain components are

�x ¼
qu

qx
þ

1

2

qw

qx

� �2

, (3)

�y ¼
qn
qy
þ

1

2

qw

qy

� �2

, (4)
gxy ¼
qu

qy
þ

qn
qx
þ

qw

qx

qw

qy
. (5)

By taking the second derivative of these expressions and
combining the resulting equations, it can be shown that

q2�x

qy2
þ

q2�y

qx2
�

q2gxy

qxqy
¼

q2w
qxqy

� �2

�
q2w
qx2

q2w

qy2
. (6)

By replacing the strain components by the following
equivalent expressions:

�x ¼
1

hE
Nx � nNy

� �
, (7)

�y ¼
1

hE
Ny � nNx

� �
, (8)

gxy ¼
1

hG
Nxy, (9)

the third equation in terms of Nx, Ny and Nxy is obtained.
The solution of these equations is greatly simplified by the
introduction of a stress function F . It may be seen that Eqs.
(1) and (2) are identically satisfied by taking

Nx ¼ h
q2F

qy2
; Ny ¼ h

q2F
qx2

; Nxy ¼ �h
q2F
qxqy

, (10)

where F is a function of x and y. If these expressions for the
forces are substituted in Eqs. (7)–(9), the strain components
become

�x ¼
1

E

q2F

qy2
� n

q2F

qx2

� �
, (11)

�y ¼
1

E

q2F
qx2
� n

q2F
qy2

� �
, (12)

gxy ¼ �
2 1þ nð Þ

E

q2F
qxqy

. (13)

Substituting these expressions in Eq. (6), we obtain

r4F ¼ E
q2w

qxqy

� �2

�
q2w
qx2

� �
q2w

qy2

� �" #
, (14)

which is the first equation relating wand F . The second
equation necessary to determine F and w is derived from
the bending action [1] which is given by

r4w ¼
h

D

q

h
þ

q2F
qy2

� �
q2w
qx2

� �
þ

q2F
qx2

� �
q2w

qy2

� ��

�2
q2F
qxqy

� �
q2w
qxqy

� ��
. ð15Þ

The transverse boundary conditions considered here are
given by

BCw1 wð Þ ¼ 0 where BCw1 wð Þ ¼ w or BCw1 wð Þ ¼ V n, (16)

BCw2 wð Þ ¼ 0 where BCw2 wð Þ ¼
qw

qn
or BCw2 wð Þ ¼Mn,

(17)
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where Mn and Vn are the normal bending moment and
effective shear force that are given by

Mn ¼ �D nr2wþ 1� nð Þ n2
x

q2w

qx2
þ n2

y

q2w

qy2

��

þ2nxny

q2w

qxqy

�	
, ð18Þ

V n ¼ �D ny 1� n2
x n� 1ð Þ

� �� � q3w

qy3

�

þ nx �2n2
x n� 1ð Þ þ n2

y n� 1ð Þ þ v

 � q3w

qy2qx

þ ny n2
x n� 1ð Þ � 2n2

y n� 1ð Þ þ n

 � q3w

qx2qy

þ nx 1� n2
y n� 1ð Þ

q3w
qx3

� �	
, ð19Þ

where nx and ny are the x and y comonents of the unit
vector normal to the boundary. The boundary conditions
for the stress function F are obtained by assuming that the
external edge of the plate is not subjected to inplane forces
[1], which yields the following boundary conditions:

F ¼
qF

qn
¼ 0. (20)

The solution of Eqs. (14) and (15), together with the
boundary conditions (16)–(20), determines the two func-
tions F and w. On having the stress function F, we can
determine the stresses in the middle surface of a plate by
applying Eqs. (10).
3. RBF formulation

Consider the 2-D computational domain (Fig. 1) that
represents the plate geometry. For collocation, we use node
points distributed both along the boundary

x
j
B; j ¼ 1; :::;NB


 �
, and over the interior x

j
D; j ¼ 1; ::::;



NDÞ. Let xp ¼ {xB, xD}, so that the total number of points
called poles is Np ¼ NB +ND. The deflection, w, is
Γ

Ω

Bx

Dx

Fig. 1. Boundary and domain nodes.
interpolated linearly by suitable RBFs:

w xð Þ ¼
XND

j¼1

aj
wF x�x

j
D

��� ���
 �
þ
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j¼1

bj
wBCw1 F x�x

j
B

��� ���
 �
 �

þ
XNB

j¼1

gj
wBCw2 F x�x

j
B

��� ���
 �
 �
. ð21Þ

Similarly, for the stress function F:

F xð Þ ¼
XND

j¼1

aj
FF x�x

j
D

��� ���
 �
þ
XNB

j¼1

bj
F BCF1 F x�x

j
B

��� ���
 �
 �

þ
XNB

j¼1

gj
F BCF2 F x�x

j
B

��� ���
 �
 �
, ð22Þ

where F ¼ x�xj
�� ��n

¼ rn is a polynomial RBF of nth

degree. Unlike the other RBFs, the polynomial RBF has the
important advantage of being free of a shape factor which is a
source of solution instability if not properly selected. It should
be noted that there are some constraints on the permissible
values of the polynomial degree n. This is explained by
Table 1 that shows the results of the bi-harmonic operator

