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Abstract

In this paper, an iterative algorithm based on the Landweber method in combination with the Boundary Element Method (BEM) is

developed for solving the Cauchy problem for Helmholtz-type equations. A stopping regularizing criterion based on the residual of the BEM

discretisation system of equations is also proposed.
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1. Introduction

The Helmholtz equation arises naturally in many

physical applications related to wave propagation and

vibration phenomena. It is often used to describe the

vibration of a structure [1], the acoustic cavity problem [2],

the radiation wave [3] and the scattering of a wave [4].

Another important application of the Helmholtz equation is

the problem of heat conduction in fins [5–7], and we focus

on the later problem in this study. The well-posedness of the

direct problems for the Helmholtz equation via the removal

of the eigenvalues of the Laplacian operator is well

established [8]. However, in many engineering problems,

the boundary conditions are often incomplete, either in the

form of underspecified and overspecified boundary con-

ditions on different parts of the boundary or the solution is

prescribed at some internal points in the domain. These are

inverse problems and it is well known that they are

generally ill-posed, i.e. the existence, uniqueness and

stability of their solutions are not always guaranteed [9].

Unlike in direct problems, the uniqueness of the Cauchy

problem is guaranteed without the necessity of removing the

eigenvalues for the Laplacian. However, the Cauchy

problem suffers from the non-existence and instability of

the solution. A Boundary Element Method (BEM)-based

acoustic holography technique using the singular value

decomposition (SVD) for the reconstruction of sound fields

generated by irregularly shaped sources has been developed

by Bai [10]. The vibrational velocity, sound pressure and

acoustic power on the vibrating boundary comprising an

enclosed space have been reconstructed by Kim and Ih [11]

who have used the SVD in order to obtain the inverse

solution in the least-squares sense and to express the

acoustic modal expansion between the measurement and

source field. Wang and Wu [12] have developed a method

employing the spherical wave expansion theory and a least-

squares minimisation to reconstruct the acoustic pressure

field from a vibrating object and their method has been

extended to the reconstruction of acoustic pressure fields

inside the cavity of a vibrating object by Wu and Yu [13].

DeLillo et al. [14] have detected the source of acoustical

noise inside the cabin of a midsize aircraft from measure-

ments of the acoustical pressure field inside the cabin by

solving a linear Fredholm integral equation of the first kind.

Recently, Marin et al. [15,16] have solved the Cauchy

problem associated to the Helmholtz equation using the

BEM in conjunction with an alternating iterative procedure

consisting of obtaining successive solutions to well-posed

mixed boundary value problems and with the conjugate

gradient method (CGM), respectively.
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In this paper, we present and analyse the Landweber

method [17] combined with the BEM, in order to solve the

Cauchy problem for Helmholtz-type equations. This

method reduces the problem to solving a sequence of two

well-posed mixed boundary value problems. The problem is

regularized by matching the number of iterations performed

to the level of the noise in the input data and a stopping

criterion is developed.

2. Mathematical formulation

Referring to heat transfer for the sake of the physical

explanation, we assume that the temperature field TðxÞ

satisfies the Helmholtz equation in an open bounded

domain V , Rd; where d is the dimension of the space

in which the problem is posed, usually d [ {1; 2; 3};

namely

LTðxÞ ; ðDþ k2ÞTðxÞ ¼
Xd

j¼1

›
2
j þ k2

0
@

1
ATðxÞ ¼ 0; x [ V;

ð1Þ

where k ¼ aþ ib [ C; i ¼
ffiffiffiffi
21

p
and k2 [ R: For

example, when a ¼ 0 and b [ R; the partial differential

equation (1) models the heat conduction in a fin [5–7],

where T is the dimensionless local fin temperature, b2 ¼

h=ð~ktÞ; h is the surface heat transfer coefficient (W/

(m2 K)), ~k is the thermal conductivity of the fin

(W/(m K)) and t is the half-fin thickness (m). It should

be mentioned that the Landweber method described in

Section 3 is also valid in the case when k is real, i.e.

