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Abstract

A boundary element formulation applied to dynamic soil-structure interaction problems with embedded foundations may give rise to
inaccurate results at frequencies that correspond to the eigenfrequencies of the finite domain embedded in an exterior domain of semi-infinite
extent. These frequencies are referred to as fictitious eigenfrequencies. This problem is illustrated and mitigated modifying the original
approach proposed by Burton and Miller for acoustic problems, which combines the boundary integral equations in terms of the displacement
and its normal derivative using a complex coupling parameter «. Hypersingular terms in the original boundary integral equation are avoided
by replacing the normal derivative by a finite difference approximation over a characteristic distance 4, still leading to an exact boundary
integral equation. A proof of the uniqueness of this formulation for small 4 and a smooth boundary is given, together with a parametric study
for the case of a rigid massless cylindrical embedded foundation. General conclusions are drawn for the practical choice of the dimensionless

coupling parameter @ and the dimensionless distance /.
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1. Introduction

The response of a structure to external forces, a seismic
excitation or traffic induced vibrations can be calculated
using a subdomain formulation for dynamic soil-structure
interaction [1,2]. The structure may have a surface or
embedded foundation and is usually modeled with the
finite element method (FEM), while a boundary element
method (BEM) is generally preferred to model the soil
domain of semi-infinite extent. If the boundary element
formulation is based on the Green’s functions for a
horizontally layered halfspace [3—7], only a discretization
of the interface between the soil and the structure is
required and the number of unknowns is drastically
reduced.

The solution for the unbounded soil domain is not
straightforward, however, as any displacement boundary
integral equation, regularized or not, that is used to derive
the boundary element formulation has a non-unique solution

* Corresponding author. Tel.: +32 16 32 16 75; fax: +32 16 32 19 88.
E-mail address: lincy.pyl@bwk kuleuven.ac.be (L. Pyl).

0955-7997/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.enganabound.2004.08.001

at frequencies corresponding to the eigenfrequencies of
the excavated part of the soil with Dirichlet boundary
conditions on the interface between the soil and the
foundation, and free surface conditions elsewhere [8—10].
For structures embedded in a semi-infinite halfspace, this
numerical deficiency predominantly occurs in the high
frequency range, depending on the geometry of the
foundation and the stiffness of the excavated soil. Therefore,
the problem of fictitious frequencies is not very stringent for
applications in seismic engineering, where the excitation
frequencies are low (typically between O and 10 Hz). For
applications of traffic induced vibrations, however, the
excitation frequencies are an order of magnitude higher
(between 1 and 80 Hz) and fictitious frequencies need to be
mitigated, which is the motivation of the present work.

A similar phenomenon is well known in acoustics, where
the problem of fictitious eigenfrequencies has been studied
extensively. Several solution techniques have been pro-
posed in the literature and are summarized below.

Copley [11] was the first to report a solution method,
using the second or interior Helmholtz integral equation and
enforcing zero displacements in the interior domain.
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Schenck [12] developed the CHIEF method, using the
combined surface and interior Helmholtz integral equations.
Zero displacements are enforced at discrete points in the
interior domain, resulting in an overdetermined system of
equations, that is solved with a least squares procedure.
A similar approach is used by Piaszczyk [13].

An effective and widely used method to mitigate
fictitious frequencies has been proposed by Burton and
Miller [14] and consists of writing a linear combination of
the original boundary integral equation for the pressure and
its normal derivative. Both integral equations have a non-
unique solution at frequencies corresponding to the
eigenfrequencies of an interior Dirichlet or Neumann
problem, respectively. A unique solution is obtained
provided that the coupling parameter linking these boundary
integral equations has a non-zero imaginary part. The choice
of this coupling parameter is not critical and a small
imaginary number is sufficient to mitigate the problem of
the fictitious eigenfrequencies. Amini [15] has shown that,
for a spherical cavity in an acoustic problem, the lowest
condition number of the integral operators in Burton and
Miller’s formulation is obtained when the coupling
parameter is inversely proportional to the wave number k,
of the longitudinal wave. A drawback of Burton and
Miller’s method in the context of elastodynamics is that
strongly singular kernels are introduced through the
boundary integral equation for the traction. For acoustic
problems, Burton and Miller review several methods to
transform these integral operators [14].

Chen et al. [16,17] have also used the dual BEM for 2D
exterior acoustic problems in combination with Burton and
Miller’s method. They introduced the concept of modal
participation factors to elucidate the appearance of fictitious
frequencies related to the singular and hypersingular
boundary integral equations. The four kernels in the integral
equations, as well as the boundary potential and the flux, are
expanded in Fourier series along the circumferential
direction, while Bessel functions are used in the radial
direction. Using these expansions, the singular boundary
integral equation for the exterior domain is expressed for
points located outside the exterior domain of interest. The
resulting boundary potential is written as a Fourier series
expansion on the circumferential modes. The coefficients in
this expression are written as the product of a modal
participation factor and a factor revealing numerical
instability at fictitious eigenfrequencies. A similar analysis
prevails for the hypersingular integral equation. These
concepts are illustrated for several 2D acoustic radiation and
scattering problems. Numerical results obtained with the
dual BEM are compared with analytical results and
numerical results computed with Burton and Miller’s
method, Schenck’s method and the DtN method.

Ursell [18] and Jones [19] describe a new fundamental
solution that is equal to zero in the interior domain. Brod
[20] uses the same technique and demonstrates that an
infinite set of integral equations on the boundary, using

a series expansion of the Green’s function, has a unique
solution for all wave numbers.

Kobayashi and Nishimura [21] extended Jones’ method
to elastodynamic problems, using a modified fundamental
solution that satisfies a boundary integral equation for the
exterior Neumann problem. For the dynamic analysis of
underground structures, Kobayashi and Nishimura interp-
olate the solution obtained at frequencies that are
slightly lower and higher than the fictitious eigenfrequen-
cies [22,23].

Gonsalves et al. [24] proposed a numerical solution
procedure for 3D elastodynamic transmission problems
using a system of coupled boundary integral equations and
the combination of the surface and interior Helmholtz
integral equation introduced by Schenck to overcome the
non-uniqueness of the boundary integral equation solution
at the fictitious eigenfrequencies.

Jones modified Burton and Miller’s method for appli-
cations in elastodynamics [25]. As some of the integrals are
highly singular, a numerical technique using a boundary
discretization with constant elements is introduced.

Liu and Rizzo [26] first demonstrated the effectiveness of
the weakly singular form of the hypersingular boundary
integral equation using the static Kelvin solution as a
fundamental solution. The boundary discretization is not
limited to flat elements, contrary to Jones’ regularization
technique. A traction-free spherical void excited by a
P-wave of unit amplitude, using Overhauser C' continuous
elements and non-conforming quadratic elements, is
investigated. Good results are obtained if an imaginary
coupling coefficient is used that is inversely proportional to
the wave number k,, of the longitudinal wave. Alternatively,
the wave number k; of the shear wave could have been
chosen.

The first objective of this paper is to briefly review the
subdomain formulation for the solution of dynamic soil—-
structure interaction problems. The impedance of the soil
and the force due to the incident wave field are calculated
with a BEM using the Green’s functions of a layered
halfspace. Next, the problem of fictitious eigenfrequencies
associated with the displacement boundary integral equation
for exterior domains is recalled. Burton and Miller’s
solution method, that has been extended to elastodynamic
problems by Jones [25] and Liu and Rizzo [26], is modified
to mitigate the problem. In order to obtain a well-posed
boundary integral equation at all frequencies, a linear
combination of the boundary integral equation for the
displacement and for the displacement gradient along the
normal direction of the boundary is made, using a complex
coupling parameter «. This corresponds to a mixed
boundary condition on the interior domain. Hypersingular
terms in the resulting boundary integral equation are
avoided by replacing the normal derivative by a finite
difference approximation over a characteristic distance #,
still leading to an exact boundary integral equation.
A parametric study is finally performed for the case of
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a rigid massless cylindrical embedded foundation. General
conclusions are drawn for a practical choice of the
dimensionless coupling parameter & and the dimensionless
distance A.

