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Abstract

A stationary thermoelastic (poroelastic) boundary element method is suggested based on the Complex Variable Hypersingular Boundary

Integral Equation. The method is developed for heterogeneous blocky media. Various conditions on the contacts between the blocks are

considered, namely discontinuity of temperature (pore pressure) or discontinuity of heat (fluid) flux. The problem of the basic integrals

calculation is discussed and numerical examples are presented to demonstrate the potential of the method.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Many problems of mechanics of materials, in general and

geomechanics in particular, deal with the stress and

displacement calculations for heterogeneous media consist-

ing of blocks, grains and inclusions. These problems often

involve thermal and pore pressure effects. Heterogeneity of

both mechanical and thermal (or poromechanical) charac-

teristics necessitates numerical analysis of the problem of

interest. The Boundary Element Method (BEM) based on

the Hypersingular Boundary Integral Equations (BIE) has

shown to be the most effective technique for treatment of

problems with complicated contact conditions. In this work,

the Complex Variable (CV) Hypersingular BIE [1,2] is

utilized. The equation is formulated in the terms of direct

values of integrals. An alternative treatment without

involving the direct value of a finite part integral can be

found in other works [3,4] that use the Hadamard type

integral which is a derivative of Cauchy type integral.

The equation under consideration contains displacements

discontinuities and tractions on the boundaries of the blocks.

Thus, there is no need to use additional relations to calculate

the characteristics of the contacts interaction as in the case

of Singular Equations. The CV-BEM presented herein has

been developed by considering additional terms that depend

on the given values of a potential (temperature or pore

pressure) and its normal derivative (heat or fluid flux) at the

boundary of the domain under consideration. These values

may be found using the CV-BEM for potential problems [5].

2. Integral identities of direct BEM

Below, we deal with BIE and the direct formulation

BEM. Their derivation is based on the reciprocity theorem

of work. The formulation of the thermoelastic version

follows [6]ð
S
ðsiu

p
i 2 sp

i uiÞds þ
ð

V
ðciu

p
i 2 cp

i uiÞdn

þ
ð

V
gðT1pkk 2 Tp1kkÞdn ¼ 0; ð1Þ

where a repeated index implies a sum; and ðci; si; ui; TÞ and

ðcp
i ; s

p
i ; up

i ; TpÞ characterize two independent states of body

force, traction, displacement and temperature for the

thermoelastic body V having a surface S: The coefficient g

is a constant from the constitutive equation

sij ¼ Cijkl1kl 2 gdijT : ð2Þ

For the poroelastic case g is defined as Biot’s effective stress

coefficient [7,8]. The common method to arrive at the

integral identities of the direct method is to take the actual

state under consideration as the first state mentioned above;

and consider the second state to be generated by a unit body
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force applied at the point x [ V and directed along the jth

coordinate axis; with Tp ¼ 0 in the entire body. In the last

case, the displacement uk at the point y [ V is represented,

the fundamental solution of the elasticity problem or

Green’s function Gkjðx; yÞ; which for an infinite plane has

the form of Kelvin’s solution

Gkjðx; yÞ ¼ 2
1

2pmðkþ 1Þ
kdkj ln r 2

›r

›xk

›r

›xj

 !
; ð3Þ

where k ¼ 3 2 4n for plane strain; and k ¼ ð3 2 nÞ=ð1 þ nÞ

for plane stress; n is Poisson’s ratio, m is shear modulus, and

r ¼ lx 2 yl is the distance between x and y; j; k ¼ 1; 2; x ¼

ðx1;x2Þ; y ¼ ðy1; y2Þ: The formulae for tractions at the point

j [ S have been derived from the well-known relations

between tractions and elastic displacements. It has a form

Fkjðx; jÞ ¼2
1

pðkþ 1Þ

2
4 k2 1

2

0
@nj

›r

›xk

2 nk

›r

›xj

1
A

þ

0
@ k2 1

2
dkj þ 2

›r

›xk

›r

›xj

1
A ›r

›xl

nl

3
5; ð4Þ

where nj is the normal vector at the point j:

Thereby, after the conventional transformations of the

first two integrals in Eq. (1) we arrive at the well-known

identity that includes an additional integral term with

potential function p (temperature or pressure) on the left

sideð
S
½skðxÞGkjðx;jÞ2Fkjðx;jÞukðxÞ�dSx þ

ð
V
ckðyÞGkjðy;jÞdVy

þ
ð

V
gpðyÞ

›Gkjðy;jÞ

›yk

dVy ¼ ujðjÞ: ð5Þ

The mentioned volume integral is converted [9] to a surface

integral because the temperature (pore pressure) is a

harmonic function. The final integral identities of the direct

BEM areð
S
½skðxÞGkjðx;jÞ2Fkjðx;jÞukðxÞ�dSx

¼ ujðjÞþ
ð

S
Gjðx;jÞg

›pðxÞ

›n
2Fjðx;jÞgpðxÞ

� 

dSx ð6Þ

where the kernels of the integral on the R.H.S. are

Gjðx;jÞ ¼
›F

›xj

; Fjðx;jÞ ¼
›Gj

›n
; ð7Þ

with

F¼
k21

8pmðkþ1Þ
r2ð12 ln rÞ:

Here and below we do not consider for simplicity the body

forces ck: Thereby, Eq. (6) does not contain the second

integral from Eq. (5).

3. Complex Variables BIE

We choose one of the techniques available for formulat-

ing the CV-BIE [1–2]. Namely, we multiply the expression

(6) for the case of j ¼ 2; by the imaginary unit and add it to

the corresponding expression for j ¼ 1: Then, we rearranged

terms on the R.H.S. of the resulting equation to obtain the

conventional kernels in CV-BIE. Thus, we have

1

2pi

ð
S

(
ðk21Þ

uðtÞ

t2z
dtþuðtÞdk1ðt;zÞþ �uðtÞdk2ðt;zÞ

22k
sðtÞ

2m
lnðt2zÞdtþk

sðtÞ

2m
k1ðt;zÞdt2

�sðtÞ

2m
k2ðt;zÞd �t

)

¼ðkþ1ÞuðzÞþPCðzÞ; ð8Þ

where PCðzÞ is the transformed body potential

PCðzÞ¼ðkþ1Þ
ð

S
GCðt;zÞg

›pðtÞ

›n
2FCðt;zÞgpðtÞ

� 

ds; ð9Þ

GCðt;zÞ¼G1ðx;jÞþ iG1ðx;jÞ¼
k21

8pmðkþ1Þ
ðt2zÞð12 lnr2Þ;

ð10Þ

FCðt;zÞds¼½F1ðx;jÞþ iF1ðx;jÞ�ds

¼
iðk21Þ

8pmðkþ1Þ
ðlnr2 dt2k2 d �tÞ; ð11Þ

t and zðt[S; z[VÞ are complex coordinates of points x and

j; t¼x1þ ix2; z¼j1þ ij2; sðtÞ¼snnþ isnt is a complex

traction in a local coordinates system at the boundary

(normal and shear components); uðtÞ¼u1þ iu2: The kernels

of the integrals in Eq. (8) are

k1ðt;zÞ¼ ln
t2z

�t2 �z
; k2ðt;zÞ¼

t2z

�t2 �z
: ð12Þ

The bar over a symbol denotes complex conjugation.

The identity (8) yields the Singular CV-BIE when one

takes a limit as z ! t; where t [ S: According to the theory

of Singular integrals, this operation generates an additional

term ðkþ 1ÞuðtÞ=2 on the left hand side of the equation. As a

result we have

1

2pi

ð
S

(
ðk21Þ

uðtÞ

t2t
dtþuðtÞdk1ðt;tÞþ �uðtÞdk2ðt;tÞ

22k
sðtÞ

2m
lnðt2tÞdtþk

sðtÞ

2m
k1ðt;tÞdt2

�sðtÞ

2m
k2ðt;tÞd �t

)

