
Engineering Failure Analysis 13 (2006) 629–637

www.elsevier.com/locate/engfailanal
A numerical analysis of stress intensity factors at
bifurcated cracks

Xiangqiao Yan

Research Laboratory on Composite Materials, Harbin Institute of Technology, Harbin 150001, PR China

Received 28 October 2004; accepted 11 December 2004

Available online 22 April 2005
Abstract

This paper is concerned with complex stress intensity factors at bifurcated cracks by using the boundary element

method, which consists of the constant displacement discontinuity element presented by Crouch and Starfield and

the crack-tip displacement discontinuity element due to the author. To prove the efficiency of the suggested approach

and provide more results of the stress intensity factors, analysis of an asymmetric branched crack bifurcated from a

main crack is carried out. The present numerical results show that the numerical approach to the computation of stress

intensity factors of complex plane crack problems is simple, yet very accurate.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Stress intensity factors are important in the analysis of cracked materials. They are directly related to the

fracture propagation and fatigue crack growth criteria. In the beginning, the majority of the analyses of

crack problems were mostly based on the Muskhelishvili potential formulation and conformal mapping

of the crack geometry. With the development of numerical computational techniques, in recent years,

numerical analysis methods, in particular, finite element method and boundary element method are used

extensively in solving the crack problems. It is well known that how to model the crack is the key issue
in the analyses. Among several elastic two-dimensional crack modeling strategies by the boundary element

method, there exist the multi-domain formulation [1], the stress formulation with regularization [2], and the

dual boundary element method [3,4]. For each formulation, options are available such as building in the
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crack-tip stress singularity [5], using the quarter-point boundary element [1], and strategically refining the

near-crack-tip nonsingular element. Further details of elastic crack analysis by the boundary element meth-

od are given in [6,7].

Even though much progress has been made in crack modeling techniques, both simple and very accu-

rate crack modeling technique is still needed, in particular for the branched crack problems. The displace-
ment discontinuity method [8], as an indirect boundary element method, is very well suited for analysis

the crack problems in plane elasticity because, physically, one may imagine a displacement discontinuity

as a line crack whose opposing surfaces have been displaced relative to one another. Based on the ana-

lytical solution [8,9] to the problem of a constant discontinuity in displacement over a finite line segment

in the x, y plane of an infinite elastic solid, recently, the crack-tip displacement discontinuity element,

which can be classified as the left and right crack-tip displacement discontinuity elements were presented

by the author [10] to model the crack-tip fields to very accurately compute the stress intensity factors of

cracks in general plane elasticity. In [11], the crack-tip displacement discontinuity element together with
the constant displacement discontinuity element presented by Crouch and Starfield [8] is used to develop

a numerical approach to the computation of stress intensity factors of plane elasticity cracks. In the

boundary element implementation, the left or the right crack-tip element is placed locally at the corre-

sponding left or right crack tip on top of the constant displacement discontinuity elements that cover

the entire crack surface and the other boundaries. To prove the efficiency of the suggested approach

and provide more results of the stress intensity factors, analysis of an asymmetric branched crack bifur-

cated from a main crack is carried out. The problem was ever analyzed by Theocaris [12] by optical

method and documented by Murakkami [13]. The present numerical results show that the numerical ap-
proach to the computation of stress intensity factors of complex plane crack problems is simple, yet very

accurate.
2. Numerical procedure

A boundary element method proposed in [11] for calculating numerically stress intensity factors for

plane elasticity crack problems consists of the constant displacement discontinuity element presented by
Crouch and Starfield [8] and the crack-tip displacement discontinuity element due to the author [10].

2.1. Brief introduction of constant displacement discontinuity element [8]

The displacement discontinuity Di in |x| < a, y = 0 in an infinite plate is defined as the difference in dis-

placement between the two sides of the segment [8]:
Dx ¼ uxðx; 0�Þ � uxðx; 0þÞ;
Dy ¼ uyðx; 0�Þ � uyðx; 0þÞ.

ð1Þ
Because ux and uy are positive in the positive x and y coordinate directions, it follows that Dx and Dy are

positive as illustrated in Fig. 1.