a [ R and b ¼ 0: We now let nðxÞ be the outward

normal vector at the boundary G ; ›V of class C2 and

we define the flux at a boundary point x [ G by

NTðxÞ ; FðxÞ ¼ ð›T =›nÞðxÞ; x [ G: ð2Þ

The Cauchy problem under investigation requires

solving the partial differential equation (1) subject to

the boundary conditions

TðxÞ ¼ ~TðxÞ; NTðxÞ ¼ ~FðxÞ; x [ G2; ð3Þ

where ~T and ~F are prescribed functions and G2 , G;

measðG2Þ . 0: In the above formulation of the boundary

conditions (3), it can be seen that the boundary G2 is

overspecified by prescribing both the temperature T lG2

and the flux FlG2
; whilst the boundary G1 ¼ G\G2 is

underspecified since both the temperature T lG1
and the

flux FlG1
are unknown and have to be determined.

The Cauchy problem for Helmholtz-type equations is

much more difficult to solve both analytically and

numerically than the direct problem, since the solution

does not satisfy the general conditions of well-posedness.

In addition, it should be stressed that the Dirichlet,

Neumann or mixed direct problems associated to

Eq. (1) do not always have a unique solution due to

the eigensolutions [8]. However, the Cauchy problem

given by Eqs. (1) and (3) has a unique solution based on

the analytical continuation property. Although this problem

has a unique solution, it is well known that this solution is

unstable with respect to small perturbations in the data on

G2; [9]. Thus the problem under investigation is ill-posed

and we cannot use a direct approach, such as the

Gauss elimination method, in order to solve the system

of linear equations which arises from the discretisation of

the partial differential equations (1) and the boundary

conditions (3).

3. Landweber method

An iterative regularizing method for ill-posed problems

is the Landweber iteration which was first investigated by

Landweber [17] and Fridman [18]. It should be noted that

this method is suitable to solve any linear inverse problem

and for a general discussion on this method, we refer the

reader to Ref. [19]. The main disadvantage of this method is

the large numbers of iterations required to solve the problem

in comparison with other iterative regularizing procedures,

such as the CGM. The later method is known to be more

powerful than the Landweber method [20–22]. However,

the price that one pays is that the regularizing operator

generated by the CGM is non-linear and hence the proof of

the convergence for the CGM is more difficult and technical

than that for the Lanweber method. Therefore, in this study,

we have decided to apply the Landweber method for solving

the Cauchy problem (1) and (3) associated with Helmholtz-

type equations.

Assuming that G [ C2 is the union of two closed and

disjoint parts G1 and G2; and 2k2 [ R is not an eigenvalue

for the mixed problem for the Laplacian operator, we let T

and v solve the problems

LTðxÞ ¼ 0; x [ V;

TðxÞ ¼ hðxÞ; x [ G1;

NTðxÞ ¼ 0; x [ G2;

8>><
>>:

ð4Þ

and

LvðxÞ ¼ 0; x [ V;

vðxÞ ¼ 0; x [ G1;

NvðxÞ ¼ ~FðxÞ; x [ G1;

8>><
>>:

ð5Þ

respectively. Following the same lines of Johansson [23]

where he considered the Oseen (generalised Stokes) system

of linear hydrostatics, it can be shown that for h [ L2ðG1Þ

and ~F [ L2ðG2Þ; both problems (4) and (5) have unique

solutions T [ L2ðVÞ and v [ L2ðVÞ; respectively, and the

operators

K : L2ðG1Þ! L2ðG2Þ; h!Kh ¼ T lG2
; ð6Þ
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K1 : L2ðG2Þ! L2ðG2Þ; ~F!K1
~F ¼ vlG2

; ð7Þ

are well-defined. Moreover, the operator K is linear,

compact and injective, and its adjoint is given by

Kp : L2ðG2Þ! L2ðG1Þ; j!Kpj ¼ 2NpvlG1
; ð8Þ

where v [ L2ðVÞ is the solution to the following adjoint

problem:

LpvðxÞ ¼ 0; x [ V;

vðxÞ ¼ 0; x [ G1;

NpvðxÞ ¼ jðxÞ; x [ G2;

8>><
>>:

ð9Þ

Here Lp and Np are the adjoint operators to L and N
defined by Eqs. (1) and (3), respectively, and in the case of

Helmholtz-type equations, they are given by Lp ¼ L and

Np ¼ N: It should be noted that finding a solution to the

Cauchy problems (1) and (3) is then equivalent to finding

h [ L2ðG1Þ such that

Kh ¼ ~T 2K1
~F: ð10Þ

If such a solution h exists then by definitions (6) and (7)

we have

T lG2
¼ ~T 2 vlG2

; ð11Þ

where T and v are the unique solutions in L2ðVÞ of

the problems (4) and (5), respectively. Hence, T þ v is a

solution to the Cauchy problems (1) and (3). Since K is a

compact operator, it follows that K has no bounded

inverse and, therefore, Eq. (10) is an ill-posed

operator equation which requires the use of regularization

methods.

In order to solve the Cauchy problems (1) and (3), the

following iterative algorithm is proposed:

Step 1

Set n ¼ 0: Choose an approximation hð0Þ [ L2ðG1Þ for T lG1
:

Step 2

Solve the well-posed mixed boundary value problem

LT ðnÞðxÞ ¼ 0; x [ V;

T ðnÞðxÞ ¼ hðnÞðxÞ; x [ G1;

NT ðnÞðxÞ ; ð›T ðnÞ
=›nÞðxÞ ¼ ~FðxÞ; x [ G2;

8>><
>>:

ð12Þ

in order to determine NT ðnÞðxÞ ; ð›T ðnÞ=›nÞðxÞ for x [ G1

and T ðnÞðxÞ for x [ G2:

Step 3

Having constructed the approximation T ðnÞðxÞ for x [ G2;

the adjoint problem

LpvðnÞðxÞ ¼ 0; x [ V;

vðnÞðxÞ ¼ 0; x [ G1;

NpvðnÞðxÞ ; ð›vðnÞ=›nÞðxÞ ¼ T ðnÞðxÞ2 ~TðxÞ; x [ G1;

8>><
>>:

ð13Þ

is solved to determine hðnþ1ÞðxÞ ¼ hðnÞðxÞ þ gNpvðnÞðxÞ for

x [ G1; where g . 0 is a constant to be prescribed.

Step 4

Set n ¼ n þ 1 and repeat steps 2 and 3 until a prescribed

stopping criterion is satisfied.

We are now able to prove the following convergence

result:

Theorem 1. Let T [ L2ðVÞ be the solution to the Cauchy

problems (1) and (3), and assume that g satisfies 0 , g ,

1=kKk2: Let T ðnÞ be the nth approximate solution to the

algorithm described above. Then

lim
n!1

kT ðnÞ 2 TkL2ðVÞ ¼ 0; ð14Þ

for any initial data hð0Þ [ L2ðG1Þ:

Proof. The operator equation to be solved is Eq. (10). The

function h ¼ T lG1
is a solution of the operator equation (10)

and it is unique since K is injective. From the above

algorithm and expressions (8), (10) and (11), it follows that

hðnÞ ¼ hðn21Þ þ gNpvðn21ÞlG2

¼ hðn21Þ 2 gKpðT ðn21ÞlG2
2 ~TÞ

¼ hðn21Þ 2 gKp½Khðn21Þ 2 ðT 2K1
~FÞ�: ð15Þ

This is the Landweber iteration procedure for solving the

operator equation (10) and the sequence {hðnÞ}n$0 con-

verges to h in L2ðG1Þ since 0 , g , 1=kKk2; [19]. Applying

Lemma 6.3 from Ref. [23], it follows that the sequence

{T ðnÞ}n$0 converges to T in L2ðVÞ: A

4. Boundary element method

The Helmholtz-type equation (1) can also be formulated

in integral form [8] as

cðxÞTðxÞþO
G

›Eðx;yÞ

›nðyÞ
TðyÞdGðyÞ¼

ð
G

Eðx;yÞFðyÞdGðyÞ ð16Þ

for x[V¼V<G; where the first integral is taken in the

sense of the Cauchy principal value, cðxÞ¼1 for x[V and

cðxÞ¼1=2 for x[G (smooth), and E is the fundamental

solution for the Helmholtz-type equation (1), which in two-

dimensions is given by

Eðx;yÞ¼
i

4
Hð1Þ

0 ðklx2ylÞ; ð17Þ

with Hð1Þ
0 the Hankel function of order zero of the first kind.