2. The numerical prediction model

This section reviews the subdomain formulation for
dynamic soil-structure interaction problems [1,2] that are
formulated to assess traffic induced vibrations in the built
environment. This allows to demonstrate the role of the
soil impedance and the force vector due to an incident
wave in the governing system of equations, which are
calculated with a boundary element formulation. For
structures with an embedded foundation, the boundary
integral equation leads to fictitious eigenfrequencies
corresponding to the eigenfrequencies of the excavated
part of the soil.

The problem is decomposed into two subdomains
(Fig. A.1): the structure €, and the exterior soil domain
Q" (Fig. A.2b) after excavation of the interior soil domain
Q" (Fig. A.2c). The semi-infinite layered soil domain Q;
prior to excavation is denoted by Q,= QU QM
(Fig. A.2a). The problem is solved by enforcing continuity
of displacements and equilibrium of stresses on the interface
S between both subdomains. In the following, linear
problems will be assumed and all equations will be
elaborated in the frequency domain.

First, the structure Q,, is considered. The boundary I',=
I'y, U of the structure €, is decomposed into a boundary
I',, where tractions t, are imposed and the soil-structure
interface 2. The displacement vector u, of the structure
satisfies the following Navier equation and boundary
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Fig. A.1. Geometry of the subdomains.

conditions:

div a,(u,) + ppb = —pbwzub in Q, (D)
t,(u,) =t, on T, 2)
u, =u, onx 3)
t,(u,) +t(u,) =0 onZ 4

where p,b denotes the body force on the structure and
t(u)=a(u)-n the traction vector on a boundary with a unit
outward normal vector n. In Egs. (3) and (4), displacement
continuity and stress equilibrium are imposed on the
interface =. uy denotes the displacement vector in the soil.
Using modal decomposition, the structural displacement
vector u, is expanded with bounded error on a finite basis of
modes ¢, (m=1,...,q):

q
w=> Y, inQ, %)
m=1

where the modal coordinates «, (m=1,...,q) will be
collected in a vector «.

Secondly, the exterior soil domain Q' is taken into
consideration. The boundary T*'=T,, UT,, U= of the
soil domain Q¢ is decomposed into the boundary T,
where tractions are imposed, the outer boundary I'j, on
which radiation conditions are imposed and the soil-
structure interface =. A free boundary or zero tractions
are assumed on I'y, in the following. The displacement
vector uy of the soil satisfies the Navier equation and the
following boundary conditions:

div o,(u;) + p,b = —p,w’u, in Q™ (6)
t,(u;)) =0 on T, @)
Ru,) =0 on Ty ®)
u =u, onx )
t,(u,) +t(u)) =0 onZ (10)

with p,b the body force in the soil. The operator R in Eq. (8)
denotes the radiation conditions of elastodynamics [27] on
the displacements u; on the outer boundary ', of the
unbounded domain Q.

The displacement vector uy in the soil is decomposed
in the incident wave field u; and the diffracted wave field
u, (Fig. A.3). The diffracted wave field u, is expanded
into a locally diffracted wave field u,y that is equal to
—u; on the interface ¥ and the wave fields ug, that
are radiated in the soil due to the motion of the interface
> [1]:

q
u =u +u; =u +uy+ Zudmam in QP (11)

m=1
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Fig. A.2. (a) The entire and domain Q; = Q% U Q™ before excavation, (b) the exterior soil domain Q2 after excavation, and (c) the interior soil domain Q™.

The incident wave field u; is defined on the semi-
infinite layered soil domain Q without excavation. The
boundary I'y;=T"(UI'\,UI' . of the soil domain € is
decomposed into the free surface I'y, of the excavated part
Qi of the soil, the free boundary I'y, and the outer
boundary I';... The incident wave field u; satisfies the
Navier equation and the following boundary condition:

div o,(u;) = —p,w’u; inQ, (12)

ts(ui) =0 on FSO’ U FSO (13)

Sommerfeld’s radiation conditions on I'y, are not
satisfied for the incident wave field.

The locally diffracted wave field u, is defined on the
exterior soil domain QS and satisfies the Navier equation
and the following boundary conditions:

div o,(uyy) = —p,w’uyy in QX (14)
t,(uy) =0 onTly, (15)
R(uyg) =0 on T, (16)
U =-u onX (17)

The displacement fields u,,, radiated in the soil satisfy
the following equilibrium equation and boundary con-
ditions:

W, =y, onZ 20

Eq. (21) expresses continuity of displacements on the
soil-structure interface X: the displacement field wug,
radiated in the soil is equal to the projection of the
structural mode ¥,, (m=1,...,q) on the interface X.
Every elastodynamic field u,, creates a traction field
t,(u,,) on the soil-structure interface X, so that the
tractions ti(u,) in the soil are decomposed as follows
using Eq. (11):

q
t(w) =t +ug) + ) t(ug)e, on (22)

m=1
The equilibrium of the structure €, is subsequently

expressed in the weak sense for any virtual displacement
field v:

Jv-tb(ub) ds = J e(v) : a,(uy) dQ — J v-ppu, dQ

= Qp Q,

— J v-i,dl — Jv~pbb do (23)

Tyq Q,

Accounting for the stress equilibrium (4) on the soil—
structure interface X, the equilibrium equation (23)
becomes:

J e(v) : op(u,) dQ — ? J v-ppu, dQ + va(us) d=

div o,(ug,) = —p,0’ug, in Q" (18)
Qb Qb )
ts(udm) =0 on Fsa (19) _
R(u,,) =0 onTl, (20) Ty Q,
rso' rsO I;a rso‘ rsa
i ] f | | g ‘E
\ TR A [\ 4tz
e

(a) u;
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Fig. A.3. Decomposition of the soil displacement field u, into (a) the incident wave field u;, and (b) the diffracted wave field u,.
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Decompositions (5) and (11) are introduced into the
variational formulation (24). A standard Galerkin pro-
cedure, using an analogous modal decomposition for the
virtual displacement field v=>"7_ ¢, 6«,, with éa, the
virtual modal coordinates, results into the following
system of equations for the modal coordinates a:

K, — o’M, + K]Ja = f, +f, (25)
The stiffness and mass matrices K, and M, are equal to:
(Kplum = JQ eW,) o () dQ (26)
‘b
[Mb]nm = J ‘l/n 'ph‘//m dQ (27)
Q,

The impedance matrix of the soil K; is equal to:

[Ks]nm = J‘pn .ts(udm) d= (28)
b

The vector f;, due to the external forces on the structure is
defined as:

mhzjm@w+J%mmm (29)

Ty Q

The force vector f; due to the incident wave field on the
structure is equal to:

[fs]n = - an 'ts(ui + udO) d= (30)
>

The tractions t,(u,,,) due to an imposed displacement field
¥,, on the interface X in the expression (28) for the soil
impedance matrix are calculated using a boundary element
formulation for the unbounded soil domain Q*', resulting in
fictitious eigenfrequencies that correspond to the eigenfre-
quencies of the interior soil domain Q. Similarly, the
calculation of the tractions ty(u,y) in expression (30) with a
boundary element formulation gives rise to the same fictitious
eigenfrequencies.

