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Abstract

In this paper, two alternative approaches to the boundary element method (BEM) are investigated; namely, the contour approach method

and the direct approach method. A detailed comparison of these methods is made by evaluating the accuracy of singular boundary integrals.

A complete and comprehensive exposition of the derivation leads to the correct implementation. This is in contrast to conventional numerical

integration methods, which suffer from the numerical boundary layer. Singularities which are mathematical artifacts are shown to vanish

when the contour approach and the direct approach methods are applied. Singularities which arise from the physics are dealt with by way of a

complex mapping method in the BEM. The results of seven benchmark problems which are supportive of these conclusions are presented at

the end of this article.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

So-called mathematical singularities arise as a result of

the Laplace operator, introduced into the governing

equation by the application of the method of weighted

residuals. A simple, 2D Laplace equation is adequate for the

investigation of these mathematical singularities.

The integral equation for 2D potential problems can be

represented as follows

cðPÞFðPÞ Z

ð
G

FðQÞ

rðP;QÞ

vrðP;QÞ

vn
K ln rðP;QÞ

vFðQÞ

vn

� �
ds

(1)

where G is the boundary, n is the outward normal to this

boundary, F is the potential and r is the distance between the

source and field points, P and Q, respectively. The free-term

coefficient, c(P), is 2p when P lies inside the boundary and

internal angle, a, when P lies on the boundary. It was

originally thought that the mathematical singularity arises
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from the fact that the term 1/r(P,Q) in Eq. (1) approaches

infinite if P is placed on the boundary. The unbounded term

causes the solution to diverge and some special techniques are

necessary to circumvent this problem. The Cauchy principal

value (CPV) integral is one such method and involves

deforming the integration path around the singular point,

using a segment of a circle (in 2D) or sphere (in 3D), then

shrinking the contour to the singular point [1]. (Of course, the

contour shape is not necessarily restricted to a circular arc or

spherical surface. A symmetric neighborhood can, however,

simplify manipulations, although contour shape itself has no

bearing whatsoever on the final value of the limit [2,3].)

Conventional wisdom has it that a numerical boundary

layer is brought into existence when the source point is

placed very close to the boundary [4–6]. For singularities, a

popular method to integration is to use Gaussian quadrature

rules integration [7]. Besides, Mapping techniques by

Guiggiani [3], Johnston [8], and Nagarajan [9] are used

for regularization, thereby avoiding the mathematical

singularity. The bicubic transformation method of Charles

[10] and the non-linear transformations by Krishna [11] are

alternative means to treat the singularity problems associ-

ated with the BEM.

In this paper, singularity problems in BEM are divided in

two categories: mathematical singularities and physical
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Fig. 1. Definition of element-wise x–h local coordinate.
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singularities. The former arises as a result of the coincidence

of the source point with the field point while the latter is

associated with the degeneration of the boundary (i.e.

geometrical singularities) or a discontinuity in boundary

conditions. It is the crux of this article that the former is a

non-existent mathematical artifact and the latter type may

be overcome by means of an involved mapping technique.

It is important to note that the mathematical singularities

can be shown to vanish when obtaining solutions of

physically non-singular problems [12,13]. Simple and

straightforward proofs are presented for the contour and

the direct approach methods to BEM. A thorough exposition

of numerical boundary layers attempts to dispel any

misperceptions which have arisen in the past.

Benchmark problems of a corner, a cut-off wall, and

crack problems are revisited for the case of physical

singularities. Methods such as the multiple node method

[14], the iterative solution method of BEM [15], the floating

node method by Gupta [16], the adaptive mesh refinement

method [17] and the hyper-singular integrals or dual

boundary integral method have been studied previously

for corner problems [18–20]. Furthermore, the singular

element method [4] and the multi-domain method [21] are

adopted to conquer these singular problems. In fact, after the

development of the dual BEM by Hong and Chen [22] in

1988, the dual boundary integral method [20,23,24] seems

to be the most popular means of dealing with problems such

as cut-off wall or crack problems. The displacement

discontinuity method [25], the crack Green’s function

method [26], and multi-domain or dual boundary integral

method are also applied to crack problems [27,28].

Mapping techniques have also been extensively applied

in dealing with these singularity related problems. The so-

called mathematical singularity is a mathematical artefact

and the mapping methods developed are a means to resolve

physical singularities alone. Numerical mapping techniques

such as the Cauchy integral element method by Detournay

[29,30] and conformal mapping by Papamichael [31–33]

are efficient and accurate in dealing with physical

singularities in addition to the transformation methods

mentioned above.

The objective of this paper is to deal with the singularity

problems in BEM in two respects. To identify the artificial

nature of mathematical singularities in BEM [13] and to

demonstrate a method of overcoming true, physically

existent singularities. It is to be noted that the contour

approach method and the direct approach method are not the

methods beyond the conventional boundary element, except

the correct evaluation of the integral to discrete elements

analytically in BEM. In the former method, the procedures

are all the same as the conventional BEM except the

correction of an angle term within the integral. This

correction, however, will not affect the results. It presents

a right procedure for treating the integral. The importance of

the conception is its application to the direct approach

method. After the evaluation of the boundary potentials
and their derivatives with contour approach method, the

direct approach method re-evaluate the potentials on the

boundary by moving the interior source points toward the

boundary as near as possible but not on the boundary so as to

find that the potential converges to that by the contour

approach method. In this way, the so-called numerical

boundary layer can be proved to be non-existent [4–6].
2. Mathematical singularities in BEM
2.1. Discretization of boundary integral equation