¼
1

2
ðkþ1ÞuðtÞþPCðtÞ: ð13Þ

As it was pointed out earlier, the hypersingular equation is

more proper for our aims; it may be obtained by applying

the operator Tz of complex tractions to both parts of Eq. (8)

and subsequently taking the limit as z!t: Tz corresponds

to the site with a tangent vector expðiazÞ and acts
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as follows [10]

TzUðz;�zÞ¼2m
1

k21

›U

›z
þ
› �U

›�z

� �
2expð22iazÞ

›U

›�z

� 

: ð14Þ

The result of its action on both parts of Eq. (8) is a

hypersingular entity

2mHzðu;sÞ ¼ ðkþ1ÞsðzÞþðkþ1ÞgpðzÞþTzPCðzÞ; ð15Þ

where

Hzðu;sÞ¼
1

2pi

ð
S

(
2uðtÞ

ðt2zÞ2
dt2u

›

›z
dk1ðt;zÞ

2�uðtÞ
›

›z
dk2ðt;zÞ2

k21

2m

sðtÞ

t2z
dt2k

sðtÞ

2m

›k1

›z
dt

þ
�sðtÞ

2m

›k2

›z
d �t

)
; ð16Þ

kþ1

2m
TzPCðzÞ¼

kþ1

2m

ð
S

TzGCðt;zÞ
›pðtÞ

›n
2TzFCðt;zÞpðtÞ

� 

ds;

ð17Þ

kþ1

2m
TzGCðzÞ¼

1

8pm
½2lnr22expð22iazÞðk21Þk2ðt;zÞ�;

ð18Þ

kþ1

2m
TzFCðzÞds¼

iðk21Þ

8pm

2dt

t2z
þ
›k1

›z
dtþ

›k2

›z
d �t

�

þ
kþ1

k21

d �t

�t2�z
2

dt

t2z

� �

: ð19Þ

Thereafter, we take the limit as z!t of both parts of Eq.

(15). Integrals on the left hand side transform into finite part

integrals [2,3] and principal value integrals. An additional

term ðkþ1ÞsðtÞ=2 appears due to singularity. Also, PCðzÞ

contains a singular kernel in TzFCðt;zÞ: Thus, one has to

follow the general rule of taking a limit: TtPC¼limTzPC as

z!t: Besides, we take into account that in the right hand

side TzuðzÞ¼sðzÞþgpðzÞ; according to the constitutive Eq.

(2) of thermo- (or poro) elasticity.

Finally, we obtain the hypersingular integral equation

Htðu;sÞ ¼
1

2

kþ 1

2m
sðtÞ þ

1

2

kþ 1

2m
gpðtÞ þ

kþ 1

2m
TtPC;

ð20Þ

where

Htðu;sÞ ¼
1

2pi

ð
S

2uðtÞ

ðt2 tÞ2
dt2 uðtÞ

›

›t
dk1ðt; tÞ

�

2�uðtÞ
›

›t
dk2ðt; tÞ2

k2 1

2m

sðtÞ

t2 t
dt

2k
sðtÞ

2m

›k1

›t
dtþ

�sðtÞ

2m

›k2

›t
d �t

�
; ð21Þ

kþ1

2m
TtPC;KtpþLt

›p

›n
¼
ð

S
gpðtÞdKðt;tÞþ

ð
S
g
›p

›n
ðtÞdLðt;tÞ;

ð22Þ

dKðt;tÞ¼
iðk21Þ

8pm

2dt

t2t
þ
›k1

›t
dtþ

›k2

›t
k2ðt;tÞd �t

�

þ
kþ1

k21

d �t

�t2�t
2

dt

t2t

� �

; ð23Þ

dLðt;tÞ¼
1

8pm
½2lnr2

2expð22iatÞðk21Þk2ðt;tÞ�; ð24Þ

where r2¼lt2tl2: Eq. (20) modifies the well-known CVH-

BIE [1,2] for thermoelasticity and poroelasticity. It includes

two new terms on the R.H.S. that take into account a given

distribution of potential function (temperature or pore

pressure) and its normal derivation (flux) distributed over

the domain’s boundary.