Using standard arguments for linear elliptic partial differ-

ential equations, it can be shown that the integral equation

representation (16) with Cauchy or mixed data is equivalent

to the original equation (1) with Cauchy data (3) or mixed

data (12) or (13) on the closed and disjoint boundary parts
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G1 and G2; in the sense that the traces of the weak solution

satisfy the integral equation and, conversely, the solution of

the integral equation inserted into Green’s formula (16)

yields the solution of the Cauchy or mixed boundary value

problems, see Ref. [24] for two-dimensions and Ref. [25]

for three-dimensions. It should be noted that in practice the

boundary integral equation (16) can rarely be solved

analytically and thus a numerical approximation is required.

A BEM with constant boundary elements [15,16] is used

in order to discretise the problem given by Eqs. (1) and (3).

If the boundaries G1 and G2 are discretised into N1 and N2

constant boundary elements, respectively, such that N ¼

N1 þ N2; then on applying Eq. (16) at each node on G; we

arrive at the following system of linear algebraic equations

AT ¼ BF: ð18Þ

Here A and B are matrices which depend solely on the

geometry of the boundary G and the vectors T and F consist

of the discretised values of the temperature and the flux,

respectively, on the boundary G: The system of equations

(16), together with appropriate boundary conditions, is

solved for each of the the direct well-posed mixed boundary

value problems (12) and (13) at each iteration, n; of the

algorithm presented in Section 3.

5. Numerical results and discussion

In this section, we illustrate the numerical results

obtained using the iterative Landweber algorithm proposed

in Section 3 combined with the BEM described in Section 4

for solving the two mixed well-posed problems (12) and

(13) at each iteration. In addition, we investigate the

convergence with respect to the mesh size discretisation and

the number of iterations when the data is exact and the

stability when the data is perturbed by noise.

5.1. Examples

In order to present the performance of the numerical

method proposed, we solve the Cauchy problems (1) and (3)

in a smooth two-dimensional geometry ðd ¼ 2Þ; namely the

annulus V ¼ {x ¼ ðx1; x2ÞlR2
i , x2

1 þ x2
2 , R2

0}; Ri ¼ 0:5

and R0 ¼ 1:0: We assume that the boundary G of the

domain V is divided into two disjointed parts, namely G1 ¼

{x [ Glx2
1 þ x2

2 ¼ R2
i } and G2 ¼ {x [ Glx2

1 þ x2
2 ¼ R2

0};

and the outer boundary G2 is overspecified by the

prescription of both the temperature and the flux while the

inner boundary G1 is unspecified with both the temperature

and the flux unknown. We consider the following analytical

solutions for the temperature in the domain V; which have

also been used in Refs. [15,16]:

Example 1. ðL ; D2 b2; b [ RÞ

T ðanÞðxÞ ¼ expða1x1 þ a2x2Þ; x ¼ ðx1; x2Þ [ V; ð19Þ

where k ¼ aþ ib; a ¼ 0; b ¼ 2:0; a1 ¼ 1:0 and a2 ¼ffiffiffiffiffiffiffiffiffiffi
b2 2 a2

1

q
; which corresponds to a heat flux on the boundary

G given by

ð›T ðanÞ
=›nÞðxÞ ¼ ða1n1ðxÞ þ a2n2ðxÞÞexpða1x1 þ a2x2Þ;

x ¼ ðx1; x2Þ [ G:

ð20Þ

Example 2. ðL ; Dþ a2; a [ RÞ

T ðanÞðxÞ ¼ cosða1x1 þ a2x2Þ; x ¼ ðx1; x2Þ [ V; ð21Þ

where k ¼ aþ ib; a ¼ 2:0; b ¼ 0; a1 ¼ 1:0 and a2 ¼ffiffiffiffiffiffiffiffiffiffi
a2 2 a2