For discretization of the boundary integral equation to

boundary elements, linear elements are introduced to

represent the geometry and the boundary fields in terms of

nodal values and their derivatives, that is

F Z ½ðFjC1 KFjÞx C ðxjC1Fj KxjFjC1Þ�=ðxjC1 KxjÞ
vF

vn
Z

vF

vn

� �
jC1

K
vF

vn

� �
j

� �
x

�

C xjC1

vF

vn

� �
j

Kxj

vF

vn

� �
jC1

� ��
=ðxjC1 KxjÞ
xj %x%xjC1 (2)

where an element-wise local coordinates x-h is defined in

Fig. 1. The subscripts j and jC1 represent the starting and

ending nodes of the element, respectively. The analytical

form of the integral equation, Eq. (1), can then be shown

as [4]

cðPÞFðPÞ Z
Xn

eZ1

Ie (3)



Fig. 2. Illustrations of the contour method.
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where
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and

Ie
11 Z
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1
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1

2
xe

jC1 ln½ðhe
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2 Cðxe
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2�Kxe
j ln½ðhe
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2 Cðxe

j Þ
2�

�
K2ðxe

jC1 Kxe
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he
i
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KtanK1 xe
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he
i
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The superscript e represents the eth element on the

boundary and the subscript i represents the ith source point.

To obtain the potential on the boundary, two methods are

adopted in this paper. The first one, contour approach

method, places the source point on the boundary and apply a

detoured integration path represented by a shrinking arc.

The second one, direct approach method, evaluates the

potential of the boundary point Q by moving the source

point P towards Q along an arbitrary straight path.
For brevity, only the concerned elements Im and ImC1 are

discussed as the source point P is put on or moved towards

the mth node where the mathematical singularity problems

may occur as it seems. On the other hand, the case for the

source point on the boundary is of the same approach as on

the node and will not be stated repeatedly in this paper.

Eq. (3) can then be rewritten as

cðPÞFðPÞ Z
XmK1

eZ1

Ie

 !
C Im C ImC1 C

Xn

eZmC2

Ie

 !
(10)

where the first and the last terms on the right hand side of

Eq. (10) are irrelevant to the matter concerning on

singularity.
2.2. Contour approach method

When the source point is put directly on the Qm node as

shown in Fig. 2, a shrinking arc contour composed of dQK
mQC

m

is used to exclude the source point, the integrations of Eqs.

(6)–(9) can be evaluated with the following process:
(1)
 For either mth or (mC1)th element, hiZ0 in this case.
(2)
 qm
j and qm

jC1, as defined in Fig. 2, approach Kp/2 in the

limiting state the shrinking arc converging to the source

point. Similarly, qmC1
j and qmC1

jC1 are p/2 in that situation.
(3)
 xm
j , the distance between the source point and the

starting nodal point of mth element, as defined in Fig. 1,

equals to the length of mth element, Klm. In the same

way, xm
jC1 Z0, xmC1

j Z0 and xmC1
jC1 Z lmC1.
(4)
 According to the previous results, the integral value for

I11, I12, I21 and I22 are

Im
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2
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i Þ
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j Þ
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i
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i Þ
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i Þ
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i Þ
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j Þ
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ðxm
jC1 Kxm

j ÞZ
1

4
½KðlmÞ2ð2 ln lm K1Þ�=lm
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i
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i
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1

2
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hmC1
i

 !
KtanK1 xmC1

j

hmC1
i

 !" #.
ðxmC1

jC1 KxmC1
j ÞZ ðqmC1

jC1 KqmC1
j Þ=lmC1 Z0

ImC1
21 Z

1

4
f½ðhmC1

i Þ2 CðxmC1
jC1 Þ2�½lnððhmC1

i Þ2

CðxmC1
jC1 Þ2ÞK1�K½ðhmC1

i Þ2 CðxmC1
j Þ2�½lnððhmC1

i Þ2

CðxmC1
j Þ2ÞK1�g=ðxmC1

jC1 KxmC1
j Þ

Z
1

4
½ðlmC1Þ2ð2 ln lmC1 K1Þ�=lmC1

ImC1
22 Z

1

2
xmC1

jC1 ln½ðhmC1
i Þ2 CðxmC1

jC1 Þ2�

(
KxmC1

j ln½ðhmC1
i Þ2 CðxmC1

j Þ2�K2ðxmC1
jC1 KxmC1

j Þ

C2hmC1
i tanK1 xmC1

jC1

hmC1
i

 !
KtanK1 xmC1

j

hmC1
i

 !" #).
ðxmC1

jC1 KxmC1
j ÞZ ðln lmC1 C1Þ ð11Þ

where lm and lmC1 are lengths of mth and (mC1)th

elements.
When Im
12 is considered, it should be noted that the angles

qm
j and qm

jC1 are not really zeroes as it was mistakenly taken

when the source point P is put on the node (Fig. 2). It is

indicated that the angle qm
jC1 is related to point QK

m, not Qm,

which has been excluded from the integral path. The angles

of qm
j and qm

jC1 remain Kp/2 for both ends on the mth

element and qmC1
j and qmC1

jC1 are p/2 for the ends of (mC1)th

element in the process of the contour shrinking to the nodal

point (Fig. 2). Thus, the integral of Im
12 becomes zero, not

Kp/2lm. Similarly, ImC1
12 is zero instead of Kp/2lmC1. This

is beyond the accepted conception that the rK1 and rK2

integrations cannot be integrated for one-side limit and the

combined limits exist only when constant ratio’s limit of the

two-side is applied [34]. Present results show that

integration limits exist without any constraints.

