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Abstract

In this paper a new boundary method for Helmholtz eigenproblems in simply and multiply connected domains is presented. The method is

based on mathematically modelling the physical response of a system to external excitation over a range of frequencies. The response amplitudes

are then used to determine the resonant frequencies. So, contrary to the traditional scheme, the method described does not involve evaluation of

determinants of linear systems. The solution of an eigenvalue problem is reduced to a sequence of inhomogeneous problems with the differential

operator studied. The method shows a high precision in simply and multiply connected domains. The results of the numerical experiments

justifying the method are presented.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper we deal with the following eigenvalue

problem:

V2w Ck2w Z 0; x Z ðx1; x2Þ2U3R2; (1)

w Z 0; x2vU: (2)

Here U is a domain of interest with boundary vU. The

problem is to find such real k for which there exist non-null

functions w verifying (1), (2). As a mechanical or acoustic

application, this corresponds to recovering the resonance

frequencies of a system. Such problems often arise in

engineering applications. Boundary methods such as the

boundary elements method (BEM) [1,2] and the method of

fundamental solutions (MFS) [3–5] are the fastest and most

powerful tools in this field.

In the framework of the boundary methods a general

approach to solving this problem is as follows. First, using an

integral representation of w in the BEM, or an approximation

over fundamental solutions in MFS, one gets an homogeneous
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linear system with matrix elements depending on k:

ÂðkÞx Z 0

The determinant of the matrix must be zero to obtain the

nontrivial solution, i.e.

det½ÂðkÞ� Z 0

This equation must be solved numerically to get the

eigenvalues. This technique is described in [6–11] with more

details. In the three latest papers there is a complete

bibliography on the subject considered.

The method presented in this article is based on a

fundamentally different idea. This is a mathematical model

of physical measurements when the resonance frequencies of a

system are determined by the amplitude of response to some

external excitation. As a result, instead of (1), (2) we solve a

sequence of inhomogeneous problems

V2w Ck2w Z f ðxÞ; x Z ðx1; x2Þ2U3R2; (3)

w Z 0; x2vU; (4)

where f describes some source placed outside the solution

domain. Let F(k) be some norm of the solution w. This function

of k has maximums at the eigenvalues and, under some

conditions described below, can be used for their determining.

The outline of this paper is as follows: for the sake of

simplicity we begin by describing the 1D case in Section 2.
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Fig. 1. The resonance curve; (a) and b) without regularization; (c) and (d) regularization by an additional friction term: 3Z10K6; (e) and (f) regularization by shifting

of the wave numbers: DkZ1:
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In Section 3, we present the algorithm of MFS in application to

the problem considered in the 2D case. In Section 4, we present

numerical examples to illustrate the method presented for

simply and multiple connected domains. In particular, the case

of doubly connected region with the inner region of vanishing

maximal dimension which is important for technical appli-

cations is considered here.
Table 1

The resonance curve F(k) near the eigenvalue k1Zp

K 3.079 3.110 3.142 3.173 3.204 3.236

F(k) 7!10K16 3!10K14 0.7 3!10K14 1!10K14 7!10K15
2. The one dimensional case

To illustrate the method presented let us consider a

homogeneous string with fixed endpoints xZ0 and xZ1.

After the process of scaling one can write the wave equation in

the form [12]:

v2u

vt2
Z

v2u

vx2
; uð0; tÞ Z uð1; tÞ Z 0 (5)

Considering the free harmonic vibrations u(x,t)ZeKiktw(x)

we get the following 1D SturmKLiouville problem on the

interval [0,1]:

d2w

dx2
Ck2w Z 0; wð0Þ Z wð1Þ Z 0 (6)

The well known solution is: knZnp wnZsin(npx) nZ
1,2,.,N.
Following the boundary technique, let us consider the

fundamental solutions

Jðx; x; kÞ Z
1

2ki
exp ikjxKxj

� �
; (7)

which satisfy the equation everywhere except the singular

point x Z x. A general solution of the homogeneous equation

can be written in the form:

w Z q1Jðx; x1; kÞCq2Jðx; x2; kÞ:

Here x1,z2 are two source points placed outside the solution

domain [0,1]; q1,q2 are free parameters. Then, using the

boundary conditions w(0)Zw(1)Z0, one gets a 2!2

homogeneous linear system:

ÂðkÞq Z 0

Then the critical wave numbers kn can be determined from

the condition:

det½ÂðkÞ� Z 0



Table 2

One dimensional eigenproblem. The relative errors in calculations of the

eigenvalues. 3-procedure

kðexÞ
i

3Z0.1 3Z10K3 3Z10K6

p 1.3!10K4 1.3!10K8 1.7!10K12

2p 3.2!10K5 3.1!10K9 1.6!10K12

3p 1.4!10K5 1.4!10K9 1.5!10K12

4p 7.9!10K6 7.9!10K10 9.7!10K13

5p 5.1!10K6 5.0!10K10 9.0!10K13

6p 3.5!10K6 3.5!10K10 5.8!10K13

7p 2.6!10K6 2.6!10K10 9.2!10K13

8p 2.0!10K6 2.0!10K10 1.8!10K13

9p 1.6!10K6 1.6!10K10 5.3!10K13

10p 1.3!10K6 1.3!10K10 1.2!10K12
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This is the 1D scheme of applying the method of

fundamental solutions to eigenvalue problems. Note that the

components of the matrix ÂðkÞ are complex numbers, so the

determinant is a complex value too. In multidimensional cases

such computations are time consuming and not simple.

As it is mentioned above, the method suggested is a

mathematical model of physical measurements, when a

mechanical or acoustic system is excited by an external source

and resonance frequencies can be determined using an increase

of amplitude of oscillations near these frequencies. So, instead

of the homogeneous equation we solve the inhomogeneous

one:

d2w

dx2
Ck2w Z f ðxÞ: (8)

The general solution can be written in the form:

w Z q1Jðx; x1; kÞCq2Jðx; x2; kÞCwp: (9)

When the excitation is performed by the point source with

the same wave number k which is placed at the point x0 outside

the solution domain, then f(x)Zd(xKx0) and the particular

solution is

wp Z Jðx; x0; kÞ Z
1

2ki
exp ikjxKx0j

� �
: (10)

Using again the same homogeneous boundary conditions

w(0)Zw(1)Z0 now we get an inhomogeneous linear system

for each k.
Table 3

One dimensional eigenproblem. The relative errors in calculation of the

eigenvalues k-procedure

kðexÞ
i

DkZ0.1 DkZ1 DkZ10

p 1.4!10K11 9.1!10K12 7.8!10K12

2p 5.8!10K13 3.5!10K12 5.5!10K12

3p 6.4!10K12 1.3!10K12 3.5!10K12

4p 3.3!10K13 2.8!10K12 2.3!10K12

5p 5.3!10K12 3.5!10K12 5.9!10K13

6p 1.8!10K12 7.7!10K13 5.6!10K12

7p 1.4!10K12 2.6!10K12 1.6!10K12

8p 1.5!10K12 1.7!10K12 8.4!10K13

9p 3.2!10K12 5.9!10K13 1.2!10K13

10p 1.2!10K12 2.5!10K12 6.3!10K13
Let us introduce the norm of the solution as

FðkÞ Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nt

XNt

lZ1

jwðxt;lÞj
2

vuut ; FdðkÞ Z FðkÞ=Fð1Þ; (11)

where Fd is the relative value, k0Z1 is a reference wave number

and the Nt testing points xt,l are randomly distributed in [0,1]. In

all the calculations presented in this section we use NtZ5. Note

that the method is not very sensitive to the number of points xt,l.

But what is more important, they should be placed in an

irregular way, i.e. where the eigenmode being investigated has

non-zero values. E.g. the mode wnZsin(npx) is equal to zero

when xZ1/n. This norm function characterizes the value of the

response of the system to the outer excitation. Note that the right

hand side f corresponding to (10) equals to zero identically

inside [0,1] and BVP (8) has a unique solution wZ0 for all k

except kZkn—eigenvalues when the solution is not unique.

In Fig. 1a, the value ln Fd as a function of the wave number k

is depicted. The graph contains large sharp peaks at the

positions of eigenvalues. Generally speaking, this resonance

curve can be used to determine the eigenvalues in the same way

as det ÂðkÞ in the technique described above. However, the

graph Fd(k) is a non-smooth one, as it is shown in Fig. 1b, with

more details. This can be explained by the following reasons.

Let us consider Eq. (9) with wp given in (10). We assume that

x1!0, x2O1 and x0O1. It is easy to show that there exists the

exact solution q1Z0, q2ZKeik(x0Kx2) and so the total solution

w(x)Z0 for x2[0,1]. This result can be illustrated by the data

placed in Table 1 where we present behaviour of F(k) in a

neighbourhood of the critical wave number k1Zp. So, here we

have F(k) which is equal to zero with machine precision

accuracy when k is far from eigenvalues; F(k) grows

considerably in a neighbourhood of the eigenvalues when the

linear system becomes almost degenerated. Hence, F(k) is, in

fact, a pseudorandom variable of k.