In Section 3, the boundary integral equation is derived
and a procedure to mitigate the problem of fictitious
eigenfrequencies is proposed.

3. The boundary integral equation for the displacement
vector

The derivation of the boundary integral equation for
exterior problems is based on the elastodynamic represen-
tation theorem defined on the entire soil domain Q, = Q' U
Qi before excavation (Fig A.2¢c). In order to explain how
fictitious frequencies arise at the resonance frequencies of
the interior soil domain Q;“‘, the relationship between

the classical direct boundary integral equation and the
indirect formulation is first recalled.

3.1. The boundary integral equation for the displacement

The displacement #;(§) in a point § that is not located on
the boundary Z is written as a function of the displacement
and traction jumps [1;](x) and [#;(w)](x) across the boundary
2 and the Green’s displacement and traction tensors ufj;(f ,X)
and t,-(j;(E ,X) -

wa=ﬁwmwﬂ@xm2

=

— th(g,x)[uj](x) d¥ with€ &3 31)
>

The displacement jump [1](x) is defined as:
[1(x) = uf™(x) — ™ (x) (32)
while the traction jump [#j(w)](x) is equal to:
[]x) = 4™ W)(x) + £ @)(x)

= o' (Wn™ + o (W) (33)

with 7' and ni™ the unit outward normal vectors to the
exterior and interior domains Q' and QI™, respectively
(Fig. A.2b and A.2c). As the tractions ty(ug,) in the soil
impedance matrix and the tractions ty(u,) in the force
vector are defined on the exterior soil domain QS*, the unit

outward normal vector n§** = n; is preferred, and the traction
jump becomes:

(I = o @) — o @@, (34)

The second-order Green’s tensor ug(f ,X) represents the
displacement components in the direction e; in the point x
due to a Dirac load in the direction e; at the point §. The
second-order Green’s tensor tg(&' ,X) represents the com-
ponents of the traction vector in the direction €; in the point
x for the same load. On a boundary with a unit outward
normal vector ny, these tractions are equal to aﬁ{i(g,x)nk,
with aﬁ(’ the stress tensor.

The Green’s displacements u?(E, x) show a weak
singularity of order ™' in the neighborhood of the point
£ =x on the interface =, while the Green’s tractions tg(E ,X)
show a strong singularity of order 2. Particular attention is
therefore paid to the second integral on the right hand side of
Eq. (31) when & approaches the interface = from the inside.
This integral is therefore decomposed into two integrals on
S\=, and =!. The boundary =, is defined as SN B, with B, a
spherical extension of the interior domain Q™ with center &
and radius ¢ (Fig. A.4). The boundary =, = dB,\(dB, N Q")
is the extension of the boundary of the interior domain Q.
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Fig. A.4. Expansion of the interior soil domain Q™ with a sphere B,.

For £ €% and for a smooth jump [u;], Eq. (31) results in:

u;m(g) = J.[t](u)](x)ug(g, x)d2 — CU(E)[”}](E)

=

- )(r,-?(s, X)[u;](x) d= (35)

b

The integral free term c;(§) is defined as the following
limit:

¢)(®) = lim Jrg(s, %) d3 (36)
A

For a locally smooth boundary and a locally homo-
geneous domain at the point &, ¢;(§)=9,;/2 [2,28].

The second integral on the right hand side of Eq. (35) is a
Cauchy Principal Value (CPV) integral defined as:

)(ti?(E,x>[u,-]<x) ds = lim th?(&,x)[uj](x) = 37
e—0+
P S\=,

3.2. Regularization of the boundary integral equation
for the displacement

Rizzo and Shippy [29] and Bui and Bonnet [30,31]
introduce a regularization procedure for a homogeneous
halfspace; a similar procedure is proposed by Clouteau
[2] and Aubry and Clouteau [28] for a layered halfspace.
In both formulations, the evaluation of the CPV integral
and the integral free term c;(§) in Eq. (37) is avoided.

A zero traction static rigid body condition is applied to
the boundary integral equation (35) [2,28]. The integral free
term c;(§) is given by:
ci® =0;— 1 1 (Ex)dZ (38)

Ul

where t,-?s (&,x) represents the static Green’s traction tensor.
Eq. (38) is subsequently introduced into Eq. (37) and

the following weakly singular boundary integral equation is
obtained:

@) = [l €. 03 ~ @)

=

- Jr,?s(s, Ol1x) — [1E)} 4=
>

- J{rﬁ(&x) — 195 €. OHu1(x) d= (39)
¥

Whereas an analytical expression for the static Green’s
tensor t,?s (&, x) of a homogeneous halfspace is available, this
is not the case for a layered halfspace and a numerical
evaluation becomes necessary. Therefore, Clouteau [2] and
Aubry and Clouteau [28,32] propose to use regularizing
tensors. If the heterogeneous halfspace is locally homo-
geneous in the vicinity of the source point &, the static
Green’s tensor of a homogeneous full space, based on the
material characteristics in the vicinity of the source point &,
is used. However, the integral over I'yy has to be accounted
for in Eq. (39).

Guzina and Pak [7] use a similar approach to treat the
singularities in the displacement boundary integral equation
for a layered halfspace. The integral equation is decom-
posed into a singular part for the near field, and a residual
component for the mid to far field. Analytical expressions
for the singular components of the dynamic Green’s tensors
are known as they are equal to the static solution for a bi-
material full space, composed of two bonded elastic
halfspaces with different material characteristics [33].
Therefore, the singular parts can be evaluated analytically.
The remaining residual parts, corresponding to the mid to
far field components, are evaluated numerically using
contour integration. A modified path of integration is used
to account for the poles.

3.3. The boundary integral equation for exterior problems

The boundary integral equation for exterior problems is
obtained from Eq. (35) stating that u}m vanishes on Z.
Indeed, if it is assumed that 4™ =0 on = and " (u)= 0 on
I"yo, this implies a zero displacement field inside the interior
domain QM. The traction field in the interior domain Q™
also vanishes and the two jumps [u;](x) and [t(w)](x)
are equal to the displacement and traction fields u;’“(x) and
tf’“(u)(x) on the boundary X. Accounting for this in Eq. (35)

gives:

Jr;“<u><x>u§(s, %) A3 = c;(©)u™(€) + )( £/ (€. %)™ (x) d=
2 p)
(40)
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The regularized version of this equation is equal to:

W@zﬁﬁwm&mm»{ﬁngw

> >

—ﬁ%amx—ﬁﬁgm

>
— (P E S (x) d2 (41)

The derivation of the boundary integral equations (40) or
(41) for problems defined on the exterior soil domain QS is
based on the assumption that the displacements u}m are
equal to zero for all points & on the boundary ¥ and thus in
the interior domain QI™. The displacements u™ vanish
everywhere in Q" as long as the elastodynamic boundary
value problem for an interior domain QI with zero
displacement boundary conditions on ¥ and zero traction
boundary conditions on I'y; has a unique solution.
Unfortunately, the solution is not unique when the
excitation frequency w is equal to one of the eigenfrequen-
cies @; of the interior domain (with zero displacement
boundary conditions on X and zero traction boundary
conditions on I'yy) and, consequently, t}“t(u)(E) does not
necessary vanish at these frequencies, leading to an ill-

posed boundary integral equation.

4. The boundary integral equation for the displacement
gradient

Burton and Miller’s [14] original formulation for
acoustic problems is based on a linear combination of the
integral equations for the pressure and the normal velocity.
In elastodynamics, the traction vector on a boundary is
obtained from the projection of the stress tensor on the unit
normal vector on the boundary. The stress tensor is related
by the constitutive equations to the strain tensor, that is
defined in terms of the displacement gradient or, alterna-
tively, as a function of the normal and tangential derivatives
of the displacement vector along a boundary.