It is of interest to know the errors contributed by the

wrong estimations of Im
12 and ImC1

12 to the whole boundary
integral,
Pn

eZ1 Ie, in Eq. (3). Let EmZKp/2lm and

EmC1ZKp/2lmC1, and referring to the assumption of

linear distribution of F along the boundary, the errors, E,

derived from Eqs. (2)–(5), can be expressed as

E Z xm
jC1EmFm

j Kxm
j EmFm

jC1 CxmC1
jC1 EmC1FmC1

j

KxmC1
j EmC1FmC1

jC1

Z Em½ðxm
jC1 KxpÞF

m
j C ðxp Kx

m
j ÞF

m
jC1 K ðFm

jC1 KF
m
j Þxp�
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jC1 KxpÞF
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j ÞFmC1
jC1

K ðFmC1
jC1 KFmC1

j Þxp� Z ðEm,lm CEmC1,lmC1ÞFðpÞ

ZKpFðpÞ ð12Þ

where xPZ0.

The result reveals that a value of pF(p) is under-

estimated due to the incorrect estimation of angle terms. If

one has done the boundary element integration correctly,

consistent results must be obtained when the field point is

either on the boundary or as an interior point approaching

the boundary. In this way the errors, leading to the

traditional inference that there is a numerical boundary

layer or a jump term, are corrected. In Section 2.3, the

inference will be discussed more formally and a new insight

is proposed.
2.3. Direct approach method

When the source point is treated as an interior point and

moved infinitesimally towards the node QmC1 along a

straight path, PQmþ1 with an arbitrary angle g relative to h

direction (Fig. 3(a)–(c)), the limits of the integrations in

Eqs. (6)–(9) are calculated according to the following

algorithms:
(1)
 For either mth or (mC1)th element, hiZ0 in all cases.
(2)
 For the case of sharp interior angle a as shown in

Fig. 3(a), qm
j and qm

jC1 approach g and Kp/2,

respectively, when the interior source point P moves

toward the nodal point. Meanwhile, qmC1
j and qmC1

jC1

approach p–g–a and p/2, respectively, in the limiting

process.
(3)
 xm
j , the same as that in the contour approach method,

equals to the length of mth element, Klm. Likewise,

xm
jC1 Z0, xmC1

j Z0 and xmC1
jC1 Z lmC1.
(4)
 According to the previous results, the integral values for

I11, I12, I21 and I22 are
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Fig. 3. (a) When a!908. (b) When 908!a!1808. (c) When 1808!a!3608.
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It is noted that the previous results are the same for the

case of interior angel greater than 908 and less than 1808,

and the case of interior angel greater than 1808, as shown in

Fig. 3(b) and (c).

By comparing the difference between the contour

approach method and the direct approach method, it can

be found that the values of Im
12 and ImC1

12 in these two methods

are not the same. In the direct approach method, it can be
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seen from Fig. 3(a) that qm
jC1 in Im

12 and qmC1
j in ImC1

12 remains

the angles of Kg and K(p–g–a) as the source

point approaches nodal point Qm. The same as contour

approach method, qm
j in Im

12 and qmC1
jC1 in ImC1

12 approach Kp/2

and p/2.

Thus, in evaluating the potential on the mth node, the

difference of the two methods on the right hand side of

Eq. (10) is

ðI 0m C I 0mC1ÞK ðIm C ImC1Þ

Z xm
jC1DmFm

j Kxm
j DmFm

jC1 CxmC1
jC1 DmC1FmC1

j

KxmC1
j DmC1FmC1

jC1

Z Dm½ðxm
jC1 KxpÞF

m
j C ðxp Kxm

j ÞF
m
jC1

K ðFm
jC1 KFm

j Þxp�CDmC1½ðxmC1
jC1 KxpÞF

mC1
j

C ðxp Kx
mC1
j ÞFmC1

jC1 K ðFmC1
jC1 KF

mC1
j Þxp�

Z ðDm$lm CDmC1$lmC1ÞFðpÞ Z ð2p KaÞFðpÞ ð14Þ

where xpZ0, Dm Z ½KgC ðp=2Þ�=lm, and DmC1 Z ½p=2C
ðgCpKaÞ�=lmC1.

The same result can also be reached when different types

of interior angles in Fig. 3(b) and (c) are considered.

For different concepts of contour and direct approach

methods, the discretized boundary element integral

equation, Eq. (10), can be written, respectively, as:

aFðPÞ Z
XmK1

eZ1

Ie

 !
C Im C ImC1 C

Xn

eZmC2

Ie

 !
(15)

2pFðPÞ Z
XmK1

eZ1

Ie

 !
C I 0m C I 0mC1 C

Xn

eZmC2

Ie

 !
(16)

It is obvious that Eqs. (15) and (16) are identical when

Eq. (14) is substituted into Eq. (16). This result indicates that

Eq. (16) can be applied anywhere on the domain, including

the boundary, with correct evaluations of the integration on

the right hand side of Eq. (1). It also reveals that the source

point can be located anywhere—from the interior to the

boundary of the domain, without any hindering from

mathematical singularity. The continuity of the numerical

results in the boundary approaching process is then expected.