Now we describe two regularizing procedures which give a

smooth resonance curve. The first procedure consists in
ζ1
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∂Ω

Ω

Fig. 2. Geometry configuration of a simply connected domain.
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Fig. 4. Geometry of the eigenproblem in a circular domain.
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introducing an additional friction term in the governing

equation. Let us consider the following equation which describes

vibration of an homogeneous string with a friction [12]:

v2u

vt2
Z

v2u

vx2
K3

vu

vt
; uð0; tÞ Z uð1; tÞ Z 0; (12)

where 3 is a small parameter. As a result, instead of (6) we get:

d2w

dx2
C k2 C i3k

� �
w Z 0; wð0Þ Z wð1Þ Z 0 (13)

with the fundamental solutions

Jðx; x; k; 3Þ Z
1

2ci
exp icjxKxj

� �
; c Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 C i3k

p
: (14)

Here the branch Re cR0 is taken.

Now the system:

wð0Þ Z 0; wð1Þ Z 0 (15)

with wp given in (10) has a non-zero solution for all real k. The

resonance curve corresponding to 3Z10K6 is depicted in

Fig. 1c and d. Now this is a smooth curve with separated

maximums at the positions of eigenvalues

The second regularizing technique is the following. Let us

introduce the constant shift Dk between the wave numbers of

the exciting source and the studied mode, i.e. instead of (10),

let us take the particular solution in the form:

wp Z Jðx; x0; k CDkÞ

Z
1

2ðk CDkÞi
exp iðk CDkÞjxKx0j

� �
: (16)

Now the linear system w(0)Zw(1)Z0 has non-zero solutions

for all k except the eigenvalues kn when the system becomes

degenerate. However, due to iterative procedure of solution

and rounding errors we never solve the system with the exact

kn. And we observe degeneration of the system as a

considerable growth of the solution in a neighbourhood of

the eigenvalues. The resonance curve corresponding to DkZ1

is depicted in Fig. 1 e and f. As with the first procedure we get a

smooth resonance curve.
Below we will name these techniques as 3-procedure and

k-procedure.

We use algorithm A throughout the paper to find the

eigenvalues. Let us look for the eigenvalues on the interval

[a,b] Then:

Algorithm A

step 0: Choose the step size hO0;

if F(a)OF(aCh) goto step 5;

step 1: k1Za; F1ZF(k1);

step 2: k2Zk1Ch; F2ZF(k2); if k2Ob stop;

step 3: if F2OF1 then [F1ZF2; k1Zk2]; goto step 2;

step 4: find the maximum point km of F(k) on [k2-2h,k2];

step 5: k1Za; F1ZF(k1);

step 6: k2Zk1Ch; F2ZF(k2);

If k2Ob stop;

step 7: if F2!F1 then [F1ZF2; k1Zk2; goto step 6;]

else goto step 2.

Note that any univariate optimization procedure can be used

at step 4. In particular, we applied Brent’s method based on a

combination of parabolic interpolation and bisection of the

function near to the extremum(see [13], [14]). The step is taken

hZ0.01 through the paper except the cases specified. The data



Table 4

Circle with radius rZ1 with Dirichlet boundary condition.The relative errors in calculations of the first 10 eigenvalues. 3-procedure with 3Z10K6

I kðexÞ
i

NZ10 NZ15 NZ20 NZ25 NZ30

1 2.4048255577 – 4.3!10K11 2.1!10K11 1.3!10K12 1.3!10K12

2 3.8317059702 – – 5.1!10K11 2.2!10K12 1.6!10K11

3 5.1356223072 – – 9.0!10K10 1.0!10K9 1.0!10K9

4 5.5200781103 – – – 1.4!10K12 2.2!10K12

5 6.3801619049 – – – 1.4!10K9 1.4!10K9

6 7.0155866698 – – – 1.7!10K11 1.9!10K12

7 7.5883424466 – – – 4.6!10K10 1.6!10K9

8 8.4172441621 – – – – 2.6!10K9

9 8.6537279129 – – – – 2.3!10K11

10 8.7714838419 – – – – 3.0!10K9
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placed in Table 2 are obtained using the 3-procedure with 3Z
0.1, 10K3, 10K6. Other parameters are: x1ZK0.5, x2Z1.5,

x0Z5. Here we place the relative errors

er Z
jkiKkðexÞ

i j

kðexÞ
i

(17)