For reasons of simplicity, it is preferred herein not to
explicitly evaluate the traction vector along the boundary in
terms of the normal and tangential derivatives but to use
only the normal derivatives of the displacement vector
along the boundary since this term is providing additional
information to the known displacement field on X.

In this section, the boundary integral equation for the
normal derivative of the displacements u;(§) is evaluated.
Differentiating the displacement boundary integral equation
(40) with respect to the spatial coordinates & is particularly
unsafe, however, since this equation is only defined for
points on the boundary Z. Therefore, the differentiation is
performed on the displacement boundary integral equation
(31) and the limit for § approaching the boundary X is
evaluated. The normal derivative is defined as follows from

Eq. (35) in the case of a smooth surface and regular jumps
[4;] and [#;(u)] on X and for a homogeneous space:

Wi Emy = J( [ W] (8, x)ny dZ — e(E)uygm ) (E)

=

—%@@mmwmmz (42)

z

The kernels ugk(g, x) and tgk(é, x) have singularities of
order ¥~ 2 and r~ > at the point £=x on the boundary X,
respectively. As a consequence, the first integral on the right
hand side of Eq. (42) only exist as a CPV integral, while the
second integral is hypersingular and defined as a Hadamard
Finite Part integral [34], denoted by #. As the aim of this
section is not to give a complete review on highly singular
boundary integrals, the reader is referred to the work of
Bonnet [8] for more detailed developments.

The boundary integral equation for the normal derivative
of the displacement consists of stating that uﬁ-f’k‘(E)nk =0on
the boundary . It is assumed that this condition and the
traction-free condition on I'yy imply that, for an elastody-
namic field, the displacements #™(£) in the interior domain
Q" are equal to zero, resulting also in vanishing tractions
t}“‘(u)(x) in the interior domain. Therefore, the displacement
jump [u;](x) is equal to the displacement u{*'(x), while the
traction jump [t;(w)](x) reduces to #*'(u)(x), leading to the
boundary integral equation for the normal derivatives of
the displacement:

fﬁ@@ﬁ&mmﬁ
)

= ¢ iy Emy + jﬁ 15 (8, ™ (my A= (43)
z

Regularized forms of this equation have been proposed
for a homogeneous halfspace [8,35] but, to the authors’
knowledge, similar expressions are not available for a
layered halfspace. It is not even sure that the integral free
term c;(§) in Eq. (43) is the same as in Eq. (40).

The static Green’s tensors for a bi-material composed of
two bonded elastic halfspaces with different material
characteristics have been used by Guzina and Pak [7,33]
to isolate the singular part in the displacement boundary
integral equation. These static Green’s tensors might be a
useful ingredient for a similar regularization of the boundary
integral equation (43) for the displacement gradient.
However, the singularities in the Green’s tensors uﬁk(f ,X)
and tl? «(&,x) are of higher order, which would necessitate
further investigations.

The solution of the boundary integral equation (43) for
the normal derivatives of the displacement is not unique for
exterior problems. When the frequency w is equal to one
of the eigenfrequencies @; of the interior domain with
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the normal derivative of the displacement equal to zero on =
and a zero traction boundary condition on I', the solution
is not unique.

5. The combined boundary integral equation

As the fictitious eigenfrequencies corresponding to the
boundary integral equations (40) and (43) are different, a
different boundary condition could be used at each fictitious
frequency to mitigate the problem of fictitious frequencies. In
order to obtain a well-posed boundary integral equation at all
frequencies, however, a linear combination of the boundary
integral equation (37) for the displacement 1"'(£) and of the
boundary integral equation (42) for the displacement
gradient ui-f’k‘(é )n; along the normal direction of the boundary
is classically preferred, corresponding to the following
mixed boundary condition on the boundary = for the
displacement field u™(§) :

u™ () + aul{(E)ny =0 on = (44)

where « is a complex coupling parameter with the dimension
of a length. Upon the introduction of the boundary integral
equations (37) and (42) into the mixed boundary equation
(44), the following boundary integral equation is obtained:

J[tj(u)](X)Mg(E,X) dX +« ]([tj(u)](x)ufk(& Xy dZ

= =

- Clj(g)([uj](g) + a[“j],knk(f)) - )( tg(E, X)[”j](") d=

=

-« jL 154(E, X)m[u](x) = = 0 (45)
=

A very small value of « results in the original boundary
integral equation (37), whereas the boundary integral
equation (42) for the displacement gradient along the normal
direction on the boundary is recovered for very large values
of a. The real part of a corresponds to a compliance
boundary condition on the boundary X if the traction
boundary integral equation were used. Its imaginary part is
equivalent to the inverse of a wave number, resulting in an
absorbing boundary condition on the boundary . As it is
shown in Appendix A, fictitious eigenfrequencies can be
avoided using the mixed boundary condition (44), provided
that the coupling parameter « has a non-zero positive
imaginary part: real eigenfrequencies for the interior
boundary value problem no longer exist, resulting in a
unique solution.

Since a zero displacement field is such a solution
inside the interior domain QM, the traction field in the
interior domain Q™ also vanishes and the two jumps
[u](x) and [t(w)](x) in Eq. (45) are equal to the
displacement and traction fields u{*(x) and #*'(u)(x) on

the boundary X=. The boundary integral equation for
exterior problems becomes:

sz“(u)(x)ug(g, x)d2 +«a J( £ (WX)ug (€, x)ny, d=
= P

— ()™ (E) + i (§)) — )( 15 (€, 30uf™ (x) =

=

-« jﬁ 15 B m™ (x) d= = 0 (46)
b

Amini [15] has analyzed the choice of the coupling
parameter « in Burton and Miller’s boundary integral
formulation for acoustic problems [14]. The condition
number of the linear operators is a function of the
eigenvalues of the boundary integral operators and has to
be minimized. For interior domains with a simple
geometry (e.g. a sphere), the smallest condition number
is obtained for a coupling parameter « that is inversely
proportional to the wave number k,=w/C, of the
longitudinal waves. In elastodynamic problems, the
wave number k,=w/C; of the shear waves can be chosen
alternatively. In this paper, an imaginary coupling
parameter a=i/k, is used. Similar results are expected
when the longitudinal wave number k, is used for the
calculation of the normal stress component and the shear
wave number k; for the transverse components.

A dimensionless coupling parameter & is subsequently
introduced, defined as the ratio of the parameter « and a
characteristic length R of the interior domain (e.g. the radius
of an embedded foundation):

o i iC i

g=2_1 B _ 47
“TRTKR  wR  a “7)

where ap=wR/C; is a dimensionless frequency.

6. Finite difference approximation of the mixed
boundary integral equation

The boundary integral equation (46) is hypersingular and
would require advanced regularization techniques that are
believed to be still unavailable for a layered halfspace. In
order to avoid the evaluation of these hypersingular terms,
while preserving the well-posedness of the problem at all
frequencies, it is proposed to use a finite difference
approximation on the derivatives of the displacement and
traction fields along the direction normal to the boundary:

u(§) — u(€ — hn(§) _
h

where £ is the distance between the boundary X and a
second boundary 2, located in the interior soil domain Qm
and defined as 2~ ={§~ =& — hn(§); £ € X} C Q™.

u™E) + a

0 (48)
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Applying this finite difference approximation (48) to
equation (46) finally results in the following boundary
integral equation that only contains the Green’s functions

ugf (8, %) and £/ (€, x) :

0@ = [ w0 () — e ) a3
=
)( (r,j (%) — i x)) U (x) dS
>

(49)

This combined boundary integral equation eliminates
fictitious eigenfrequencies and can easily be implemented in
a boundary element formulation, as will be demonstrated in
Section 7. It can also be regularized using the same
technique as for Eq. (35).