4. BIE for blocky media

Consider a medium consisting of a number of blocks

with different mechanical and thermal characteristics. These

blocks may be surrounded by an external domain (matrix),

which extends to infinity (Fig. 1).

The conventional method of constructing the BIE [2] for

blocky systems is to write down an equation similar to Eq.

(13) or Eq. (20) for each block and the matrix. In brief, the

resulting equation is as follows

Hj
tðu;sÞ ¼

1

2

kþ 1

2m
sðtÞ þ

1

2

kþ 1

2m
gpðtÞ þ Kj

tp þ Lj
t

›p

›n
;

ð25Þ

where K
j
t and L

j
t are the integral operators acting on the

potential and the flux, respectively; j is a number of the

block with a boundary Sj: Then, the equations for the blocks

are summed to arrive at the integral equation, where S is the

total boundary consisting of the boundaries between all

pairs of neighboring blocks. Every part of S is traversed

twice, in opposite directions. Thus, we consider one

direction as positive (þ ) and the other as negative (2 ).

1

2pi

ð
S

2Du

ðt2 tÞ2
dt2 Du

›

›t
dk1 2 D�u

›

›t
dk2

�

þð2a1 2 a3Þ
s dt

t2 t
þ ða1 2 a3Þs

›k1

›t
dtþ a1 �s

›k2

›t
d �t

�

¼
a2

2
sðtÞ þ s1 þ

1

2

kþ þ 1

2mþ
pþðtÞ2

1

2

k2 þ 1

2m2
p2ðtÞ

þ Kþpþ 2 K2p2 þ Lþ ›pþ

›n
2 L2 ›p2

›n
; ð26Þ

where

a1 ¼
1

2mþ
2

1

2m2
; a2 ¼

kþ þ 1

2mþ
þ

k2 þ 1

2m2
;

a3 ¼
kþ þ 1

2mþ
2

k2 þ 1

2m2
;
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and

s1 ¼2
k0 þ1

2m0

½s1
1 þs1

2 þ expð22iatÞðs
1
2 2s1

1 22is1
12Þ�:

In Eq. (26), we have omitted the summation symbol over

different parts of the total contour S: But, it is implicitly

included because the mechanical parameters under the

integral are considered as variables. The sign over

the operators indicates that they depend on the parameters

to the left (þ ) or to the right (2 ) from the direction of

traverse: K^;L^!a^;m^;k^:

The left side of Eq. (26) corresponds to the case of

continuous tractions on the boundaries of the blocks. On the

contrary, the presence of the Du ¼ uþ 2 u2 means that

displacement discontinuity may occur at some parts of the

contour. The R.H.S. of Eq. (26) presents a general case of

continuity or discontinuity of the fields under consideration.

A number of various situations are possible at every part of

S : continuity or discontinuity of the mechanical and

thermal characteristics and/or continuity or discontinuity

of the potential and flux.

Let us consider some particular cases of formulae (25). If

pþ ¼ p2 ¼ p; then Kþpþ 2 K2p2 ¼ ðKþ 2 K2Þp: This

term vanishes also if Kþ ¼ K2 in the case of blocks with

the identical properties: aþ ¼ a2; kþ ¼ k2; mþ ¼ m2:

Suppose we have Kþ ¼ K2 ¼ K but pþ 2 p2 ¼ Dp – 0;

then, Eq. (25) reduces to: Kþpþ 2 K2p2 ¼ KDp: This is

the case of a thermal inclusion in thermoelasticity or a

discontinuity of pore pressure in poroelasticity. A similar

cases may be considered for L^ and ›p^=›n:

5. Examples

1. The numerical procedures described above are applied to

a number of examples. First, consider a mechanically

homogeneous infinite plane with a circular inclusion

(Fig. 2). On the boundary of the inclusion,

the temperature field experiences a discontinuity: TðrÞ ¼

T0 if r , a; and TðrÞ ¼ 0 if r $ a: The analytical results

for this case of an axisymmetric thermal inclusion is

given in Nowacki [6]

srr ¼ sww ¼ 2mmT0; if r , a; ð27Þ

srr ¼ 2sww ¼ 2mmT0

a2

r2
; if r $ a;

m ¼ a
7 2 k

kþ 1
:

In the numerical test for plane strain, we assume that:

n ¼ 0:25; E ¼ 1; k ¼ 3 2 4n ¼ 2; m ¼ 5a=3 ¼

1:6667a; T0 ¼ 100; a ¼ 0:01; m ¼ 0:5E=ð1 þ nÞ ¼

0:5 £ 4 £ E=ð7 2 kÞ: So, mmT0 ¼ 2Ea T0=ðkþ 1Þ ¼

2=3 ¼ 0:66667: Finally, the stresses inside the inclusion

are srr ¼ sww ¼ 20:66667; whereas for the region

outside the circle we have: srr ¼ 2sww ¼ 20:66667=r2:

The results of our computations for five internal points

when 0:01 , r=a , 1 coincide with the above analytical

results. The values in Table 1 demonstrate good

agreement between analytical and numerical data for

different values of r=a: It is worth noting that good

accuracy of numerical results was achieved by using only

20 segments in boundary discretization (60 collocation

points). To consider the points in closed vicinity of the

boundary ðr=a , 1:02Þ a finer mesh of segments should

be exploited.

2. Consider the case of a long thick-walled porous cylinder.

Its cross-section is a circular ring R2 # r # R1: The

water pressure inside the boundary of the borehole, r ¼

R2 is kept constant at p ¼ p0 and it is set to p ¼ 0 at the

outside of the ring (Fig. 3).

One can find the solution of the similar thermoelastic

problem in Ref. [6] expressing the radial dependence of

displacement on r according to

nðrÞ ¼m
1

r

ðr

R2

TðxÞx dxþ
1

R2
1 2R2

2

R2
2

r
þ

mr

lþm

 !
J

" #
;

ð28Þ

where

T ¼ TðrÞ ¼T0

ln R1 2 ln r

ln R2 2 ln R1

; J ¼
ðR1

R2

TðxÞx dx; l

¼
2mn

122n
:

Fig. 1. A sketch of a blocky system with direction of traversal for the

boundaries of each block.

Fig. 2. A circular inclusion in an infinite plane.
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To obtain the poroelastic solution, it is sufficient to

substitute the pressure, p; and gð1þnÞ=E for temperature

and m; respectively, in Eq. (28). Thereby, the following

expressions are obtained for nðR1Þ and nðR2Þ

nðR1Þ ¼ g
1þn

E

1

R1

þ
R1

R2
1 2R2

2

R2
2

R2
1

þ
m

lþm

 !" #
J;

nðR2Þ ¼ g
1þn

E

R2

R2
1 2R2

2

1þ
m

lþm

� �
J: ð29Þ

To test the BEM calculation, consider R1=R2 ¼ 2 and

assume that other parameters are the same as in the

previous example. The result is as follows: nðR1Þ=R1 ¼

nðR2Þ=R2 ¼ 0:48502ð12nÞgp0=E: If g¼ p0 ¼ 1; then

nðR1Þ=R1 ¼ nðR2Þ=R2 ¼ 0:36377: As before, both the

internal and external circles were divided into 20 elements.

For the above mentioned data, the numerically determined

displacements are: nðR1Þ=R1 ¼ nðR2Þ=R2 ¼ 0:36378: Thus,

the thermoelastic BEM provides the same accuracy as the

complex hypersingular BEM in elasticity.

3. Consider the case of a thermal inclusion, whose

mechanical properties ðkþ;mþÞ differ from the parameters

ðk2;m2Þ of the matrix. All the other features of the

problem are the same as in the Example 1. This

axisymmetric problem has an analytical solution for the

normal traction sn on the boundary of inclusion

sn ¼2
gþT0

1þ
2

kþ21

mþ

m2

: ð30Þ

Table 2 contains the normalized tractions ð2sn=g
þT0Þ

calculated analytically using the last formulae vs.

the results of numerical studies (CV-BEM). They

correspond to the various combinations of the relation of

the shear module ðmþ=m2Þ and two values of Poisson’s

ratio. The scheme of discretization for CV-BEM calcu-

lations was the same as in the Example 1.