in the calculation of the first ten eigenvalues. Some results of

the calculations we got using the k-procedure are presented in

Table 3. The values x1, x2, x0 are the same as above.
Table 5

Circular domain with the radius rZ1. Dirichlet condition. The relative errors in

calculations of the eigenvalues. 3-procedure with varying 3, NZ25

I 3Z10K2 3Z10K4 3Z10K6 3Z10K8

1 6.4!10K6 6.0!10K10 7.3!10K12 4.9!10K11

2 2.4!10K6 1.9!10K10 2.0!10K11 4.3!10K11

3 3.2!10K6 1.4!10K9 1.0!10K9 –

4 9.0!10K7 1.6!10K10 1.3!10K11 –

5 1.1!10K6 1.6!10K9 1.4 10K9 –

6 6.5!10K7 1.5!10K10 – –

7 4.9!10K7 4.8!10K10 – –

8 2.7!10K6 1.1!10K9 – –

9 4.9!10K7 5.9!10K9 – –

10 5.2!10K6 – – –
3. The two dimensional case

In this section we are dealing with the problem which is an

analog of the one considered above. Following the method

presented, we consider the inhomogeneous boundary value

problem:

V2w Ck2w Z f ðxÞ; x Z ðx1; x2Þ2U3R2; (18)

w Z 0; x2vU: (19)

Let wp be the particular solution corresponding to f. Then,

applying MFS technique an approximate solution is looked for

in the form of a linear combination:

w xjq
� �

Z wpðxÞC
XN

nZ1

qnFnðxÞ; (20)

where the trial functions Fn(x) satisfy the homogeneous PDE.

The free parameters qn should be chosen to satisfy the

boundary condition w(xjq)Z0,x2vU. In particular the

unknowns qn are taken as a solution of the minimization

problem:

min
q

XNc

iZ1

wpðxiÞC
XN

nZ1

qnFnðxiÞ

( )2

: (21)

Here the points xi, iZ1,.,Nc are distributed uniformly on

the boundary. We take Nc approximately twice as large as

the number of free parameters N. The problem is solved by

the standard least squares procedure. Note that we get (21) as

a result of discretization of the integral condition:
min
w

ð
vU

½wðxjqÞ�2 ds:

More details of this technique can be found, e.g. in [3–5].

For 2D Helmholtz operator V2Ck2 the following set of

fundamental solutions can be used as the trial functions:

FnðxÞ Z Hð1Þ
0 kjxKznj
� �

: (22)

Here Hð1Þ
0 ðzÞ, denotes the Hankel functions of the first kind

and zero order. The source points znZ(xn,hn), nZ1,2,.,N are

placed outside the solution domain as it is depicted in Fig. 2.

This is the so-called Kupradze basis [15]. As a particular

solution corresponding to the exciting source we take the same

fundamental solution

wpðxÞ Z Fexðx; zex; kÞhHð1Þ
0 kjxKzexj
� �

(23)

with zex placed outside the solution domain.

When we deal with problems in multiply connected

domains, the same trial functions can be used. And the source

points should be placed also inside each hole as it is depicted in

Fig. 3 a).

As an alternative approach one can use the special trial

functions associated with each hole:

Js;1ðxÞ Z Hð1Þ
0 ðkrsÞ; Js;2nC1ðxÞ Z Hð1Þ

n ðkrsÞcos nqs;

Js;2nðxÞ Z Hð1Þ
n ðkrsÞsin nqs:

(24)

Here rsZjxKxsj,qs is the local polar coordinate system with

the origin at the point xs of multipoles location(see Fig. 3b)).
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Fig. 5. Circular membrane with the radius 1. Dirichlet conditions. 3—procedure

with 3Z10K2.
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Fig. 7. Circular membrane with the radius 1. Dirichlet conditions. 3—procedure

with 3Z10K8.
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This is so-called Vekua basis [16,17] or multipole

expansion. It is proven that every regular solution of the 2D

Helmholtz equation in a domain with holes can be approxi-

mated with any desired accuracy by linear combinations of

such functions if the origin xs of a multipole is inside every

hole. In this case instead of (20) we use:

w xjq;ps

� �
Z wpðxÞC

XN

nZ1

qnFnðxÞ

C
XS

sZ1

XM

mZ1

ps;mJs;mðxÞ;

q Z ðqnÞ
N
nZ1; ps Z ðps;mÞ

M
mZ1;

(25)

where S is the number of holes and M is the number of terms in

each multipole expansion.