Present formulations step-by-step show that both the contour

approach method and the direct approach method perform

correctly. It does not require special complicated mathemat-

ical manipulation. Meanwhile, it plays an important role in

the coding process when the computation of physical

quantities near the boundary are desired.
Fig. 4. (a) Illustration of physical singularities. (b) Complex mapping from

W-plane to Z-plane.
2.4. Higher degree polynomial shape functions

of the boundary values

To assure the non-existence of boundary layer in

boundary integrals, higher degree polynomial shape func-

tions of the boundary values are employed in new

formulation of the integration analytically. It can be easily
observed that higher order polynomial terms can be reduced

to similar terms of linear elements with the following

equation [35]:ð
xmC1ða CbxnÞpdx Z

1

bðm CnpÞ
½xmKnða CbxnÞpC1

K ðm KnÞa

ð
xmKnK1ða CbxnÞpdx�

ð17Þ

In present case, aZh2
i , bZ1, nZ2, pZK1, xZx, that isð

xmK1

x2 Ch2
i

� �
dx Z

1

m K2

� �
xmK2 Kh2

i

ð
xmK3

x2 Ch2
i

� �
dx

ðmR3Þ ð18Þ

Thus, for any higher-degree shape function, the high

degree terms can be reduced to the zeroth, first- and second-

degree terms easily, which Liggett and Liu [4] had described

in analytical forms. As the source point approaches to the

boundary (i.e. hi/0), the second term in Eq. (18) converges

to zero and the first term is finite. Thus, the error in

evaluation of the arc-tangent term appears only in the zeroth

degree term, but not in higher-degree integration. That is,

there will not be any additional value contributed to the

coefficient of potential from the higher-degree terms.
3. Physical singularities in BEM

Physical singularities arise from the degenerated bound-

ary or a change in boundary condition [36]. A typical

example is illustrated in Fig. 4(a). When water flows in

channel (1) with straight and smooth boundaries, the

potential and derivative of potential can be obtained

everywhere, without the singularity problem. However, as

the boundaries degenerate, like channel (2), a multi-value

problem will appear accordingly at the vertices, and the

defining of the potential derivatives becomes difficult.

The phenomenon originates from drastic boundary vari-

ations. To distinguish this with mathematical singularities,

they are termed as ‘physical singularities’. For potential



Fig. 5. Geometry and boundary conditions of the numerical example with

eight-point grid system [4].
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problems, it is worth noting that the potential lines and

streamlines passing three points a, b and c are not

orthogonal, implying multi-derivative values, even though

the potentials on those points are unique. Furthermore, at

point a, the behavior of potential value is focusing while the

potentials are diverging at points b and c. These kinds of

physical singularities at b, c and a can be called as ‘weak

singularities’ and ‘strong singularities’, respectively.

The singularity problem mentioned above derives from

the corner containing two Dirichlet boundaries, is also

called ‘geometrical singularity’. However, physical singu-

larity is not confined to the geometric singularity. When

mixed boundary conditions (for example, Dirichlet con-

dition on an element and Neumann condition on its

neighboring element), are imposed on a smooth boundary,

the normal gradient is still undefined at the intersection of

these two elements, that is, the stream lines and the potential

lines for potential flow are still not perpendicular to each

other, then the physical singularity exists but there is no

geometrical singularity. Under these circumstances, one has

to use special techniques to resolve the normal gradient at

the singular points in case using conforming elements [37].

In the past few years, the classification of mathematical

singularities and physical singularities are obscure. Usually,

they are treated collectively and are called singularity

problems. In fact, only physical singularity (geometric

singularity) exists in the BEM as the non-existence of

mathematical singularities has just been proved.

Several methods have been proposed to resolve physical

singularity problems [31–33]. However, a simple complex

mapping technique is presented in this section.

By using complex transform from W-plane to Z-plane as

shown in Fig. 4(b), the effect of physical singularities can be

overcome easily [38]

Z KZ0 Z
d

b
ðW KW0Þ

b=d (19)

where d is the angle between two straight lines to be

transformed on the original W-plane and b is the transformed

angle on the Z-plane. W0 and Z0 are the branch points on the

W-plane and Z-plane, respectively. The physically singular

point is represented as W0 and the angle of the degenerated

boundary on W-plane is transformed into designated angles

such as p or p/2 on Z-plane. The points of these two straight

lines are also transformed to Z-plane. The procedures are

applied repeatedly until the original domain is transformed

into a hyper-rectangular area, which consists of four smooth

boundaries with four right corner angles [38]. These

procedures eliminate possible physical singularities and

prepare a perfect domain for potential functions. The

potential can be calculated in the Z-plane by using BEM,

including all the boundary points. Results of potentials and its

derivatives on the W-plane are obtained by inverse mapping

of Eq. (19). The derivatives of the potential on Z-plane,

however, should be multiplied by a Jacobian factor in the

inverse transformation to the W-plane.
For comparisons, four nodal-point allocation strategies to

improve accuracy in a problem with physical singularities

are proposed. That is, The singular-point elements divided

method (SED), overall elements divided (OED), mapping

and singular-point elements divided (MSED), and mapping

and overall elements divided (MOED).

The SED is a strategy of nodal points allocation by

adding points that divide merely the elements next to the

physically singular points in each computation. And, the

iterations are repeated until the absolute error is below a

threshold. Similarly, the OED is developed to divide every

boundary element into one half in each run. The MSED is a

method to implement the SED after the complex mapping.

So does the MOED to the OED after the complex mapping.

Among the four strategies, two methods containing

complex mappings can largely reduce the errors thanking to

the physical singularities. However, it may result in the non-

linearity when a linear boundary is transformed into the

corresponding non-linear boundary by complex mapping.