This example also demonstrates good accuracy of

thermoelastic BEM for inhomogeneous bodies. The level

of accuracy corresponds to the results obtained earlier by

CVH-BEM for mechanical inclusions.

4. The last example deals with the influence of a temperature

perturbation on the stress intensity factors (SIFs) at the

tips of an internal crack (Fig. 4). The crack location and

the elastic properties of the inclusion ðm2; n2Þ and the

matrix ðm1; n1Þ are the same as those in Refs. [11 and 12]

(the late revision of the first one): xðAÞ ¼2a; xðBÞ ¼22a;

yðAÞ ¼ yðBÞ ¼ a=2; m2=m1 ¼ 23; n2 ¼ 0:30; n1 ¼ 0:35:

Firstly, we compare the SIFs for the elastic problem of a

plane under uniaxial stress p applied at infinity. Our

results coincide with those of Ref. [12]: kIðAÞ ¼ 0:613;

kIIðAÞ ¼ 0:061; kIðBÞ ¼ 0:817; kIIðBÞ ¼20:067 (SIFs are

normalized by p
ffiffiffiffi
pa

p
=2).

As in the previous example, we consider a thermal

inclusion whose temperature differs from the matrix

temperature by DT (held constant). Fig. 5 presents

the dependence of SIF’s on the dimensionless parameter

v ¼ E2a2DT =p: We see that, as expected, all dependencies

are linear. Heating leads to the growth of kI at both tips and

to the contrasting effect for kII:

6. Conclusions

A modification of the CV Hypersingular BIE is presented

for treatment of problems of thermoelasticity and poroelas-

ticity taking into account both mechanical and thermal

(poroelastic) inhomogeneity as well as possible disconti-

nuities on the surfaces of blocks in contact. The methods for

calculating the new integrals appearing on the right hand

side of the BEM equations are also described. Examples are

presented that demonstrate the high level of accuracy of

the method illustrating the potential of thermo–(poro)

elastic CVH-BEM.

Table 1

Comparison of analytical (27) and numerical (CV-BEM) results for a thermal inclusion

r=a 1.03 1.05 1.10 1.25 1.50 2.50 5.00
2srr; sww Analytical 0.62840 0.60469 0.55096 0.42667 0.29630 0.10667 0.02667
2srr; sww CV-BEM 0.62821 0.60450 0.55079 0.42654 0.29621 0.10663 0.02666

Fig. 3. Example 2, the problem of a poroelastic circular cylinder.

Table 2

Normalized tractions on the surface of a thermo-mechanical inclusion

mþ=m2 ¼ 0.1 0.333(3) 3.0 10.0
kþ ¼ k2 ¼ 3 Analytical 0.909(09) 0.75000 0.25000 0.09(09)
ðnþ ¼ n2 ¼ 0:0Þ CV-BEM 0.90909 0.75000 0.25000 0.09091
kþ ¼ k2 ¼ 2 Analytical 0.833(3) 0.60000 0.14286 0.04762
ðnþ ¼ n2 ¼ 0:25Þ CV-BEM 0.83333 0.60000 0.14286 0.04762
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Appendix A

New integrals calculation

The main advantage of CV-BEM as compared with the

real variable methods is the simplicity of calculating the

singular and hypersingular integrals over any curvilinear

boundary element [1,2] for both ordinary and tip elements.

As with regular integrals, generally one can exploit

numerical methods. However, for important particular

cases of straight line elements and circular arc elements,

regular integrals may be reduced to combinations of

singular and hypersingular integrals and the derivates of

the latter [1,2].