The solution to the subject problem is given by Crouch and Starfield [8]. The displacements and stresses

can be written as
ux ¼ Dx½2ð1� mÞF 3ðx; yÞ � yF 5ðx; yÞ� þ Dy ½�ð1� 2mÞF 2ðx; yÞ � yF 4ðx; yÞ�;
uy ¼ Dx½ð1� 2mÞF 2ðx; yÞ � yF 4ðx; yÞ� þ Dy ½2ð1� mÞF 3ðx; yÞ � yF 5ðx; yÞ�

ð2Þ
and
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Fig. 1. Schematic of constant displacement discontinuity components Dx and Dy.
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rxx ¼ 2GDx½2F 4ðx; yÞ þ yF 6ðx; yÞ� þ 2GDy ½�F 5ðx; yÞ þ yF 7ðx; yÞ�;
ryy ¼ 2GDx½�yF 6ðx; yÞ� þ 2GDy ½�F 5ðx; yÞ � yF 7ðx; yÞ�;
rxy ¼ 2GDx½�F 5ðx; yÞ þ yF 7ðx; yÞ� þ 2GDy ½�yF 6ðx; yÞ�.

ð3Þ
G and m in these equations are shear modulus and the Poisson�s ratio, respectively. Functions F2 through F7

are described in [8]. Eqs. (2) and (3) are used by Crouch and Starfield [8] to set up a constant displacement

discontinuity boundary element method.

2.2. Crack-tip displacement discontinuity element

Based on [8], the crack-tip displacement discontinuity elements, which can be classified as the left and the

right crack-tip displacement discontinuity element to deal with crack problems for general plane elasticity,

were presented by the author [10]. The left crack-tip displacement discontinuity element is outlined here.

The schematic of the left crack-tip displacement discontinuity element is shown in Fig. 2. Its displace-

ment discontinuity functions are chosen as
Dx ¼ H s

aþ n
a

� �1
2

;

Dy ¼ Hn

aþ n
a

� �1
2

;

ð4Þ
where Hs and Hn are the tangential and normal displacement discontinuity quantities at the center of the

element, respectively. Here, it is noted that the element has the same unknowns as the two-dimensional con-

stant displacement discontinuity element. But it can be seen that the displacement discontinuity functions
2
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Fig. 2. Schematic of the left crack-tip displacement discontinuity element.
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defined according to (4) can model the displacement fields around the crack tip. Therefore, the stress field

determined by the displacement discontinuity functions (4) possesses the r�1/2 singularity around the crack

tip.

Based on the solution of constant discontinuity in displacement given by Crouch and Starfield [8], the

displacements and stresses at a point (x,y) due to the left crack-tip displacement discontinuity element
can be obtained as follows:
Table

Variat

Numb

KI=r
p

ux ¼ H s½2ð1� mÞB3ðx; yÞ � yB5ðx; yÞ� þ Hn½�ð1� 2mÞB2ðx; yÞ � yB4ðx; yÞ�;
uy ¼ H s½ð1� 2mÞB2ðx; yÞ � yB4ðx; yÞ� þ Hn½2ð1� mÞB3ðx; yÞ � yB5ðx; yÞ�

ð5Þ
and
rxx ¼ 2GH s½2B4ðx; yÞ þ yB6ðx; yÞ� þ 2GHn½�B5ðx; yÞ þ yB7ðx; yÞ�;
ryy ¼ 2GH s½�yB6ðx; yÞ� þ 2GHn½�B5ðx; yÞ � yB7ðx; yÞ�;
rxy ¼ 2GH s½�B5ðx; yÞ þ yB7ðx; yÞ� þ 2GHn½�yB6ðx; yÞ�;

ð6Þ
where functions B2 through B7 are given in [10].
It can be seen by comparing Eqs. (5) and (6) with Eqs. (2) and (3) that the displacements and stresses due

to the crack-tip displacement discontinuity element possess the same forms as those due to a constant dis-

placement discontinuity element, with Fi(x,y) (i = 2,3, . . ., 7) in Eqs. (2) and (3) being replaced by Bi(x,y)