When the 3-smoothing procedure is applied, then according

to the method presented we consider the problem:
5
k

100
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300
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500

Fd

Fig. 6. Circular membrane with the radius 1. Dirichlet conditions. 3 - procedure

with 3Z10K4.
V2w C ðk2 C i3kÞw Z 0; x2U; wðxÞ ZKwpðxÞ;

x2vU
(26)

with some small 3O0. Note that since we shift the spectra of the

operator from the real axis the problem has a unique nonzero

solution for all real k. The trial functions (22) should be also

modified:

FnðxÞ Z Hð1Þ
0 cjxKznj
� �

; cðk; 3Þ Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 C i3k

p
: (27)

Applying the k-procedure we modify the particular solution

which should be taken in the form:

wpðxÞ Z Fexðx; ~kÞhHð1Þ
0

~kjxKzexj
� �

; ~k Z k CDk: (28)

Note that we do not need an explicit expression for the exciting

source because we use the corresponding particular solution only.
4. Numerical examples

In this section, numerical experiments are carried out to

examine the method presented and to compare the two

regularizing techniques introduced above. The data mainly

are taken from [8–11]. The Dirichlet condition is used on all the

boundaries through this section. In all the numerical examples

considered in this section the resonance curve F(k) is computed

using NtZ15 testing points xt,l2U (see (11)). They are

distributed inside U with the help of RNUF generator of

pseudorandom numbers from the Microsoft IMSL Library.

Note that in all the calculations presented in this section all the

values are taken in the dimensionless form. Examples are the

eigenvalues k placed in the tables are reduced to the

dimensionless form with the help of some typical dimension

a of the problem considered.
4.1. Simply connected domains

Example 1 A circular domain with the radius rZ1 subjected

to Dirichlet boundary condition is considered as it is depicted



Table 6

Circle with radius rZ1 with Dirichlet boundary condition.The relative errors in calculations of the first ten eigenvalues. k-procedure with DkZ1

i kðexÞ
i

NZ15 NZ20 NZ25 NZ30 NZ35

1 2.4048255577 8.9!10K9 8.9!10K9 8.9!10K9 8.9!10K9 8.9!10K9

2 3.8317059702 6.5!10K6 1.1!10K7 5.2!10K9 3.3 10K9 3.5!10K9

3 5.1356223072 5.3!10K5 5.4!10K7 7.8!10K9 5.1!10K10 5.0!10K10

4 5.5200781103 3.6!10K9 3.2!10K9 2.9!10K9 2.8!10K9 2.7!10K9

5 6.3801619049 8.2!10K4 3.2!10K6 4.4!10K8 4.5!10K9 4.5!10K9

6 7.0155866698 9.0!10K2 6.6!10K7 1.3!10K8 5.4!10K9 4.5!10K9

7 7.5883424466 7.6!10K2 3.7!10K5 2.0!10K7 5.1!10K9 3.4!10K9

8 8.4172441621 0.1 1.0!10K5 5.6!10K8 1.8!10K9 2.5!10K9

9 8.6537279129 0.1 1.2!10K11 1.8!10K11 1.5!10K12 1.5!10K12

10 8.7714838419 4.3!10K2 5.8!10K4 1.8!10K6 1.7!10K8 3.1!10K9

R=2

a=1

a=1

y

x

ζN

ζ1

ζ2

ζ3

ζex

Ω

Fig. 8. Geometry of the eigenproblem in the square.
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in Fig. 4. The exact eigenvalues kðexÞ
i are the roots of the

equation Jn(k)Z0, where Jn is the Bessel function of the first

kind and of order n.

First, we apply the 3- procedure. The exciting source

corresponding to particular solution (23) is placed at the

position zexZ(5,0); the source points of the MFS trial functions

(22) are located on the circle with the radius RZ2. The results

shown in Table 4 correspond to 3Z10K6. The calculations

were performed with different N—the number of the free

parameters in linear combination (20). The line—in a cell

indicates that the solution process failed with these parameters.

The role of the parameter 3 is shown in Table 5. Here we fix

NZ25 and change 3. The regularizing parameter 3 coarsens the

system. For a large 3 we can calculate all the eigenvalues k,iZ
1,.,10 but the accuracy is not very high. When 3 decreases,

the accuracy in determining ki increases but it fails for large i.

Figs. 5–7 correspond to the data placed in the table. For 3Z
10K2 the resonance peaks are spread because of the friction.

When 3 decreases the peaks become sharper and more narrow.

Besides for 3Z10K8 the peaks corresponding to ki,iO2 are

placed on the sharply rising part of the resonance curve. As a

result the algorithm A ‘jumps over’ the eigenvalues and one

should decrease the step parameter h to capture the maxima. As

it is shown in Table 5, for 3Z10K8 the algorithm finds k1 and k2

with hZ0.01. When h is reduced to 0.001 then the algorithm

also gives the eigenvalues k3 and k4. To get ki,iZ1,.,10 one

should take hZ0.0001. However, the algorithm becomes

highly expansive in the CPU time.