Introducing the additional integral terms on the right part

of Eq. (20), we follow the analytical approach mentioned

above. The first integral with the kernel defined as dK (23)

has a form

J1K ;
ð

Q
pðtÞdk1ðt; tÞ ¼

ð
Q

pðtÞ
dt

t2 t
2
ð

Q
pðtÞ

d �t

�t2 �t

¼ SpðtÞ2Spð�tÞ; ðA1Þ

where SpðtÞ is a basic singular integral over boundary

element Q: If Q is a straight element with the complex

coordinate of its center, zc; length of 2l; and direction vector

expðiacÞ; then [1,2]

J1K ¼ Spðt
0Þ2Spðt

�0Þ; ðA2Þ

where the singular integral on the density pðtÞ is as follows

Spðt
0Þ ¼

ð1

21

pðt0Þdt0

t02 t0
; t0 ¼ expð2IacÞðt2 zcÞ;

t0 ¼ expð2IacÞðt2 zcÞ:

For a circular arc with an angle 2u0 and the center

coordinate, z0 [1,2]

J1K ¼ Spð0
0ÞþSpðt

0Þ2Spð1=t
�0Þ; ðA3Þ

where t0 ¼ i expð2iacÞðt2 z0Þ=R; t
0 ¼ i expð2iacÞðt2 z0Þ=R;

the integrals are taken in the local coordinates over the arc

2u0 with radius equal to 1; expðiacÞ is a tangent vector in z0

along the traversing path. The next term in Eq. (23), namely

J2K ;
ð

Q
pðtÞdk2ðt; tÞ; ðA4Þ

is transformed to a hypersingular integral. If Q is a straight

element then

J2K ¼ expð2iacÞðt
02 �t0ÞIpð�t

0Þ; ðA5Þ

with

Ipðt
�0Þ ¼

ð1

21

pðt0Þdt0

ðt02 t0Þ2
;

is a hypersingular integral defined in Ref. [1,2]. If Q is a

circular element then

J2K ¼
expð2iacÞ

�t0

ðb

�b
pðt0Þdt0 þ

1

�t0
t02

1

�t0

� �
Ipð1=�t

0Þ

� 

; ðA6Þ

with b¼ expðiu0Þ: The last term for integration of the

potential p in Eq. (23) is as follows

J3K ;
ð

Q

pðtÞ

�t2 �t
dt¼ expð2iacÞSpð�t

0Þ; ðA7Þ

Fig. 5. Variation of stress intensity factor with parameter v:

Fig. 4. The problem geometry for a thermal inclusion and a crack.
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for a straight element, and

J3K ¼
expð2iacÞ

�t0

ðb

�b
pðt0Þdt0 þ

1

�t0
Spð1=�t

0Þ

� 

; ðA8Þ

for a circular element.

The integrals of the normal derivative of potential q ¼

›p=›n have their kernels defined by Eq. (24). The second of

them may be transformed to the basic integrals like above

J2L ;
ð

Q
qðtÞk2ðt; tÞds: ðA9Þ

If Q is a straight element then ds ¼ l dt0: The kernel k2

defined by Eq. (12) may be transformed to the local

coordinates yielding the following formulae for this integral

J2L ¼ l expð2iacÞ
ð1

21
qðt0Þdt0 þ ð�t0 2 t0ÞSqð1=�t

0Þ

� 

: ðA10Þ

In the case of a circular element ds ¼ R du ¼ 2iR dt0=t0 (we

take into account that t0 ¼ expðiuÞÞ: Then, after algebraic

transformation of the kernel, Eq. (A10) becomes

J2L ¼ iR
expð2iacÞ

�t0
2
ðb

�b
qðt0Þdt0 þ t0 2

1

�t0

� �
Sqð1=�t

0Þ

� 

:

ðA11Þ

The case of the integral with logarithmic kernel is not so

simple. For this case, the advantages mentioned above of the

CV methods are absent. In the case of a straight element, an

analytical formula is available when the density q is a power

function of the local coordinate t 0: q ¼ t 0k with k $ 0: But,

for a circular element one has to present the density as a

truncated series of powers with positive and negative k that

leads to the numerical calculation of a polylogarithm

function.