For general cases, the former error will be greater than the

latter one. Thus, MSED and MOED are much more efficient

in the treatment of singularity problems. This is to be

discussed in detail in Section 4.5.
4. Benchmark problems

Seven benchmark problems are presented in this section

to examine the validity of present approaches. The first four

benchmark problems are selected to illustrate the non-

existence of numerical boundary layer. The following three

problems are used to outline the complex mapping methods

in treating the physical singularities. Fortran computer

programs offered by Liggett and Liu are modified to

perform the computations. The results are very satisfactory

when compared with the exact solutions.
4.1. Standard rectangular region

As shown in Fig. 5 [4], a problem composed of

rectangular boundaries with two Dirichlet boundary



Table 1b

Numerical results for the benchmark problem of standard rectangular region using direct approach method

x y Computed Fc Exact Fr x y Computed Fc Exact Fr

0.0 0.0 K1.000000002 K1 1.0 0.6 0.000000011 0

0.0 0.2 K1.000000006 K1 1.0 0.8 0.000000014 0

0.0 0.4 K1.000000005 K1 1.0 1.0 0.000000019 0

0.0 0.6 K1.000000002 K1 1.5 0.0 0.500000008 0.5

0.0 0.8 K0.999999999 K1 1.5 0.2 0.500000008 0.5

0.0 1.0 K0.999999992 K1 1.5 0.4 0.500000010 0.5

0.5 0.0 K0.499999998 K0.5 1.5 0.6 0.500000012 0.5

0.5 0.2 K0.499999999 K0.5 1.5 0.8 0.500000015 0.5

0.5 0.4 K0.499999999 K0.5 1.5 1.0 0.500000017 0.5

0.5 0.6 K0.499999999 K0.5 2.0 0.0 1.000000003 1

0.5 0.8 K0.499999998 K0.5 2.0 0.2 0.999999999 1

0.5 1.0 K0.499999997 K0.5 2.0 0.4 1.000000000 1

1.0 0.0 0.000000011 0 2.0 0.6 1.000000009 1

1.0 0.2 0.000000009 0 2.0 0.8 1.000000024 1

1.0 0.4 0.000000009 0 2.0 1.0 1.000000055 1

Erms Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

iZ1
ðFc

i
KFr

i
Þ2

nK1

p
Z1:401!10K8.

Fig. 6. Geometry and boundary conditions of the triangular region problem

with three-grid system [22].

Table 1a

Numerical results for the benchmark problem of standard rectangular region using contour approach method

x y Computed Fc Exact Fr x y Computed Fc Exact Fr

0.0 0.0 K1.000000000 K1 1.0 0.6 0.000000002 0

0.0 0.2 K1.000000000 K1 1.0 0.8 0.000000001 0

0.0 0.4 K1.000000000 K1 1.0 1.0 0.000000003 0

0.0 0.6 K0.999999900 K1 1.5 0.0 0.500000000 0.5

0.0 0.8 K1.000000000 K1 1.5 0.2 0.500000000 0.5

0.0 1.0 K1.000000000 K1 1.5 0.4 0.500000000 0.5

0.5 0.0 K0.500000000 K0.5 1.5 0.6 0.500000000 0.5

0.5 0.2 K0.500000000 K0.5 1.5 0.8 0.500000000 0.5

0.5 0.4 K0.500000000 K0.5 1.5 1.0 0.500000100 0.5

0.5 0.6 K0.500000000 K0.5 2.0 0.0 1.000000000 1

0.5 0.8 K0.500000000 K0.5 2.0 0.2 1.000000000 1

0.5 1.0 K0.500000000 K0.5 2.0 0.4 0.999999900 1

1.0 0.0 0.000000029 0 2.0 0.6 0.999999800 1

1.0 0.2 0.000000006 0 2.0 0.8 0.999999900 1

1.0 0.4 0.000000007 0 2.0 1.0 0.999999800 1

Erms Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

iZ1
ðFc

i
KFr

i
Þ2

nK1

p
Z6:458!10K8.
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conditions and two Neumann boundary conditions is taken

as the first benchmark study.

By applying the two methods mentioned in the previous

section with four elements, the results are presented in

Table 1. It can be seen that any point in the domain can be

accurately computed by these two methods, even the

boundary points. The error for each point is smaller than

10K7 and the root-mean-square error

Erms Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

iZ1ðF
c
i KFr

i Þ
2

n K1

q
where Fc is the numerical solution and Fr the exact solution,

are as small as 6.458!10K8 and 1.401!10K8 for the two

present methods. The good agreements between the

numerical results and the exact solutions for the boundary

points in Table 1 indicates that the two methods can directly

apply to the boundary points. The main point of this

example is to show that there is in fact no numerical

boundary layer when using analytical analysis [4].
4.2. Triangular region problem

The problem shown in Fig. 6 [28] is composed of one

Dirichlet and two Neumann boundary conditions. The

equal-potential lines are parallel to the hypotenuse and the

exact solution is FZxKy. Although the geometry in this



Table 2a

Numerical results for the benchmark problem of triangular region using

contour approach method (ErmsZ5.033!10K8)

(x,y) Computed solution Exact solution

(0,0) 0.000000036 0

(1,1) 0.000000061 0

(1,0) 1.000000007 1

Table 2b

Numerical results for the benchmark problem of triangular region using

direct approach method (ErmsZ7.906!10K9)

(x,y) Computed solution Exact solution

(0,0) 0.000000005 0

(1,1) 0.000000008 0

(1,0) 1.000000006 1
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problem contains three corners, it is not really a so-called

‘corner problem’. For there are no physical singularities in

this triangular domain.