The data placed in Table 6 correspond to the same problem

with the application of the second regularization procedure

with the shift DkZ1. The method is not sensitive to the value of

the shift. We got approximately the same results for all Dk in

the interval [0.1,10].

Example 2 Next, we consider the case when U is the unit

square with the same Dirichlet boundary condition (see

Fig. 8).This problem has an analytical solution: kðexÞZ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
i2C j2

p
, i,jZ1,2,.,N. In Table 7, we present the results of

applying both regularizing techniques. The exciting source is

placed at the position zexZ(5,5).

Comparing these two regularizing techniques it should be

noted that they provide approximately the same accuracy.

However, the regularization with the help of an additional

friction term leads to calculations of Bessel functions with a

complex argument and is computationally demanding.
4.2. doubly connected domain

Example 3 In this subsection, first, we consider an annular

case (Fig. 9). The inner and outer radii of an annular domain are

r1Z0.5 and r2Z2 correspondingly. The singular points are

distributed at the circles with the radii aZ5(outside the

domain) and bZ0.3 (inside the hole). The numbers of the

singular points on each auxiliary contour is equal to N. The

exciting source is placed at the position zexZ(10,10). In

Table 8 we place the relative errors (17) in calculation of the

first ten eigenvalues of the problem described. The values kðexÞ
i

are obtained numerically as roots of the equation:

Jnðr1kÞYnðr2kÞKJnðr2kÞYnðr1kÞ Z 0 (29)

The results correspond to the k-procedure with the shift

DkZ1. Here, Jn and Yn are the Bessel functions of the first and

second kinds and of order n.

Example 4 An eccentric case is considered as the second

example. The radii of the inner and outer circular boundaries

are the same. But the center of the hole is placed at (-0.5,0). The

eigenvalues are calculated with a different number of the free

parameters N. The results are placed in Table 9. It appears that

the values of ki placed in the last column of Table 9 have

converged.

Example 5 In this case we considered the doubly connected

domain with the outer boundary of the square with the side 4



Table 7

Unit square with Dirichlet boundary condition.The relative errors in calculation of the first ten eigenvalues.The two types of the regularizing procedure. Parameters:

3Z10K6 and DkZ1.

Friction 3Z10K6 Shift DkZ1

i kðexÞ
i

NZ30 NZ40 NZ30 NZ40

1 4.4428829382 6.1!10K12 6.0!10K12 2.0!10K8 1.9!10K8

2 7.0248147310 7.7!10K11 5.8!10K12 1.2!10K9 1.2!10K11

3 8.8857658763 1.0!10K7 2.0!10K12 1.2!10K7 1.4!10K11

4 9.9345882658 7.5!10K11 3.4!10K12 9.4!10K9 4.6!10K10

5 11.3271733991 3.5!10K7 8.0!10K9 3.4!10K7 7.0!10K10

6 12.9531183434 6.3!10K6 7.6!10K9 6.4!10K6 3.1!10K9

7 13.3286488145 2.6!10K5 6.5!10K8 2.5!10K5 6.2!10K8

8 14.0496294621 3.3!10K6 1.1!10K7 3.4!10K6 2.2!10K9

9 15.7079632679 3.5!10K5 3.9!10K7 3.5!10K5 3.2!10K7

10 16.0190422444 4.1!10K5 1.7!10K6 4.0!10K5 1.4!10K6
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and the inner boundary of the circle with the radius 0.5. The

centre of the circular hole is placed at (K0.5,0). The

eigenvalues are calculated with a different number of the free

parameters N. The step of the algorithm A is taken hZ0.005,

The results are placed in Table 10.

Example 6 In this example, doubly connected region with

the inner region of vanishing maximal dimension is concerned.

The geometry of the problem is the same as in Example 3.

However, here we consider the case of very small inner holes.

In particular, we take r1Z10K1, 10K2, 10K3 with the same

fixed r2Z2. Now the Kupradze type basis functions (22) are

unfit to approximate solution in a neighbourhood of the hole

because when the singular points, say zi, zj of two sources are

very close, the corresponding functions Fi(x) Fj(x) become

indistinguishable and the collocation matrix has two identical

columns. Here, we use a combined basis which includes the

trial functions (22) with the singular points placed on an

auxiliary circular contour outside the solution domain and a

multipole expansion with the origin at the center of the hole.