Starting now with the case of a straight element: ds ¼ l

dt 0 and r2 ¼ l2ðt 0 2 t0Þð �t 0 2 �t 0Þ: Then

J1L ;
ð

Q
qðsÞln r2 ds

¼ l 2 ln l
ð1

21
qðt 0Þdt 0 þ

ð1

21
qðt 0Þlnðx2 þ a2Þdt 0

� 

;

ðA12Þ

where x ¼ t 0 2 r; r ¼ Re t0; a ¼ Im t0: Supposing that the

density q is presented locally by the truncated Taylor’s

series, the standard integral that is to be performed is as

follows

ð12r

212r
ðxþrÞk lnðx2þa2Þdx¼

Xk

l¼0

Cl
krl
ð12r

212r
xk2l lnðx2þa2Þdx:

ðA13Þ

So, for any k$0 and any l#k we have a standard integral

from a mathematical handbook.

As mentioned above, in the case of a circular element

the density approximation includes both positive and

negative exponents. Of course, there are some useful

recurrent formulae for reducing integrals with high powers

to those of lower exponents. However, the integral of typeÐ12r
212r x21 lnðx2 þ a2Þdx should be calculated numerically.

This consideration leads to conventional numerical

schemes if the point t does not belong to the element

over which the integration is performed. When the point

does fall on the element, we have to separate the element

into three parts. Two of them are on the peripheral regions

and the third including the t-point is the central one (Fig.

A1). The kernel for the third one is expanded using

Taylor’s series. It is important that r2 is a small number

here. Also, the density can be presented as a truncated

series of trigonometric functions because of the following

entity

c2kt
02k þ ckt

k ¼ c2k expð2ikuÞ þ ck expðikuÞ

¼ ðc2k þ ckÞcos kuþ ðck 2 c2kÞsin ku: ðA14Þ

Also, r2 ¼R2ðt02 t0Þð �t02 �t0Þ ¼R2½122d cosðu2wÞþd2�;

where d ¼ lt0l; w ¼ argðt0Þ:

Then, a truncated series of terms is to be integrated. A

typical one is as followsðu0

2u0

ln r2 cos ku du ¼ ln R2
ðu

2u0

cos ku du

þ
ðu0

2u0

lnð1 2 2d cos vþ d2Þcos ku du ¼ J1 þ J2; ðA5Þ

with v ¼ u2 w: The first integral is an elementary one. The

second integral after decomposition of the segment w [
ð2u0; u0Þ yields

J2 ¼
ðw21

2u0

þ
ðwþ1

w21
þ
ðu0

wþ1
¼ J1

2 þ J2
2 þ J3

2 ; ðA16Þ

where 1 is a small angle defining the interval of

singularity. The first and third integrals are calculated

using Gauss quadratures. Then, for t0 ¼ expðiwÞ; d ¼ 1; w [
ð2u0; u0Þ; and v being a small angle ln r2 ¼ lnð2 2 2 	

cos vÞ < ln v2 < 2½lvl2 1l2 ðlvl2 1Þ2=2�: Then

J2
2 ¼ 2

ðwþ1

w21
cos ku½lvl2 1 2 ðlvl2 1Þ2=2�du

¼ 2
ð1

21
cos kðwþ vÞFðvÞdv; ðA17Þ

where

FðvÞ ¼ v2 1 2
1

2
ðv2 2 2vþ 1Þ ¼ 2

v2

2
þ 2v2

3

2
;

if v $ 0;

and

FðvÞ ¼ 2v2 1 2
1

2
ðv2 þ 2vþ 1Þ ¼ 2

v2

2
2 2v2

3

2
;

if v , 0:
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As a result, we have the truncated series of integrals with

exponents multiplied by trigonometric functions; all of

which can be found in mathematical handbooks.

The necessity of numerical integration takes away from

the usual advantages of CV-BEM techniques. This is

because of the special form of the particular solution, F in

Eq. (7). Another approach suggested by Linkov [13]

provides a remedy and avoids numerical integration.
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