1

q
; which corresponds to a heat flux on the boundary

G given by

ð›T ðanÞ
=›nÞðxÞ ¼ 2ða1n1ðxÞ þ a2n2ðxÞÞsinða1x1 þ a2x2Þ;

x ¼ ðx1; x2Þ [ G:

ð22Þ

For the BEM discretisation of the problems (12) and (13),

we have used various numbers of constant boundary

elements, namely N [ {40; 80; 160} and N1 ¼ N2 ¼ N=2:

5.2. Convergence of the algorithm

An arbitrary function hð0Þ [ L2ðG1Þ may be specified as

an initial guess for the temperature on G1: For the examples

considered, this initial guess has been chosen as

hð0ÞðxÞ ¼ T ð0ÞðxÞ ¼ 0; x [ G1; ð23Þ

and this choice ensures that the initial guess is not too close

to the exact values T ðanÞ:

In order to investigate the convergence of the algorithm,

at every iteration we evaluate the accuracy errors defined by

eT ¼ kT ðnÞ2T ðanÞkL2ðG1Þ
; eF ¼ kFðnÞ2FðanÞkL2ðG1Þ

; ð24Þ

where T ðnÞ and FðnÞ are the temperature and the flux on the

boundary G1 retrieved after n iterations, respectively, and

each iteration consists of solving the two mixed well-posed

problems (12) and (13) using the BEM. The error in

predicting the temperature inside the solution domain V

may also be evaluated by using the expression

eV ¼ kT ðnÞ 2 T ðanÞkL2ðVÞ: ð25Þ

However, this is not pursued here since eV has an

evolution similar to that of the errors eT and eF; as at each

iteration the values of the temperature inside the solution

domain are retrieved from the values of the temperature T

and the flux F on the boundary G:

Fig. 1(a) and (b) shows the accuracy errors eT and eF;

respectively, as functions of the number of iterations, n;

obtained for the Cauchy problem given by Example 1 for

N [ {40; 80; 160} when using ‘exact boundary data’ for the

inverse problem, i.e. boundary data obtained by solving

L. Marin et al. / Engineering Analysis with Boundary Elements 28 (2004) 1025–10341028



the direct well-posed problem given by Eq. (1) subject to the

boundary conditions

FðxÞ ; ð›T =›nÞðxÞ ¼ FðanÞðxÞ; x [ G1;

TðxÞ ¼ T ðanÞðxÞ; x [ G2:

ð26Þ

It can be seen from these figures that both errors eT

and eF keep decreasing, even after a large number of

iterations, e.g. N ¼ 1000; and, as expected, eT , eF; i.e.

temperatures are more accurate than fluxes. Furthermore,

as N increases, the errors eT and eF decrease showing

that N $ 80 ensures a sufficiently fine discretisation for

the accuracy to be achieved. Although not presented

here, it is reported that the same conclusions have been

obtained for the Cauchy problem given by Example 2.

From Fig. 1(a) and (b), it can be concluded that the

iterative algorithm described in Section 3 is convergent

with respect to increasing the number of iterations,

provided that exact boundary data is prescribed.

The numerical solutions for the temperature TlG1
obtained

after n ¼ 1000 iterations for Examples 1 and 2 are presented

in Fig. 2(a) and (b), respectively. From these figures, it can be

seen that the accuracy in predicting the temperature on the

boundary G1 is very good for both examples considered. The

behaviour of the numerical solution for the flux FlG1
; along

Fig. 1. The accuracy errors (a) eT ¼ kT ðnÞ 2 T ðanÞkL2ðG1Þ
; and (b) eF ¼

kFðnÞ 2FðanÞkL2ðG1Þ
as functions of the number of iterations, n; obtained with

exact input data ~TlG2
and N ¼ 40 (—), N ¼ 80 (– – –) and N ¼ 160 (· · ·)

boundary elements, for Example 1.

Fig. 2. The analytical solution T ðanÞ (—) and the numerical solution T ðnumÞ

obtained with exact input data ~TlG2
and N ¼ 40ð–K– Þ; N ¼ 80 (–W–) and

N ¼ 160 (–A–) boundary elements, for (a) Example 1, and (b) Example 2.