Thus, we look for an approximate solution in the form:

wðxjq;pÞ Z wpðxÞC
XN

nZ1

qnFnðxÞC
XM

mZ1

pmJmðxÞ:
Ω

ζN

ζ1

ζ2

ζ3

r1

r2

ζex = (10,10)

y

x

Fig. 9. Geometry configuration and distribution of the sources in the annular

eigenproblem.
The data presented in Table 11 correspond to the number of

sources on the outer auxiliary circular contour NZ50. The

number of terms in multipole expansion M varies from MZ
11(r1Z10K1) to MZ5(r1Z10K3). The exciting source is

placed at the position zexZ(10,10). We use the k-procedure

with the shift DkZ1.

We would like to draw the readers’ attention to the fact that

the method presented can separate the very close eigenvalues:

kðexÞ
4 Z3:1900833197 and kðexÞ

5 Z3:2126996563 (see data

correspond to r1Z10K1). However, here the value h in the

algorithm placed in Section 2 is taken hZ0.001. The detailed

discussion of the application of Vekua basis for Helmholtz

equation can be found in [17].

5. Concluding remarks

In this paper, a new boundary method for the Helmholtz

eigenproblem is proposed. This is a mathematical model of

physical measurements, when a mechanical or acoustic system

is excited by an external source and resonance frequencies can

be determined using the growth of amplitude of oscillations

near these frequencies. The calculation of the eigenvalue

problem is reduced to a sequence of inhomogeneous problems

with the differential operator studied. The method shows a high

precision in simply and doubly connected domains.

Note that the method is not very sensitive to the position of

the external source. When the distance from the exciting source
Table 8

Two concentric circles with radiuses r1Z0.5 and r2Z2 with Dirichlet boundary

condition.The relative errors in calculation of the first ten eigenvalues. k-

procedure with DkZ1

i kðexÞ
i

NZ20 NZ30 NZ40

1 2.0488427696 1.1!10K9 2.4!10K9 1.3!10K9

2 2.2237527968 2.5!10K9 8.4!10K9 8.4!10K9

3 2.6599339351 4.5!10K8 3.8!10K10 3.4!10K10

4 3.2132363558 7.7!10K7 7.1!10K10 7.3!10K10

5 3.7992037166 2.5!10K5 1.6!10K9 1.3!10K9

6 4.1618868190 2.5!10K9 2.5!10K9 2.5!10K9

7 4.2684607541 2.6!10K6 5.5!10K9 5.6!10K9

8 4.3867216590 4.9!10K4 6.2!10K9 5.3!10K9

9 4.5721805095 2.7!10K5 2.7!10K9 2.7!10K9

10 4.9682310314 4.3!10K3 2.3!10K8 2.1!10K11



Table 9

Two eccentric circles with Dirichlet boundary condition.The first ten eigenvalues computed using different number of free parameters N. k-procedure with DkZ1

i NZ20 NZ25 NZ30 NZ35 NZ40

1 1.73613039 1.73613035 1.73613035 1.73613035 1.73613035

2 2.13198028 2.13198023 2.13198023 2.13198023 2.13198023

3 2.46105944 2.46106033 2.46106033 2.46106034 2.46106033

4 2.76965197 2.76965147 2.76965146 2.76965146 2.76965146

5 2.96340393 2.96340534 2.96340536 2.96340536 2.96340536

6 3.31786162 3.31785332 3.31785316 3.31785316 3.31785316

7 3.37637124 3.37637601 3.37637598 3.37637598 3.37637598

8 3.85682143 3.85676705 3.85676681 3.85676682 3.85676682

9 4.27722493 4.27707102 4.27707123 4.27707122 4.27707123

10 4.41796066 4.42109506 4.42109921 4.42109929 4.42109928

Table 13

Circular domain with Dirichlet conditions. The number of the source points NZ30. 3-procedure

3Z10K1 3Z10K4 3Z10K6

i er F(ki) er F(ki) er F(ki)

1 4!10K4 0.701 4!10K10 0.701 5!10K12 0.701

2 2!10K4 0.652 1!10K10 0.654 6!10K11 0.654

3 9!10K5 0.509 9!10K10 0.516 1!10K9 0.516

Table 10

Circle in square with Dirichlet boundary condition. The first six eigenvalues computed using different number of free parameters N. k-procedure with DkZ1

i NZ25 NZ30 NZ35 NZ40

1 1.58799 1.58800 1.58802 1.58803

2 1.92825 1.92875 1.92875 1.92879

3 2.21677 2.21732 2.21746 2.21744

4 2.35166 2.35273 2.35276 2.35288

5 2.64250 2.64363 2.64324 2.64333

6 2.89311 2.89405 2.89450 2.89446

Table 11

Circle with a small hole. Dirichlet boundary condition. The outer radius: r2Z2 The relative errors in calculation of the first ten eigenvalues. k-procedure with DkZ1