Three nodal points are used in the numerical compu-

tations. The computed potentials on the three corners agree

with the exact solutions very well as shown in Table 2. And

the root-mean-square errors, Erms, for the contour and the

direct approach methods are ErmsZ5.033!10K8 and

7.906!10K9, respectively.
4.3. Kisu’s problem

This problem was first brought up by Kisu [7] in 1988

and was revisited by Chen [18] in 1994. It was intended to

explain the boundary effect when the source point is near the

boundary. A rectangular region with two Dirichlet and two

Neumann boundary conditions is considered as shown in

Fig. 7. The exact solution is FZ0.5(xKy), thus vF/vxZ0.5,

and vF/vyZK0.5 everywhere.

Kisu pointed out that the nearer the source point to the

boundary is, the more the results deteriorate. Also, the

results of the potential gradient near the boundary become

only half of the exact solutions on the boundary [7]. The

problem is successfully resolved by Chen in 1994 [18] with

dual boundary integral equations.

This is now known as the result of the incorrect

estimation of the integral on the right hand side of Eq. (1).
Fig. 7. Illustrative example for the boundary effect [7].
Instead of using the more complicated dual method

introduced by Chen, two much simpler methods have

been developed in this paper which are deemed adequate for

analyzing this problem.

In present computations, only four boundary elements

are adopted compared with 20 boundary elements employed

by Kisu. Present results show that no matter how close the

source point to the boundary, even right on the boundary,

the computed potential gradient is almost the same as the

analytical solution shown in Table 3. Furthermore, the root

mean square errors for both present methods are as tiny as 0,

0 and 3.1!10K11 for potential and potential gradient values

in x- and y-direction, respectively. It is such that the

applicability of the present two methods in calculation of

gradients is satisfactory.

4.4. Non-linear boundary’s problem

This benchmark problem is selected to illustrate the

application of present results on the curved boundary

problem. It is a potential flow problem within an elliptical

domain (Fig. 8): x1Z2 cos q and x2Zsin q studied by Hang

and Norio [39]. The Dirichlet boundary conditions can be

obtained from the definition of potential

f Z
1

2
½ðx1 C1Þ2 C ðx2 K3Þ2� (20)

Comparisons are made between present results and the

results by Hang and Norio [39]. In their paper, Hang and

Norio applied the modified Gauss–Tschebyscheff quad-

rature formula with the aid of the approximate distance

function in the computations. By using 64 linear elements

with 64 unknowns in our computations, the ErmsZ0.000076

show that the present result is better than that by

Hang (ErmsZ0.000173) who used 16 cubic Hermite

spline elements which consist of 64 unknowns also

(Table 4).

4.5. Cut-off problem

The sheetpile cut-off wall is built commonly on the

underside of a dam to prevent the seepage force. The tip of

the cut-off wall is a typical example for the physical

singularity. In order to make comparisons with the results by

Liggett and Liu [4] and Detournay [30], a half-domain of the

cut-off problem is computed first (Fig. 9). The advantage of

symmetry in this problem has been taken to simplify the

numerical efforts.

With complex mapping, the physical domain is trans-

formed into a hyper-rectangular area which has four

right-angle corners. Thus, the physical singularities are

eliminated (Fig. 10). Under the complex non-linear mapping

of Eq. (19), a straight line may be transformed into a curved

one. For example, the circled point 5 standing for the strong

singularity at the tip of cut-off wall on physical domain is no

longer a physically singular point on the mapped domain.



Table 3a

Numerical results for Kisu’s problem (1988) using contour approach method

x y Computed F Computed vF/vx Computed vF/vy

0.5 1.000000000 K0.250000000 0.500000000 K0.499999999

0.5 0.999999000 K0.249999500 0.500000000 K0.500000000

0.5 0.999990000 K0.249995000 0.500000000 K0.500000000

0.5 0.999900000 K0.249950000 0.500000000 K0.500000000

0.5 0.999000000 K0.249500000 0.500000000 K0.500000000

0.5 0.990000000 K0.245000000 0.500000000 K0.500000000

0.5 0.900000000 K0.200000000 0.500000000 K0.500000000

0.5 0.800000000 K0.150000000 0.500000000 K0.500000000

0.5 0.700000000 K0.100000000 0.500000000 K0.500000000

0.5 0.600000000 K0.050000000 0.500000000 K0.500000000

0.5 0.500000000 0.000000000 0.500000000 K0.500000000

0.5 0.400000000 0.050000000 0.500000000 K0.500000001

0.5 0.300000000 0.100000000 0.500000000 K0.500000000

0.5 0.200000000 0.150000000 0.500000000 K0.500000000

0.5 0.100000000 0.200000000 0.500000000 K0.500000000

0.5 0.010000000 0.245000000 0.500000000 K0.500000000

0.5 0.001000000 0.249500000 0.500000000 K0.500000000

0.5 0.000100000 0.249950000 0.500000000 K0.500000000

0.5 0.000010000 0.249995000 0.500000000 K0.500000000

0.5 0.000001000 0.249999500 0.500000000 K0.500000000

0.5 0.000000000 0.250000000 0.500000000 K0.500000000

Erms 0 0 3.1!10K11
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In this case, 13 elements including 13 unknowns are

taken to generate the results. To test convergence, six

methods are compared, namely, the singular-point elements

divided method (SED), the overall elements divided (OED),

the mapping and singular-point elements divided (MSED),

the mapping and overall elements divided (MOED), the

singular element method by Liggett and Liu [4], and the

Cauchy integral element method by Detournay [30]