Based on the previous developments, demonstrating
that Eq. (49) has no fictitious eigenfrequencies is
equivalent to proving that the elastodynamic problem in
the interior domain QM with the non-local boundary
condition (48) has a unique solution. The proof of the
uniqueness is given in Appendix A where it is shown that
if o has a non-zero imaginary part and if A is small
enough, a purely real eigenfrequency for the interior
problem with the mixed boundary condition (48) can only
be obtained when u™(§)=u"(§ — hn(£))=0, i.e. for
eigenmodes of the Dirichlet problem defined on the elastic
layer trapped between the boundaries £ and = . The
maximum excitation frequency wp.x has to be smaller
than a frequency w.(h), that is related to the distance h
between the boundaries ¥ and 2. If the boundary X is
smooth and if the distance A is small, the smallest
eigenfrequency w.(h) of this elastic layer has an order of
magnitude equal to 2wC/2h, where C; is the shear wave
velocity. In Section 7, this distance 4 will be related to the
size I, of an individual boundary element.

7. Boundary element implementation

The interface = between the foundation and the soil is
discretized into boundary elements. The tractions and
displacements on the interface X are interpolated using
nodal values and element based shape functions and
the boundary integral is evaluated numerically for each
element.

The classical boundary element formulation results in the
following system of equations:

Hu = Gt (50)

where the coefficient matrices G and H are fully populated
and non-symmetric matrices and represent the Green’s

displacement and traction tensor, respectively. t and u are
the nodal traction and displacement vectors.

The boundary element discretization applied to the
boundary integral equation (49) simply consists in adding
a regular term for sources &  the boundary X~ . The
resulting system of equations reads as:

et te) o

The computation of the matrices G~ and H ™, corre-
sponding to the sources £~ on the boundary X, increases
the computational effort. This approach is quite generic for
any type of Green’s function and for collocation as well as
variational approaches. It is easy to implement in an existing
boundary element program as it only requires a second
computation for the inner sources on the boundary =~ and
does not modify the structure and the size of the original
system of equations.

Terms in Eq. (49) are subject to strong numerical errors if
the distance & between the boundaries 2~ and X is small: if
the position £~ of the source on the boundary =~
approaches the position x of the receiver on the boundary
3, the Green’s tensors u;; (E ,X) and 7] G(u)(E™,x) show
singularities of the order r “land r 2, respectively. The
integrals become nearly singular and would require an
appropriate integration scheme. Therefore, the distance % is
chosen larger than the size [, of a boundary element,
estimated as the square root of the maximum surface of a
boundary element on the interface X between the soil and
the structure. It is convenient to introduce the dimensionless
distance / as the ratio of the distance 4 and the size I, of a
boundary element:

h= (52)

h
l

The distance % also has to be small enough as to ensure
that the boundary X is located inside the interior domain
Q" which gives another argument to relate the distance / to
the size [, of a boundary element. For relatively thin
embedded structures, the choice of values & larger than 1
involves the risk of defining points £~ outside the interior
domain Q™.

Furthermore, the distance % should be strictly smaller
than the smallest radius of curvature r,;, of the boundary X.
This condition prevents the use of the present formulation
for non-smooth boundaries. However, one can always
define a smooth field with pseudo-normal vectors instead
of using the actual one in order to have an invertible
mapping from = to =, this smoothing procedure being
driven also by the mesh size.

In Section 6, it has been argued that the maximum
excitation frequency wp,. should remain smaller than the
eigenfrequency w.(h) of the elastic layer trapped between
the boundaries ¥ and 2. If the dimensionless distance
A =1, this criterion imposes that the element size /, should
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Fig. A.5. (a) Real part K,,,,(ap) and (b) imaginary part C,,,(a,) of the dimensionless impedance functions as a function of the dimensionless frequency a, for

a= 0 (solid line) and according to Apsel and Luco [37] (dashed-dotted line).

remain smaller than A,;,/2, with A.;, the minimum
wavelength.

Besides, the boundary element size is also limited to
Amin/Ne, With A, the minimum wavelength in the soil and
N, the number of elements per wavelength. A minimum

value N,=6 is strongly advisable [36]. This criterion is
more strict than the previous criterion on the maximum
excitation frequency, so that the latter is automatically
fulfilled if an appropriate boundary element discretization is
chosen.
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8. Impedance of a rigid massless cylindrical
embedded foundation

8.1. Problem outline

The solution technique proposed in the previous sections
is now illustrated by means of a numerical example, where
the impedance functions of a rigid massless cylindrical
foundation embedded in a homogeneous soil are considered.
Results are compared to results published by Apsel and
Luco [37]. A parametric study allows to define guidelines
for an appropriate choice of the dimensionless coupling
parameter @ and the dimensionless distance /.

A rigid massless cylindrical embedded foundation with a
radius R=1.94m and an embedment ratio d/R=1.0 is
considered. The soil is modeled as a homogeneous
halfspace and has a shear wave velocity C;=150 m/s, a
Poisson’s ratio v*=0.25, a density p,= 1800 kg/m> and a
hysteretic material damping ratio 8,=0.01 in shear and
longitudinal deformation.

The frequency dependent elements S,,,,(ag) of the 6 by 6
impedance matrix of a rigid foundation are written in the
following dimensionless form [38]:

Smn(a0) = K;vnn[Kmn((lO) + iaOCmn(aO)] (53)

where the subscripts m and n denote the horizontal (h),
vertical (v), rotational (r) and torsional (f) degree of
freedom, while the static stiffness coefficients K}, are
defined as K3, = K3, = uR, K5, = K3 = uR® and K}, = uR?,
with u= C?p, the shear modulus of the soil. The
dimensionless functions K,,,(ap) and C,,(ay) depend on
the dimensionless frequency ao=wR/C;.

8.2. The reference solution

Apsel and Luco [37] use an integral equation based on
the Green’s functions of a layered viscoelastic halfspace to
determine the impedance functions of three-dimensional
rigid foundations subjected to external forces and moments.
The boundary integral equation is defined on a boundary
located in the interior domain. A distribution of sources on
this boundary represents the unknowns. A non-singular
integral equation with a symmetric kernel is obtained in
terms of the unknown distribution of sources. For rigid
foundations, the force distribution is written in terms of
the unit rigid body displacements of the soil-foundation
interface for each of the six degrees of freedom of the
foundation, using a body force distribution matrix. The
solution of the integral equation in terms of the body force
distribution is accomplished by discretization, which
reduces the integral equation to a set of linear algebraic
equations.

The accuracy of the numerical solution of the integral
equation is influenced by the number of source and receiver
points and depends on the distance between the soil—
foundation interface and the boundary in the interior soil

domain. For an embedment ratio d/R=1.0, Apsel and Luco
use 65 observation points and 29 source points. Only
absolute values of the number of observation points as a
function of the embedment ratio are given. The distance
between the soil-foundation interface and the boundary in
the interior domain is equal to 2.5d,s, With d,, the distance
between the observation points.

The dashed-dotted lines in Fig. A.5 show the real and
imaginary parts K,,,(ap) and C,,,(ag) of the non-zero
elements of the foundation’s impedance matrix as computed
by Apsel and Luco [37] for dimensionless frequencies up to
ag™ = 6.0, corresponding to an excitation frequency of
73.83 Hz. These solutions seem to be free of fictitious
eigenfrequencies maybe because they are obtained with a
boundary integral equation for exterior problems that is
defined on a boundary located in the interior domain.
Therefore, the solutions of Apsel and Luco will be used as a
reference in the following.