(r4F) for different degrees of the polynomial RBF, n.
It is obvious that the usage of RBF polynomials with np4 for
problems governed by the bi-harmonic operator such
as the current problem yields either constant or singular
values as r! 0 and therefore these choices must be
avoided. Furthermore, previous studies [13] have shown
that even values of n produced inaccurate solutions.
Therefore, we are left with odd values of nX5. Few
numerical experiments have been carried out to compare
the accuracy of the solution of the linear plate
problem for n ¼ 5, 7 and 9. The results of these experiments
have not shown any appreciable difference in terms of
accuracy for n ¼ 5 and 7. For n ¼ 9, however,
stability problems have been encountered, especially for high
node intensities. Therefore, we have decided to use n ¼ 5. The

4NB +2ND unknown coefficients: aj
w, b

j
w, g

j
w, a

j
F , b

j
F andgj

F in

Eqs. (21) and (22) can be determined by satisfying the
governing equations and the corresponding boundary condi-
tions at ND domain points and NB boundary points,
respectively. The resulted equations can be expressed in the
Table 1

The bi-harmonic operator versus degree of RBF polynomial

n r4F

1 1/r3

2 0

3 9/r

4 64

5 225r

6 576r2

7 1225r3

8 2304r4

9 3969r5
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following matrix form:

BCw1 Fð Þ BCw1 BCw1 Fð Þð Þ BCw1 BCw2 Fð Þð Þ

BCw2 Fð Þ BCw2 BCw1 Fð Þð Þ BCw2 BCw2 Fð Þð Þ

r4F r4 BCw1 Fð Þð Þ r4 BCw2 Fð Þð Þ

2
664

3
775

ai
w

bi
w

gi
w

2
664

3
775

¼

0

0

h
D

NLðw;F Þ

2
664

3
775þ

0

0

q
D

2
664
3
775, ð23Þ

F F qF
qn

qF
qn

qF
qn

q
qn

qF
qn

� �
r4F r4F r4 qF

qn

� �
2
664

3
775

ai
F

bi
F

gi
F

2
64

3
75 ¼ E

2

0

0

NLðw;wÞ

2
64

3
75, (24)

where

NLðw;F Þ ¼
q2F
qy2

� �
q2w
qx2

� �
þ

q2F
qx2

� �
q2w
qy2

� �

� 2
q2F
qxqy

� �
q2w
qxqy

� �
, ð25Þ

and NLðw;wÞ is obtained by replacing F by w in the foregoing
expression.

4. Incremental-iterative procedure

In order to solve the above coupled and highly
nonlinear equations, an incremental-iterative procedure is
performed. In the following, the superscripts represent
increments while subscripts represent iterations. As an
example, the quantity wk

i;xy represents the second derivative
of w with respect to x for the kth increment and ith
iteration. Let us denote the number of increments by n. The
following steps describe the incremental-iterative proce-
dure:
jj

 j+
1 

O
N

 L
O

O

k+
1 

M
E

N
T

 L
(1)

Compute F , Fβ α , Fγ  (eq 24) 

Compute k
jF  (eq 22) 

Compute ),( k
j

k
j FwNL  (eq 25) 

Convergence? 

Total load applied (k=n) ? 

j =
IT

E
R

A
T

I

No

Yes

Yes

No

k 
=

 
L

O
A

D
 I

N
C

R
E

Apply the first load increment q/n and set the initial
values of the second derivatives of w and F to zero, i.e.
F1

0;xx ¼ F1
0;yy ¼ F1

0;xy ¼ w1
0;xx ¼ w1

0;yy ¼ w1
0;xy ¼ 0, so

that NLðw1
0;F

1
0Þ ¼ 0 and Eq. (23) becomes

BCw1 Fð Þ BCw1 BCw1 Fð Þð Þ BCw1 BCw2 Fð Þð Þ

BCw2 Fð Þ BCw2 BCw1 Fð Þð Þ BCw2 BCw2 Fð Þð Þ

r4F r4 BCw1 Fð Þð Þ r4 BCw2 Fð Þð Þ

2
664

3
775

aw

bw

gw

2
664

3
775

¼

0

0

q=n
D

2
664

3
775.

The above linear equations are then solved for the
coefficients aw, bw and gw.
Stop 
(2)
Fig. 2. Flow chart for the incremental-iterative procedure.
Use the first estimates of aw, bw and gw in Eq. (21) to
obtain the first estimate of deflection w1

1. Note that w1
1

corresponds to the solution of small-deflection theory
for the first increment.
(3)
 Calculate NLðw1
1;w

1
1Þ and solve (24) for the first

estimates of coefficients aF , bF and gF .