Physical quantities of seven points along the cut-off wall
Table 3b

Numerical results for Kisu’s problem (1988) using direct approach method

x y Computed F

0.5 1.000000000 K0.250000000

0.5 0.999999000 K0.249999500

0.5 0.999990000 K0.249995000

0.5 0.999900000 K0.249950000

0.5 0.999000000 K0.249500000

0.5 0.990000000 K0.245000000

0.5 0.900000000 K0.200000000

0.5 0.800000000 K0.150000000

0.5 0.700000000 K0.100000000

0.5 0.600000000 K0.050000000

0.5 0.500000000 0.000000000

0.5 0.400000000 0.050000000

0.5 0.300000000 0.100000000

0.5 0.200000000 0.150000000

0.5 0.100000000 0.200000000

0.5 0.010000000 0.245000000

0.5 0.001000000 0.249500000

0.5 0.000100000 0.249950000

0.5 0.000010000 0.249995000

0.5 0.000001000 0.249999500

0.5 0.000000000 0.250000000

Erms 0
as shown in Fig. 9 are calculated. The results in Fig. 11 show

that the SED is apparently superior to the OED as any one of

the seven points possesses less absolute error. The inference

can thus be drawn: SED is more efficient in treating a drastic

variation of the potentials in the vicinity of the physically

singular points.

On the other hand, as indicated by Fig. 11, both results

of the MSED and the MOED present good agreement

with analytical solutions, numerical results by Liggett
Computed vF/vx Computed vF/vy

0.500000000 K0.499999999

0.500000000 K0.500000000

0.500000000 K0.500000000

0.500000000 K0.500000000

0.500000000 K0.500000000

0.500000000 K0.500000000

0.500000000 K0.500000000

0.500000000 K0.500000000

0.500000000 K0.500000000

0.500000000 K0.500000000

0.500000000 K0.500000000

0.500000000 K0.500000001

0.500000000 K0.500000000

0.500000000 K0.500000000

0.500000000 K0.500000000

0.500000000 K0.500000000

0.500000000 K0.500000000

0.500000000 K0.500000000

0.500000000 K0.500000000

0.500000000 K0.500000000

0.500000000 K0.500000000

0 3.1!10K11



Fig. 9. Geometry and boundary conditions of the sheetpile cut-off wall

problem with thirteen-point grid system [4].

Fig. 8. Illustrative example of elliptical domain for non-linear boundary

case [39].
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and Liu [4], and results by Detournay [30]. The two have

shown that the mapping method performs faster conver-

gence than either by S.E.D or by the OED alone. Moreover,

compared with the other points, the result of the tip of the

cut-off, computed by the complex mapping methods, is

especially accurate as shown in Fig. 11. It reveals the

capability of complex mapping method in capturing the

solutions of physically strong singular points.

Interestingly, it can also be observed from Fig. 11 that

after complex mapping, the MOED is a little more accurate

than the MSED, which is quite the opposite of the situation

before mapping. It is possibly due to the more appropriate

lineralization of the boundary elements in MOED than in

MSED.
Table 4

Comparisons between present results and results by Hang and Norio [39]

for a two-dimensional potential problem in an elliptic domain

Position of

source point

Present results; Hang

and Norio [39]; exact

solutions

Relative errors

Present Hang, etc.

x
p
1 Z1:9800 1.441847 0.000004 0.000058

x
p
2 Z0:0000 1.441768

d0 Z0:0200 1.441853

x
p
1 Z1:0663 1.472718 0.000052 0.000007

x
p
2 ZK0:8401 1.472651

d0 Z0:005937 1.472640

x
p
1 ZK1:5523 0.890953 0.000056 0.000263

x
p
2 Z0:6258 0.890770

d0 Z0:004385 0.891003

x
p
1 ZK1:9578 1.205839 0.000055 0.000128

x
p
2 ZK0:1995 1.206033

d0 Z0:001145 1.205906

x
p
1 ZK1:5561 0.890641 0.000099 0.000266

x
p
2 Z0:6274 0.890503

d0 Z0:00101 0.890740

x
p
1 ZK1:9587 1.205941 0.000078 0.000124

x
p
2 ZK0:1996 1.206143

d0 Z0:0002 1.206019

Erms 0.000076 0.000173

p, Base point; d0, distance to the boundary.
The conclusion can thus be reached that the MOED is the

most suitable method to solve singular problems. Therefore,

the subsequent benchmark problems having physical

singularities will be solved only by the MOED method,

for brevity.

Because of the double elements occupying the same

place along the cut-off, the singular point at the tip of cut-

off wall is more difficult to be dealt with numerically

when the whole-domain is taken into accounts (Fig. 12).

To test applicability of present method, a whole-domain is

also re-examined numerically for comparisons. There are

fourteen nodal points that are used, including two

elements along the cut-off wall. The validity of the

methods is demonstrated again as the absolute errors are

all within 10K2 and the improvement of the error is

apparent for that the Erms is reduced from 0.0025 to
Fig. 10. Half cut-off geometry on the mapped domain.
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0.0018 when compared with the result by Liggett and Liu

[4]. It should be noticed that the present methods are still

the traditional BEM methods with just a correct

integration conception. The memory used in the compu-

tation is thus the same as the traditional one. But

compared with the more complicated and time-consuming
Fig. 11. Comparisons of present n
CVBEM by Detournay who used power series to simulate

the complex density distribution in a Cauchy integral over

the boundary element, the error is still larger as shown in

Table 5.

It can be seen that the computations with the whole-

domain are more accurate than that with the half one.
umerical results with other solutions.