As the dimensionless frequency ay is factored out in the
imaginary part of the impedance functions S,,,(ao) in Eq.
(53), due to hysteretical damping, the imaginary parts
C,un(ag) tend to very high values when the dimensionless
frequency a, tends to zero.

8.3. Boundary element discretization

The impedance functions of the rigid embedded
cylindrical foundation are calculated with a boundary
element formulation. Fig. A.6 shows the discretization of
the interface = between the foundation and the soil into 448
boundary elements. The size /, of a boundary element is
equal to 0.33 m so that N,=2\;,/[.=6 boundary elements
are used at the minimum wavelength A,,;;, of the shear wave
in the soil; the latter is equal to 2 m for a shear wave velocity
C,=150 m/s and a maximum frequency f;,.x =75 Hz.

Fig. A.6. Boundary element discretization of the interface = between the
foundation and the soil.
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(a) Mode MI1. (b) Mode M11.

Fig. A.7. Vertical modes (a) M1 (ap=3.3) and (b) M11 (ap=5.4) of the
interior soil domain Q.

The traction field t(u) is approximated by a constant
value over each boundary element and a collocation method
is applied.

The Green’s functions for the layered halfspace in the
integral equations are calculated using Kennet’s method
[39], which is based on reflection and transmission
coefficients. The Green’s functions are computed in the
wave number and frequency domain. The inverse Hankel
transformations between the wave number and the
spatial domain are performed with a constant quadrature
step Ak,=0.007 up to a value k, =15, where the
dimensionless radial wave number is defined as k, = k, C,/w.

The regular integrals are evaluated with a Gauss
quadrature rule with six Gauss points in each coordinate
direction, while a special quadrature scheme with 256 points
is used to evaluate the weakly singular integrals.

8.4. Appearance of fictitious eigenfrequencies

In order to demonstrate the problem associated with the
appearance of fictitious eigenfrequencies, the elements
Sm(ap) of the impedance matrix of the rigid massless
cylindrical embedded foundation are first computed using
a boundary element formulation that is based on
the displacement boundary integral equation (31).
The dimensionless coupling parameter & is equal to zero
in this case.

Calculations are performed for dimensionless frequen-
cies up to ag™ = 6.0 and a step Aay=0.081. Fig. A.5a and
A.5b compares these results with the impedance functions
obtained by Apsel and Luco, which are drawn in a dashed-
dotted line on all figures.

Fig. A5.1a and A.5.1b reveal important discrepancies
between the computed real part K, (ag) and the imaginary part
C,.(ap) of the vertical impedance and the reference solutions at
the dimensionless frequencies ap=3.3 and ap=5.4. These
anomalies are labeled as M1 and M 11 and are associated with
fictitious eigenfrequencies corresponding to the eigenfrequen-
cies of the interior soil domain Q" with Dirichlet boundary
conditions along the interface X and free boundary conditions
along the free surface I'yy. In order to demonstrate this, the
eigenfrequencies and eigenmodes of the interior soil domain
Q" have been computed with a finite element model,
consisting of linear eight node brick elements, with material
properties corresponding to the excavated soil. Fig. A.7 shows
the first two vertical eigenmodes M1 and M11 of the interior
soil domain Q™ at the dimensionless frequencies a,=23.3 and
ap=5.4. The discrepancy between the computed damping
coefficient C,,,(ao) and the reference solution is amplified at
low values of the dimensionless frequency a, since the
dimensionless frequency ag has been factored out in Eq. (53).

Fig. A.8 shows the displacements at the dimensionless
frequency ap=3.3 in the points located at the free surface
due to a unit vertical harmonic point load applied at the
center of the base of the cylindrical foundation. The
displacements are not only shown on the free surface I,
of the exterior domain Q*, but also on the free surface I'y,
of the interior domain QI™. Large non-zero displacements
can clearly be observed in the latter points and are
associated with the spurious mode M1 at the fictitious
eigenfrequency ap=3.3.

Fig. A.5.2, A.5.3 and A.5.4 reveal similar discrepancies
between the computed impedance functions for
the horizontal, rocking and coupled horizontal-rocking
vibration modes and the reference solutions at the
dimensionless frequencies ap=3.6, ap=4.0 and a;=35.8.

Fig. A.8. (a) Isometric and (b) side view of the displacements at points on the surface for the rigid massless cylindrical embedded foundation excited by a
vertical harmonic point load at a dimensionless frequency ap=3.3, computed with the parameter &= 0.
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Fig. A.9. Horizontal and rocking modes (a) M2 (ao=3.6), (b) M4 (ay=4.0) and (c) M14 (ay=5.8) of the interior soil domain Q™.

These anomalies are labeled as M2, M4 and M14 and are
associated with fictitious eigenfrequencies corresponding to
the horizontal and rocking modes of the interior soil domain
Qi with Dirichlet boundary conditions along the interface
> and free boundary conditions along the free surface Iy,
as illustrated in Fig. A.9. The first peak on the real part
Kj.n(ap) of the horizontal impedance at ay=13.6 corresponds
to the horizontal mode M2, while the peaks at ay=4.0 and
ap=5.8, correspond to the rocking modes M4 and M14 of
the interior soil domain. These three spurious modes
influence the three impedance coefficients K;;(ag), K,(ap)
and Kj,(ag) (and, to a lesser extent, the corresponding
imaginary parts Cp;(ag), C,(ap) and Cj(ap)) in the
frequency range of interest due to the coupling between
the horizontal and rocking motion.

Fig. A.5.5a and A.5.5b shows the real part K,(ao) and the
imaginary part C,(ap) of the torsional impedance of the
foundation. A single anomaly occurs at a dimensionless
frequency ap=4.2 that corresponds to the first torsional
mode M6 of the interior soil domain Q™ (Fig. A.10).

In the following subsections, it is demonstrated how this
numerical problem can be mitigated by discretizing
alternatively the combined boundary integral equation
(49) along the interface X between the soil and the
foundation. The choice of the dimensionless parameters &
and £ is demonstrated to be crucial.

8.5. Choice of a frequency dependent dimensionless
coupling parameter &

Following Amini’s recommendations [15], a frequency
dependent coupling parameter & = i/ay is first considered.
The dimensionless parameter 2= 1 is fixed in the following
examples.

Fig. A.11a and A.11b compares the real and imaginary
part of the dimensionless impedance functions for
a frequency dependent coupling parameter &= i/a, and
for a constant coupling parameter & = i/6 with the reference
solutions of Apsel and Luco. An imaginary value of &
represents a damping condition on the boundary of the
interior domain Q™. When @ is inversely proportional to
the dimensionless frequency, a very large value of & is
obtained at small frequencies, resulting in an increasing

contribution of the boundary integral equation for the
displacement gradient and an increasing deviation of the
computed impedance functions from the reference values.
The discretization of the original displacement boundary
integral would have resulted in sufficiently accurate results
at low excitation frequencies, whereas now, a solution
method is used in a frequency range where it is not needed
and designed for: the first fictitious eigenfrequency is equal
to ap=3.3, corresponding to the first vertical mode of the
interior soil domain. A frequency dependent coupling
parameter is therefore avoided in the range of low
dimensionless frequencies and a frequency independent
dimensionless coupling parameter & will be preferred in the
following.

8.6. Choice of a frequency independent dimensionless
coupling parameter &

Fig. A.12a and A.12b shows the real and imaginary part
of the dimensionless impedance functions computed with
h =1 and the following values of a constant dimensionless
coupling parameter: &=1i/6, a=i/3 and a=1i/2. The
results obtained with &= i/6, corresponding to the maxi-
mum dimensionless frequency ap™ =6, are in good
agreement with the results of Apsel and Luco, while the
deviations increase for increasing values of a.