(i = 2,3, . . ., 7), Dx and Dy by Hs and Hn, respectively. This enables the boundary element implementation

to be easy.
3. Computation formulas of stress intensity factors and simple illustrative examples

Based on the displacement field around the crack tip and the definition of the displacement discontinuity

functions (11), one can obtain the calculation formulas of stress intensity factors KI and KII:
KI ¼ �
ffiffiffiffiffiffi
2p

p
GHn

4ð1� mÞ ffiffiffi
a

p ; KII ¼ �
ffiffiffiffiffiffi
2p

p
GH s

4ð1� mÞ ffiffiffi
a

p . ð7Þ
To prove the efficiency of the suggested approach, two simple illustrative examples are taken here.

An infinite plate with a through crack of length 2a which is subjected to uniform stress normal to the

crack plane at distances sufficiently far away from the crack is taken for example to compute the stress

intensity factor KI. Owing to its symmetry, only half is taken for the analysis. Table 1 gives that the ratio

of the numerical solution to the analytical one for stress intensity factor KI is varied with the number of

elements. In this calculation, the crack-tip element and constant elements are taken to possess the equal

size. Table 2 gives that the ratio of the numerical solution to the analytical one for stress intensity factor

KI is varied with the ratio of the size of the crack-tip element to the one of constant elements. Here, the
sizes of constant elements are taken to be equal and the number of total elements is 11. It can be seen from

Table 1 that a good result for the stress intensity factor KI can be obtained using the crack-tip element. It

can be seen from Table 2 that the ratio of the size of the crack-tip element to that of constant elements is
1

ion of SIF normalized by r
ffiffiffiffiffiffi
pa

p
for a center crack in an infinite plate with the number of elements

er of elements 3 5 7 10 15 25ffiffiffiffiffiffi
pa 0.9621 0.9775 0.9838 0.9885 0.9921 0.995



Table 2

Variation of SIF normalized by r
ffiffiffiffiffiffi
pa

p
for a center crack in an infinite plate with the ratio of the size of the crack-tip element to the one

of constant elements

acrack/aconstant 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

KI=r
ffiffiffiffiffiffi
pa

p
1.2048 1.1690 1.1394 1.1143 1.0928 1.0742 1.0578 1.0433 1.0303

acrack/aconstant 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45

KI=r
ffiffiffiffiffiffi
pa

p
1.0186 1.0080 0.9984 0.9896 0.9815 0.9741 0.9671 0.9607 0.9547

Table 3

Variation of normalized SIF s for an inclined center crack in an infinite plate with the angle b

b 5� 10� 20� 30� 40� 45� 50� 60� 70� 80� 85�

FI 0.9895 0.9898 0.9896 0.9898 0.9898 0.9885 0.9897 0.9897 0.9898 0.9897 0.9896

FII 0.9896 0.9897 0.9897 0.9897 0.9897 0.9885 0.9897 0.9897 0.9897 0.9897 0.9896
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necessarily taken to be from 0.9 to 1.3 to obtain a good result with a relative error less than 3%. This can be

regarded as one limitation to the approach presented in the present paper.

An inclined crack plate with a through crack of length 2a which is subjected to uniform stress at dis-

tances sufficiently far away from the crack is taken as another example to compute the SIFs KI and KII

whose exact solution is available [13]. Here, the SIFs KI and KII calculated by the present study are nor-

malized by
F I ¼ KI=ðr
ffiffiffiffiffiffi
pa

p
sin2bÞ; F II ¼ KII=ðr

ffiffiffiffiffiffi
pa

p
sin b cos bÞ;
where b is the angle between the load and the crack plane. Some numerical results are given in Table 3. In

this calculation, the crack-tip elements and constant elements are taken to be of equal size and the number

of total elements is taken to be 20, i.e., two crack-tip elements and 18 constant elements. It is observed from

Table 3 that no matter how large or small is the angle b between the load and the crack plane, the present

numerical results of the stress intensity factors KI and KII are in good agreement with the analytical ones.
4. Stress intensity factors for an asymmetric branched crack bifurcated from main crack

To prove further the efficiency of the suggested approach and provide more results of the stress intensity

factors, analysis of an asymmetric branched crack bifurcated from a main crack is carried out below. The
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Fig. 3. Schematic of an asymmetric branched crack under uniaxial tension.