L. Marin et al. / Engineering Analysis with Boundary Elements 28 (2004) 1025–1034 1029



with the analytical flux solution on the boundary G1; after

n ¼ 1000 iterations for Examples 1 and 2 is presented in

Fig. 3(a) and (b), respectively. As expected, the errors in

predicting the fluxFlG1
are larger than the errors in predicting

the temperature T lG1
since the flux contains higher-order

derivatives. Moreover, from Figs. 2 and 3, it can be seen that

the numerical solutions for the temperature T lG1
and the flux

FlG1
are very accurate for both Examples 1 and 2, provided

that N $ 80:

In Fig. 4(a) and (b), we present the numerical solution

for the temperature T obtained after n ¼ 1000 iterations

and using various numbers N [ {40; 80; 160} of

boundary elements in comparison with its analytical

value at the internal points x located on an interior

circle, Gr ¼ {x ¼ ðx1; x2Þ ¼ 0:75}; and along a radius, Gu ¼

{x ¼ ðx1; x2ÞluðxÞ ¼ p=3}; respectively, for Example 1.

From these figures it can be seen that the numerical

temperature retrieved at the internal points considered

represents of a very good approximation of its exact value

and it converges to the analytical solution within N ¼ 80

boundary elements. Similar results have been obtained for

Fig. 3. The analytical solution FðanÞ (—) and the numerical solution FðnumÞ

obtained with exact input data ~TlG2
and N ¼ 40 (–K–), N ¼ 80 (–W–) and

N ¼ 160 (–A–) boundary elements, for (a) Example 1, and (b) Example 2.

Fig. 4. The analytical solution T ðanÞ (—) and the numerical solution T ðnumÞ

obtained with exact input data ~TlG2
and N ¼ 40 (–K–), N ¼ 80 (–W–) and

N ¼ 160 (–A–) boundary elements, at the internal points (a) x [ Gr ; and

(b) x [ Gu; for Example 1.

L. Marin et al. / Engineering Analysis with Boundary Elements 28 (2004) 1025–10341030



the Cauchy problem corresponding to Example 2 and hence

they are not presented here.

For the Cauchy problem investigated in this paper, it was

found that the proposed iterative BEM algorithm produces

an accurate and convergent numerical solution for both the

missing boundary temperature and flux, as well as the

temperature inside the solution domain, with respect to

increasing the number of iterations, n; and the number of

boundary elements, N; provided that exact input data is

used.

5.3. Stopping criterion

Once the convergence with respect to increasing N of the

numerical solution to the exact solution has been estab-

lished, we fix N ¼ 80 and investigate the stability of the

numerical solution for Example 2 only. Fig. 5 presents the

accuracy errors eT and eF for various levels of Gaussian

random noise p [ {1; 2; 3}% added into the temperature

data ~TlG2
: From this figure, it can be seen that as p decreases

then eT and eF decrease. However, the errors in predicting

the temperature and the flux on the underspecified boundary

G1 decrease up to a certain iteration number and after that

they start increasing. If the iterative process is continued

beyond this point then the numerical solutions lose their

smoothness and become highly oscillatory and unbounded,

i.e. unstable. Therefore, a regularizing stopping criterion

must be used in order to terminate the iterative process at the

point where the errors in the numerical solutions start

increasing.

In a direct approach, the discretisation of the boundary

conditions (3) provides the values of 2N2 of the unknowns

and the problem reduces to solving a system of N equations

with 2N1 unknowns which can generically be written as

CX ¼ F; ð27Þ

where F is computed using the boundary conditions (3), the

matrix C depends solely on the geometry of the boundary G

and the vector X contains the unknown values of the

temperature and the flux on the boundary G1:

If we evaluate the Euclidean norm of the vector CX 2 F

then this should tend to zero as X tends to the exact solution.