(4)
 Use first estimates for the coefficients aF, bF and gF in

Eq. (22) to obtain the first estimate of the stress
function F1

1.

(5)
 Update the right hand side of (23) by calculating

NLðw1
1;F

1
1Þ and solve for the updated values of the

coefficients faw, bw and gw.

(6)
 Use Eq. (21) to obtain the second estimate of deflection

w1
2 and calculate NLðw1

2;w
1
2Þ.
(7)
 Repeat the above steps until convergence is achieved,
otherwise, decrease the load increment and repeat the
iterations.
(8)
 Add the second load increment (q ¼ 2q/n) and use the
values obtained for NLðw1

n;F
1
nÞ at the last iteration of

the first load increment, then repeat the above iterative
procedure.
(9)
 Continue adding increments until the total load is
applied.
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A flow chart representing the above algorithm is given in
Fig. 2.
2a 

Fig. 3. Node distribution for Examples 1 and 2 (NB ¼ 32; ND ¼ 69).
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Fig. 4. Central deflection versus load for simply supported circular plate.
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Fig. 5. Stresses at the center for simply supported circular plate.
5. Numerical examples

In order to examine the effectiveness of the proposed
RBF method for large deflection of thin plates, the
following three examples are considered. The accuracy of
RBF solutions are compared with the analytical and FEM
solutions. All FEM solutions are obtained using the
package ANSYS 9.0 [19]. In all examples, the load is
assumed to be uniformly distributed ¼ q, Poisson ratio n
is assumed 0.3. For generality of the solutions, all
quantities are made dimensionless, so that the coordinates,
the load, the deflection and the stress are represented by
x̄ ¼ x=a, ȳ ¼ y=a, q̄ ¼ qa4=Eh4, w̄ ¼ w=h and s̄ ¼ sa2=Eh2,
respectively. In all examples, the load is increased until the
central deflection exceeds 100% of the plate thickness.

Example 1. Consider a simply supported circular plate
subjected to a uniformly distributed load q which is
increased from 0.125 to 2 with equal increments of 0.125.
The following approximate analytical solutions for the
problem is given by Timoshenko [1]:

w̄c þ Aw̄3
c ¼ Bq̄, (26)

sm ¼ aw̄2
c , (27)

and

sb ¼ bw̄2
c , (28)

where w̄c is central deflection, s̄m the stress in the plate
middle plane (membrane stress), and s̄b the extreme fiber
bending stress. The constants are A ¼ 0:262, B ¼ 0:696,
a ¼ 0:295 and b ¼ 1:778. The RBF and FEM solutions are
obtained by employing a uniform nodal distribution
consisting of 32 boundary nodes and 69 domain nodes as
shown in Fig. 3. The evolution of the plate deflection at its
plate center with the applied load is presented in Fig. 4
which reveals total agreement among RBF, FEM and the
analytical solutions. The results for membrane and bending
stresses at the center of the plate are given in Fig. 5 which
shows excellent agreement between RBF and FEM
solutions. The same figure shows deviations of both RBF
and FEM solutions from the analytical solution especially
for bending stress at higher loads. The deviations of the
numerical solutions from the analytical solution can be
attributed to the acknowledged inherent approximation of
the analytical solution[1].

Example 2. Let us repeat example 1 by assuming a clamed
edge boundary condition. The analytical solution is given
by Eqs. (25)–(27), where A ¼ 0.146, B ¼ 0.171, a ¼ 0:5 and
b ¼ 2:86. The deflection and stress solutions of the problem
are given in Figs. 6 and 7, respectively. The results for this
example share the same observation of example 1
concerning the deviation of the numerical solutions from
the analytical solution for the bending stress at high loads.
Example 3. Consider a simply supported square plate
subjected to a uniformly distributed load q which is
increased from 2 to 32 with equal increments of 2. There
is no analytical solution available for this problem and
therefore the RBF solution is compared with FEM
solution only. The problem is modeled using a uniform
nodal distribution consisting of 36 boundary nodes and 81
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Fig. 6. Central deflection versus load for clamped circular plate.
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Fig. 7. Stresses at the center for clamped circular plate.
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Fig. 8. Node distribution for Example 3 (NB ¼ 36; ND ¼ 81).
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Fig. 9. Central deflection versus load for clamped square plate.
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Fig. 10. Stresses at the center for clamped square plate.
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domain nodes as shown in Fig. 8. The results for maximum
deflection and stresses are presented in Figs. 9 and 10,
respectively. Both figures show excellent agreement be-
tween RBF and FEM solutions.

6. Conclusions

A simple meshless method for the analysis of thin plates
undergoing large deflections is presented. The method is
based on collocations with the fifth order polynomial radial
basis function (RBF). This RBF does not require a shape
parameter that needs to be specified as the case for other
well-known RBFs. In addition, the method shares the same
advantage of other RBF methods that do not require the
computation of integrals or use of grids and meshes. The
method can be easily extended to other nonlinear
problems.
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