Fig. 11 (continued)

Fig. 12. Geometry and boundary conditions of the sheetpile cut-off problem

with 24-point grid system [4].
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That may be explained by error deduction which occurs in

computations with symmetrical geometries and boundary

conditions.

4.6. Wedge problem

Similar to the cut-off problem, the wedge problem [4,30]

is calculated and discussed with both half- and whole-

domains as sketched in Fig. 13. The problem is in fact the

well-known corner problem because it includes three

singular corners in the whole-domain and two in the half-

domain. It is noticed that, for the latter, there exist only one

strong and one weak physical singularities. But for the

former, there are one strong and two weak singularities

instead.

Six and eight elements are adopted in the computation

in half and whole-domains of wedge, respectively.
The numerical results are presented in Tables 6(a) and

6(b). No solutions are calculated at the point of strong

singularity by Detournay [30]. Both present results show

good agreement with the exact solutions.



Fig. 13. (a) Geometry and boundary conditions of the right-angled wedge problem with six-point grid system; only half of the domain is considered [30]. (b)

Geometry and boundary conditions of the right-angled wedge problem with eight-point grid system [30].

Table 5

Numerical results of F for the whole cut-off wall problem using MOED method

y 0.5 0.51414 0.54243 0.64142 0.76090 0.78284 1.0 Erms

Exact solution 0.0000 0.1096 0.1869 0.3225 0.4057 0.4159 0.4614

Liggett and

Liu

– 0.1091 0.1859 0.3210 0.4090 0.4144 0.4576 0.0025

Detournay 0.0011 0.1096 0.1862 0.3208 0.4043 0.4144 0.4593 0.0015

Present results K0.0026 0.1075 0.1852 0.3215 0.4056 0.4161 0.4633 0.0018
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4.7. Motz problem

The geometry and boundary conditions of the Motz

benchmark problem is shown in Fig. 14 [30,40]. Twelve
Table 6b

Numerical results of F for the whole wedge problem using MOED method

x y Exact solution; numerical solution,

Detournay [30]; present numerical results

1 0.5 0

–

K0.000000034

1.25 0.75 0.521

0.522

0.519

1.5 1.0 0.729

0.730

0.730

Erms (Detournay)Z0.0014; Erms (present)Z0.0016.

Table 6a

Numerical results of F for the right-half wedge problem using MOED

method

x y Exact solution; numerical, Detournay

[30]; present numerical results

0 0.5 0

–

0.000000017

0.25 0.75 0.521

0.522

0.520

0.5 1.0 0.729

0.730

0.733

Erms (Detournay)Z0.0014; Erms (present)Z0.0029.
elements having 12 unknowns are employed to obtain the

solution. In Table 5, the present results are compared with

numerical results by Detournay [30] and analytical

solutions by Whiteman and Papamichael [40]. For each

computed point, the error is within the order of 10K3

(Table 7).

To sum up, two methods developed in this paper perform

very well in the calculation of the 2D potential flow

problems. For references purposes, the detailed compu-

tational data are listed: all the calculations are carried out in

double precision and the CPU time for the computer with

T2350 Dual Processors, 256 MB RAM, and NT system

ranges from O(10K3) to 216 s for 13 elements and 1664

elements in the SED or OED methods in the half cut-off wall

problem. For the other problems, the CPU time is shorter

than O(10K1) s.
Fig. 14. Geometry and boundary conditions of the Motz problem with 12-

point grid system [30].



Table 7

Numerical results for the Motz problem using MOED method

y x

K6 K4 K2 0 2 4 6

6 0.5913 0.6089 0.6455 0.7021 0.7763 0.8620 0.9535

0.5915 0.6091 0.6459 0.7022 0.7760 0.8620 0.9535

0.5917 0.6097 0.6467 0.7033 0.7770 0.8624 0.9537

4 0.5741 0.5898 0.6248 0.6839 0.7648 0.8567 0.9520

0.5743 0.5900 0.6249 0.6840 0.7648 0.8567 0.9520

0.5742 0.5902 0.6254 0.6847 0.7655 0.8571 0.9522

2 0.5418 0.5520 0.5786 0.6416 0.7438 0.8486 0.9500

0.5420 0.5522 0.5787 0.6416 0.7439 0.8486 0.9500

0.5419 0.5521 0.5788 0.6421 0.7446 0.8490 0.9497

0 0.5000 0.5000 0.5000 0.5000 0.7285 0.8444 0.9489

0.5000 0.5004 0.5001 0.4991 0.7290 0.8441 0.9489

0.5010 0.5000 0.4937 0.4985 0.7299 0.8444 0.9489

Top: exact solutions; middle: Detournay [30]; bottom: present results. Erms (Detournay)Z0.0003; Erms (present)Z0.0014.

J. Wang, T.-K. Tsay / Engineering Analysis with Boundary Elements 29 (2005) 241–256 255
5. Conclusions

Singularity problems are important in many fields of

applied mechanics. In this paper, the singularity problems

are classified to be mathematical singularity and physical

singularity. Two approaches, the contour approach and the

direct approach, are developed step-by-step to prove that

the mathematical singularity can be shown to vanish in the

boundary element method. Thus, unlike what indicated by

Liggett [4], the so-called numerical boundary layer is in fact

does not exist under the analytical manipulation. Difficulties

of the physical singularities including strong and weak

singularities can be overcome by simple complex mapping.

Numerical results of seven benchmark problems are

calculated and compared with other available results to

demonstrate that the potential very near the boundary

(within 10K9 unit length) can be exactly estimated and the

complex mapping method is effective mean in solving the

physical singularities problems.
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