Hence after each iteration, we evaluate the error

E ¼ kCXðnÞ 2 Fk2; ð28Þ

where XðnÞ is the vector obtained from the values of the

temperature and the flux on the boundary G1 retrieved after

n iterations. The error E includes information on both the

temperature and the flux and it is expected to provide an

appropriate stopping criterion. Indeed, if we investigate the

error E obtained at every iteration for various levels of

Gaussian random noise added into the input temperature

data ~TlG2
; we obtain the curves graphically represented in

Fig. 6. It can be seen from this figure, for all levels of noise

considered, that the error E decreases up to a certain

iteration number after which it reaches a plateau, and this

indicates the necessity to terminate the iterative process.

By comparing Figs. 5(a), (b) and 6, it can be seen, for

various levels of noise, that the corner corresponding to the

beginning of the plateau region in the error E occurs at about

the same point where the the minimum in the accuracy

errors eT and eF appears. Therefore, the optimum point

where the iterations should be ceased may be identified by

locating the corner corresponding to the plateau region in

Fig. 5. The accuracy errors (a) eT ¼ kT ðnÞ 2 T ðanÞkL2ðG1Þ
; and (b) eF ¼

kFðnÞ 2FðanÞkL2ðG1Þ
as functions of the number of iterations, n; obtained with

N ¼ 80 boundary elements and various levels of noise p ¼ 1% (—), p ¼

2% (– – –) and p ¼ 3% (· · ·) added into the input data ~TlG2
; for Example 2.
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the error E: Although not illustrated here, it is reported that

similar results have been obtained for Example 1. As

mentioned in Section 5.2, for exact data, the iterative

process is convergent with respect to increasing the number

of iterations, n; since the accuracy errors eT and eF keep

decreasing even after a large number of iterations, see

Fig. 1(a) and (b). It should be noted in this case that a

stopping criterion is not necessary since the numerical

solution is convergent with respect to increasing the number

of iterations. However, even in this case, the errors E; eT and

eF have a similar behaviour and the error E may be used to

stop the iterative process at the point where the rate of

convergence is very small and no substantial improvement

in the numerical solution is obtained even if the iterative

process is continued. Therefore, it can be concluded that the

regularizing stopping criterion proposed is very efficient in

locating the point where the errors start increasing and the

iterative process should be ceased.

5.4. Stability of the algorithm

Based on the stopping criterion described in Section 5.3,

the numerical results obtained for the temperature T and the

flux F on the boundary G1 for Example 2 are presented in

Fig. 7(a) and (b), respectively, for various levels of noise

added into the temperature data on the boundary G2: In

Fig. 8(a) and (b), we present the numerical solution for the

temperature T for Example 2 obtained using the stopping

criterion described in Section 5.3 and various levels of noise

added into the temperature data on the boundary G2 in

comparison with its analytical value at the internal points

x located on an interior circle, Gr ¼ {x ¼ ðx1; x2ÞlrðxÞ ¼
0:75}; and along a radius, Gu ¼ {x ¼ ðx1; x2ÞluðxÞ ¼ p=3};

respectively. From Figs. 7 and 8, it can be seen that the

numerical solution is a stable approximation to the exact

solution, free of unbounded and rapid oscillations, and it

converges to the exact solution as the level of noise, p;

added into the input boundary data decreases. Similar

results have been obtained for the Cauchy problem

corresponding to Example 1 and hence they are not

presented here. The same conclusion can be drawn from

Fig. 6. The convergence error E ¼ kCXðnÞ 2 Fk2 as a function of the

number of iterations, n; obtained with N ¼ 80 boundary elements and

various levels of noise p ¼ 1% (—), p ¼ 2% (– – –) and p ¼ 3% (–K–)

added into the input data ~TlG2
; for Example 2.

Fig. 7. (a) The analytical solution T ðanÞ (—) and the numerical solution

T ðnumÞ; and (b) the analytical solution FðanÞ (—) and the numerical solution

FðnumÞ; obtained with N ¼ 80 boundary elements and various levels of

noise p ¼ 1% (–A–), p ¼ 2% (–W–) and p ¼ 3% (–K–) added into the

input data ~TlG2
; for Example 2.
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Table 1 which presents the errors eT and eF; as well as the

optimal iteration number nopt given by the stopping criterion

described in Section 5.3 obtained with various levels of

noise added into the input temperature data and various

iterative regularization methods, namely the Landweber

method studied in this paper, the alternating iterative

method presented in Ref. [15] and the CGM described in

Ref. [16], for both Examples 1 and 2. For Example 2, no

results are presented for the alternating algorithm which is

divergent since the operator L ; Dþ a2; a [ R; is not

positive definite.