r1Z0.1 NZ50,

MZ11

r1Z0.01 NZ50,

MZ7

r1Z0.001 NZ50,

MZ5

i kðexÞ
i

er kðexÞ
i

er kðexÞ
i

er

1 1.5322036536 1.9!10K8 1.3709447159 2.5!10K8 1.3148533741 2.0!10K8

2 1.9301625755 5.8!10K9 1.9160005377 5.4!10K9 1.9158544900 5.4!10K9

3 2.5680354360 1.6!10K9 2.5678112121 1.6!10K9 2.5678111892 1.5!10K9

4 3.1900833197 1.3!10K11 2.9632630840 5.3!10K9 2.8883437835 2.8!10K9

5 3.2126996563 7.4!10K9 3.1900809955 2.9!10K12 3.1900809955 1.1!10K10

6 3.5522743165 3.7!10K10 3.5082790790 2.3!10K12 3.5077982552 3.0!10K11

7 3.7941712382 1.2!10K11 3.7941712738 1.0!10K9 3.7941712738 1.2!10K11

8 4.2101115868 9.0!10K12 4.2086222910 7.6!10K12 4.2086221329 5.9!10K12

9 4.3857419081 4.4!10K12 4.3857419733 1.1!10K11 4.3857419733 1.2!10K12

10 4.8805392651 1.0!10K11 4.5543927267 1.3!10K9 4.4650868082 3.6!10K10

Table 12

A circle with the radius 1. The relative errors in calculations of the first 3 eigenvalues. k - procedure with DkZ0.001

i RZ1.1 RZ2 RZ5

1 6!10K5 6!10K10 6!10K10

2 3!10K5 3!10K10 3!10K10

3 3!10K5 2!10K9 2!10K9
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to the excited domain is too large then there are difficulties in

calculation of the Bessel functions. So the sources of excitation

are placed at distances of 5–10 times the diameter of a domain

from the domain itself. Besides the particular solution in the form

of the plane wave wpZexp[i(x cos qCy sin q)] can also be used.

In fact this means that the exciting source is removed to infinity.

The MFS sources are located at distances of 2–5 times the

diameter of a domain from its boundary. In this case the results are

the same. When the sources are placed close to the boundary this

decreases the accuracy. The data placed in Table 12 correspond to

the eigenvalue problem for the circle with the radius 1 with

Dirichlet boundary conditions. The MFS sources are placed on

the circle with the radius R. Here we place the relative errors (17)

in the calculation of the first 3 eigenvalues.

Comparing the method with the technique based on

computations of the determinant of the system, the following

circumstances should be taken into account. Since the MFS is

highly ill conditioned, the determinant is very small. Indeed, let

us consider again the same eigenvalue problem which is

described in Example 1, i.e. Helmholtz equation in the circle

with the radius 1 and Dirichlet boundary condition. We take the

number of the sources N equal to the number of the collocation

points on the boundary. Thus, we get a square matrix of the

problem A(k,N) and can calculate the determinant jdet A(k,N)j.

Placing the sources on the circle with radius 2 and taking kZ1

we get: jdet A(1,20)jZ3!10K47, jdet A(1,30)jZ4!10K117,

jdet A(1,40)jZ3!10K217. The wave number kZ1 is not an

eigenvalue of the problem. This is the ‘background’ value

between extremums and one looks for the minima of

jdet A(k,N)j on such background. So, using this technique

one operates with values of the order w10K50K10K500, see

[11,18] for more detailed information.

At the same time let us calculate the norm function F(k)

which is used to obtain the eigenvalues in the method presented.

We present the values of F(k) when k is close to eigenvalue in

Table 13. Here the number of the sources is fixed NZ30 and the

smoothing parameter 3 is varied. Here, er is the relative error

(17) in determining of the approximated eigenvalue ki and F(ki)

denotes the value of the norm function at this approximated

eigenvalue. So, in the framework of the method presented we

always deal with the values, which can be handled on PC with a

single precision. The method is easy to program and not

expensive in the CPU time. All the calculations presented in the

paper were performed using 366 MHz PC. For example, it takes

approximately 3 min. to calculate the first 5 eigenvalues in

Example 1 using the 3-procedure.

Although the method is demonstrated for 1D and 2D

Dirichlet problems, the idea can be extended quite simply to
the 3D case and other boundary conditions. It seems possible to

extend this technique to eigenproblems with other differential

equation, e.g. to problems of plates and shells vibration. This

will be the subject of further investigations.
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