The next example illustrates what happens when the
dimensionless coupling parameter & is too large. Fig. A.13a

and A.13b shows the real and imaginary part of
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Fig. A.10. Torsional mode M6 (aq=4.2) of the interior soil domain Q™.
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Fig. A.11. (a) Real part K,,,,,(ap) and (b) imaginary part C,,,(ap) of the dimensionless impedance functions as a function of the dimensionless frequency a, for
h=1 and @=i/6 (solid line), for 2= 1 and &= i/a, (dashed line) and according to Apsel and Luco [37] (dashed-dotted line).

the dimensionless impedance functions computed with 1= 1
and a large dimensionless coupling parameter & = 5i/3. The
contribution of the boundary integral equation for the
displacement gradient along the normal direction dominates
the combined boundary integral equation (49) and numerical

problems occur at fictitious eigenfrequencies @; that
correspond to the resonance frequencies of the interior soil
domain QI™ with boundary conditions "} (§)n;, = 0 along the
soil-structure interface  and free boundary conditions along
the boundary I'y.
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Fig. A.12. (a) Real part K,,,,,(ap) and (b) imaginary part C,,,,(ap) of the dimensionless impedance functions as a function of the dimensionless frequency a for
=1 and @=i/6 (solid line), @ = i/3 (dashed line), @ = i/2 (dotted line) and according to Apsel and Luco [37] (dashed-dotted line).

8.7. Choice of the dimensionless distance h

It has been argued before that the dimensionless distance
h between the boundaries =~ and = should be larger than 1
(or that the distance & should be larger than the boundary

element size /,) in order to obtain a good approximation of
the derivatives of the displacements and Green’s functions.
Different values of the dimensionless distance A= 1, h=2
and h=3 are therefore considered, while a constant
dimensionless coupling parameter & = i/6 is used.
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Fig. A.13. (a) Real part K,,,,,(ap) and (b) imaginary part C,,,(ao) of the dimensionless impedance functions as a function of the dimensionless frequency a, for

h=1 and &= 5i/3 (solid line) and according to Apsel and Luco [37] (dashed-dotted line).

Fig. A.14a and A.14b shows the real and imaginary
part of the dimensionless impedance functions for these h and &
three cases. The deviation with the reference results of

Apsel and Luco increases for an increasing dimensionless
distance h.

8.8. Recommended values of the dimensionless parameters

The previous parametric study on the impedance
functions of a rigid massless cylindrical embedded
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Fig. A.14. (a) Real part K,,,,,(ap) and (b) imaginary part C,,,,(ap) of the dimensionless impedance functions as a function of the dimensionless frequency a, for

a@=1i/6 and h =1 (solid line), 1= 2 (dashed line), # = 3 (dotted line) and according to Apsel and Luco [37] (dashed-dotted line).

foundation has demonstrated that the problem of fictitious
eigenfrequencies can be successfully mitigated and that
good correspondence with the results of Apsel and Luco is
obtained for a dimensionless distance 2= 1 and a constant

dimensionless coupling parameter & = i/6, as illustrated in
Fig. A.12.

Fig. A.15 again shows the displacements at the

dimensionless frequency ay=3.33 in the points located at
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Fig. A.15. (a) Isometric and (b) side view of the displacements of the points on the surface for the rigid massless cylindrical embedded foundation excited by a
vertical harmonic point load at a dimensionless frequency ao=23.33 and with the parameters 7= 1 and @= i/6.

the free surface due to a unit vertical harmonic point load
applied at the center of the base of the cylindrical
foundation. This figure should be compared with results
presented earlier in Fig. A.8. The displacements on the free
surface of the interior domain Q™ are now negligible, which
clearly demonstrates that the problem of the fictitious
eigenfrequencies has been successfully mitigated.

9. Conclusion

The solution of elastodynamic problems defined on
exterior domains with embedded regions of finite extent,
using a discretization of a displacement boundary integral
equation, is not unique at the eigenfrequencies of the
embedded interior domain with Dirichlet boundary con-
ditions along the soil-structure interface and free boundary
conditions along the free surface.

The solution technique used in the present paper is
derived from the approach proposed by Burton and Miller
for acoustic problems. The combination of the boundary
integral equation for the displacement and the displacement
gradient along the normal direction on the boundary is
introduced, using an imaginary coupling parameter o.
A modification of this approach, introducing a second
parameter A, is proposed to avoid hypersingular terms in the
corresponding boundary integral equation. It is proven that
fictitious eigenfrequencies are avoided if the parameter 4 is
small enough. The limiting case for /4 tending to zero has the
same properties but requires hypersingular kernels.

Both parameters « and £ are written in a dimensionless
form and a parametric study is performed on the choice of
these parameters, considering the impedance of a rigid
massless cylindrical foundation, embedded in a homo-
geneous halfspace. In the range of dimensionless frequen-
cies up to ag™ =6, very good correspondence with the
results published by Apsel and Luco is obtained with

a constant dimensionless coupling parameter &= i/ag™

and a dimensionless distance 7= 1. Spurious non-zero
displacements in the interior domain due to fictitious
resonances disappear almost completely when these par-
ameters are used. Overestimation of the parameters @ and /
or the use of a frequency dependent coupling parameter &
result in less accurate numerical results.

As the results of this parametric study have proven that
the problem of fictitious eigenfrequencies can successfully
be mitigated using the combined boundary integral
equation, this solution procedure will be used with
confidence in the future to compute traffic induced
vibrations in buildings with an embedded foundation.
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Appendix A. Proof of uniqueness for the finite difference
case

Let Q be an open bounded domain with a smooth
boundary I" whose unit outward normal vector at the point x
is denoted by n. Since the boundary is smooth, its minimum
radius of curvature is greater than r,,. Thus, for any 0<h <
r,, the smooth inner surface I'j, is defined as follows:

I, ={xeQx =x —/n; X €T} (A1)

The part €, of the domain €, located between I'" and I,
is mapped as follows:

Q,={xeqQx =x"—¢m; X' eT; €10, 1[} (A.2)
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Therefore, the integration of any function ¢(x) over €,
can be written as:

1
J $(x) dV() = & J JO $(x' — Chm)g(Z,x) A7 dSKY)  (A3)

Q, r

with g(¢, x)=dS(x’, {)/dS(x) tending to 1 if & tends to O.

It will be demonstrated that there exists a finite & such
that the homogeneous elastodynamic problem on Q has a
unique solution that satisfies the following kinematic
condition:

ux' —hn) = (1 + g) ux) vxer (A4)

as long a « has a strictly positive imaginary part. This
kinematic condition is equivalent to the finite difference
form (48) of the mixed boundary condition (44).

This problem is equivalently solved looking for the
saddle point of the following Lagrangian -L(u, A, W) :

L, A, w) = %a(u, i) + Re J)\(x’)- (u(x’ — hn)

— <1 + ﬁ) u(x/)) ds(x")
o

+ Re J w(x)-[t,(w)] dS(x) (A5)

Ty

where u is the complex conjugate of u. The standard bilinear
form a(u, v) for elastodynamic problems is defined as:

a(u,v) = J(C : (grad u®grad v) — wzpu-v) dv (A.6)

Q

with C the fourth-order elastic tensor. The second term on
the right hand side of Eq. (A.5) enforces the kinematic
condition (A.4) on the boundary I' using the Lagrange
multipliers A(x'). The third term is added to ensure that no
forces are applied on the boundary I';, as is actually the case
when the solution is written in terms of single and double
layer potentials that are only defined on I'. The vector
[t,.(u)] denotes the jump of the traction vector t,(u) along '),
(between I', 4 and I';, ), while w(x) is a vector of Lagrange
multipliers.