From the numerical results presented in this section, it

can be concluded that the stopping criterion developed in

Section 5.3 has a regularizing effect and the numerical

solution obtained by the iterative BEM described in this

paper is convergent and stable with respect to refining the

mesh size and decreasing the level of noise added into the

input data, respectively, for both boundary and internal

points.

6. Conclusions

In this paper, we have investigated the Cauchy problem

for Helmholtz-type equations in the two-dimensional case.

In order to deal with the instabilities of the solution of this

ill-posed problem, an iterative Landweber BEM was

employed which reduced the Cauchy problem to solving a

sequence of well-posed boundary value problems in the

space of square integrable functions, thus enabling the

numerical representation. A stopping criterion, necessary

for ceasing the iterations at the point where the accumu-

lation of noise becomes dominant and the errors in

predicting the exact solution increase, has also been

presented. The numerical results obtained for various

numbers of boundary elements and various amounts of

noise added to the input data showed that the method

produces a convergent, stable and consistent numerical

solution with respect to increasing the number of boundary

elements and decreasing the amount of noise.

The main advantage of the Landweber method is that it

provides accurate, convergent and stable numerical solutions

to the Cauchy problem associated with Helmholtz-type

Fig. 8. The analytical solution T ðanÞ (—) and the numerical solution T ðnumÞ

obtained with N ¼ 80 boundary elements and various levels of noise p ¼

1% (–A–), p ¼ 2% (–W–) and p ¼ 3% (–K–) added into the input data
~TlG2

; at the internal points (a) x [ Gr ; and (b) x [ Gu; for Example 2.

Table 1

The errors eT and eF and the value of the optimal iteration number nopt

obtained with N ¼ 80 boundary elements, various amounts of noise added

into the input data T lG2
; namely p [ {0; 1; 2; }; and several iterative

regularization methods, for Examples 1 and 2

Example Method Error p ¼ 0% p ¼ 1% p ¼ 2%

Example 1 Landweber eT 1.38 £ 1021 2.48 £ 1021 3.55 £ 1021

eF 6.78 £ 1021 1.07 £ 100 1.40 £ 100

nopt 153 112 93

Alternating

algorithm

eT 1.30 £ 1021 2.30 £ 1021 3.35 £ 1021

eF 6.51 £ 1021 1.01 £ 100 1.31 £ 100

nopt 14 10 8

CGM eT 1.04 £ 1021 2.24 £ 1021 2.83 £ 1021

eF 6.21 £ 1021 9.75 £ 1021 1.22 £ 100

nopt 3 3 2

Example 2 Landweber eT 1.33 £ 1022 2.09 £ 1022 2.79 £ 1022

eF 5.89 £ 1022 8.41 £ 1022 1.07 £ 1021

nopt 286 238 209

CGM eT 7.01 £ 1023 1.38 £ 1022 2.05 £ 1022

eF 5.67 £ 1022 8.13 £ 1022 9.86 £ 1022

nopt 3 2 2
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equations, i.e. L ; Dþ k2; in both cases, namely for k [ R

and for k [ C\R; unlike the alternating iterative method of

Kozlov et al. [26] which fails to solve the Cauchy problem for

the operator L ; Dþ k2 for k real, see Ref. [15]. For our

application, the disadvantages of the Landweber method

consist of the relatively large numbers of iterations required

to solve the problem in comparison with the other two

regularization methods and the lower accuracy of the

numerical solutions compared especially with the CGM,

see Table 1. However, in other applications such as electrical

capacitance tomography, see Ref. [27], the CGM does not

give better results since it is less regularizing than the

Landweber method, as demonstrated in Ref. [28]. Further-

more, the regularizing operators generated by the CGM are

non-linear and, consequently, the proof of convergence for

this method is more difficult and technical than that for the

Landweber method, see Ref. [29].
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