Stating the stationarity of the Lagrangian .£'(u, A, w) with
respect to u gives:

—a(u,v) = JO\'(X)'V(X) + w(x)-[t,(V)]) dS(x)

Ty

— (1 + g) Jl(x/)v(x/) ds(x’) (A7)

r

with A'(x)=A(x+/n)/g(1, x+kn). The jump [t,(v)] of the
traction vector t,(v) along I', associated with any field v
defined on Q is alternatively written as 7 (v). If the adjoint
operator of 7 (v) is denoted as T *(v), the line force density
f, that is applied on T, is defined as f,=—J*(w). The
elastic virtual work on the left hand side of Eq. (A.7) is
integrated by parts and the line force density f, is
introduced, resulting in the following equation:

J(div a(u) + pw’u)-vdV

Q

= J([tn(u)] +N —f,)-vdS + J (tn(u) - (1 +g) x) -vdS

Ty, r

(A.8)

This strong formulation enforces the elastodynamic
equilibrium equations inside the domain Q, as well as the
following relations between the Lagrange multipliers A and
w and the traction vectors t,(u) on I" and I'j;:

AX) = ﬁtn(u)(x/) X er (A.9)

V) = —[t,wx] +f,(x) xT, (A.10)

As the jump [t,(u)(x)] of the traction vector has to
vanish, Eq. (A.10) finally results in A’ =f,,.

A main difficulty now occurs when the parameter « in the
kinematic condition (A.4) has a non-vanishing imaginary
part. In that case, the displacement vector u may satisfy the
kinematic condition on I'j,, while its conjugate field a does
not. This means that the conjugate field i cannot be used as
a virtual displacement field v in Eq. (A.7).

To overcome this drawback, the displacement fields u,
are defined for any field u on Q,, as follows:

u,x,u)=(1—-90Bhux) xeI', 0<{<1 (A.11)

with 8 =—1/(a + h). The functional space V,, is defined as:

V, ={u, EL,(Q)lgrad u, € L;(Q); u,(x))

=u,(x —hn), X €T} (A.12)
The displacement field u is decomposed as:
u=u, +u,(u,) (A.13)

For all u,€V,, the displacement field u satisfies the
kinematic condition (A.4) on I" since:

(1 + ﬁ) ux’) = (1 + ﬁ) (1 + Bhyu,(x' — hn)
o o

=ux —hn) VX Er (A.14)
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The bilinear form a,(u,, v,) on V, is now defined as:

au(uo’ Vo) = a(uo + uh(“o)v ‘_]o + uh(‘_’u)) - J fo "_’() ds
T

(A.15)

Egs. (A.9) and (A.10) allow to elaborate this definition
as:

ao(uw V()) = a(u() + uh(u())7 ‘_’o + uh(‘_’o))

— (1 + Bh) Jtn(uo + u,(w,)) v, dS (A.16)
r

When it is understood that the displacement field v=
v,+u,(v,) satisfies the kinematic condition (A.4), the
definitions (A.15) and (A.16) are equivalent to Eq. (A.7)
as the terms in the Lagrange multipliers A(x’) and A'(x) do
not contribute to the work. A solution u of the elastody-
namic problem on Q with the kinematic condition (A.4) has
to satisfy:

a,(u,,v,) =0 v v, €V, (A.17)

In particular, the following imaginary part must be equal
to zero:

Im(a,(u,,u,)) =0 (A.18)

Noticing that u,(u) = (8, + if;)h#tu, with #H = (1 — )y,
a real operator that is built from the trace operator vy, on I, it
can be shown that:

Im(a(,(u,,, uo)) = Zhﬁi(hﬁrah(%um geﬁo) + ah(%uon uor)

+ ah(gfuoi’ uoi))

—Im| (1 +8h) Jtn(u,, +uw,(u,)) v, dS
r

(A.19)

where a;(u,v) denotes the same bilinear form as a(u,v), except
that the integral is performed only on the domain Q;,, as uy(u,)
vanishes elsewhere. The stresses t,(u,) and t,(uy(u,)) in
Eq. (A.19) are elaborated using the constitutive equations and
the following expressions for the gradients of the displacement
fields:

1
gradu = ﬁn®6gu + grad,u (A.20)

grad #Hu = %n@yhu + (1 —Qgrad,y,u (A.21)
where grad,, is the gradient in the plane normal to n. Integrating
with respect to  when possible, accounting for u,(x) =u,(x+
hn) when x € I', and sorting all terms with respect to powers of
h, it can be demonstrated that only the last term of Eq. (A.19)
gives a contribution in ho, while the other terms are at least

O(h), so that:

Im(a,(u,,u,)) = Im JQ : (0,u, ®1,) dS
r

+ B;lla, |3 + OCh) (A.22)
In this equation, ||u0||2Q is defined as:
lu,lly = JQ S (u®u) dS (A.23)

r

with Q the acoustic tensor defined as Q;(x) = Cjjun;ny. Since
the acoustic tensor is positive definite, ||u0||2Q is equivalent to
the L,-norm ||u,||* on T.

Before going further, it is worth to look at the asymptotic
solution when & tends to zero. Inside the domain Q,, u,
dominates; more precisely, An® v,u dominates the gradient
which is constant when { varies. Therefore, the traction
vectors t,(u) on the two sides of Q, are equal. As [t,(u)] =0,
they are also equal to the traction vector on the other side of
Fh:

t,(W)(x) = t,(u)(x' — i'n)

=BQu(x' —/in) X €T (A.24)

In order to obtain a well-posed limit problem, the
following is stated:

limt,(W)(x) = iEQu(x’) (A.25)
which can be easily achieved by taking a=i/£. As for a
smooth boundary, any solution of the homogeneous
elastodynamic equation on €, for w<wq is continuous
and has continuous derivatives up to any order inside €,
all fields including grad,u, and 62,u, can be bounded
independently from &, provided that the limit when h
tends to zero is well defined. Using a Taylor expansion
along the normal for u, up to the second-order and
noticing that u,(x—#hn)=u,(x) for XEI" one can show
that 0,u,=O(h) on I'. Thus, if ||u(,||%h >A>0for h<h,,
there exists a real number ¢ so that the following
inequality holds VA<h, and Vw<w,:

|Im(a, (u,, u,)) — Billu,lI5] < chllu,|If (A.26)

As the imaginary part of § is strictly positive, §;>&>
0, and the following inequality must also hold:

Im(a,(u,, u,)) > c&llu, lIE (A.27)

uniformly in ~ with ¢’ a positive real number. As the
imaginary part Im(a,(u,,u,)) must be equal to zero
according to Eq. (A.18), the inequality (A.27) implies
that ||u,||% = 0, resulting in u=0 on I" and on T,

For an excitation frequency w that is lower than the first
eigenfrequency of Q, with clamped boundary conditions on
I';, and T, it is known that the unique elastodynamic solution
without body forces corresponds to u,=0 everywhere
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inside Q. Consequently, t,(ug)=0 and A=0. As the only
elastodynamic solution on a bounded domain that satisfies
u=0 and t,(u)=0 on its boundary corresponds to u=0
everywhere inside this domain, it can be concluded that
u,=0 everywhere inside Q. The uniqueness of the inner
problem with the kinematic condition (A.4) is then proven
for h<h, and w<w,, including the limiting case when h
tends to zero. In the latter case, the kinematic condition
(A.4) corresponds to the following condition:

u-+ad,u=0 (A.28)
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