Table 4

Variation of the number of elements discretized on segments AD, DB and DC with ratios c/a and b/c

b/c c/a

0.1 0.15 0.2 0.25

na nb nc na nb nc na nb nc na nb nc

0.2 500 10 50 333 10 50 250 10 50 200 10 50

0.4 250 10 25 166 10 25 187 15 37 200 20 50

0.6 160 10 16 222 20 33 166 20 33 133 20 33

0.8 180 15 18 166 20 25 125 25 25 100 20 25

1.0 200 20 20 166 25 25 125 30 25 100 25 25

1.2 200 24 20 166 30 25 125 35 25 100 30 25

1.4 200 28 20 166 35 25 125 40 25 100 35 25

1.6 200 32 20 166 40 25 125 45 25 100 40 25

1.8 200 36 20 166 45 25 125 50 25 100 45 25

2.0 200 40 20 166 50 25 125 55 25 100 50 25

2.2 200 44 20 166 55 25 125 55 25 100 55 25

2.4 200 48 20 166 60 25 125 60 25 100 60 25

2.6 200 52 20 166 65 25 125 65 25 100 65 25

2.8 200 56 20 166 70 25 125 70 25 100 70 25

3.0 200 60 20 166 75 25 125 75 25 100 75 25

Table 5

Normalized stress intensity factors for an asymmetric branching crack angle h = 15�

b/c c/a = 0.10 c/a = 0.15

F B
I F B

II F C
I F C

II F B
I F B

II F C
I F C

II

0.2 �0.0468 0.0579 0.9959 �0.0033 �0.0538 0.0656 0.996 �0.0035

0.4 �0.0563 0.0701 0.9937 �0.0105 �0.0663 0.0803 0.9935 �0.0114

0.6 �0.0164 0.0665 1.0003 �0.0098 �0.0398 0.0476 0.9973 �0.0181

0.8 0.1433 �0.0199 0.9913 0.0042 0.1213 �0.0288 0.9899 �0.0134

1.0 0.616 �0.0231 0.7735 0.1206 0.6146 �0.0147 0.7823 0.1152

1.2 0.9014 0.1457 0.3645 0.1496 0.9048 0.1602 0.3666 0.1455

1.4 0.9538 0.2127 0.165 0.0888 0.9596 0.2285 0.1618 0.0833

1.6 0.9685 0.234 0.0819 0.0446 0.9774 0.2506 0.0755 0.0376

1.8 0.9777 0.2439 0.0402 0.0169 0.9897 0.2612 0.0318 0.0087

2.0 0.9857 0.2503 0.0156 �0.0015 1.0011 0.2682 0.0058 �0.0107

c/a = 0.20 c/a = 0.25

F B
I F B

II F C
I F C

II F B
I F B

II F C
I F C

II

0.2 �0.0599 0.0708 0.996 �0.0036 �0.0644 0.0754 0.9959 �0.0037

0.4 �0.0717 0.0806 0.9957 �0.0086 �0.0806 0.0796 0.9965 �0.0097

0.6 �0.0499 0.0564 0.9976 �0.0205 �0.0581 0.0632 0.9978 �0.0224

0.8 0.1125 �0.0199 0.9918 �0.0187 0.1055 �0.013 0.9933 �0.0231

1.0 0.612 �0.0047 0.7865 0.1086 0.6102 0.003 0.7899 0.1033

1.2 0.9071 0.1727 0.3665 0.1399 0.9094 0.1823 0.3664 0.1353

1.4 0.9647 0.2415 0.1578 0.0768 0.9696 0.2515 0.1542 0.0715

1.6 0.9853 0.2638 0.0691 0.03 0.9929 0.2739 0.0637 0.0239

1.8 1.0007 0.2745 0.0238 0.0003 1.011 0.2848 0.0171 �0.0066

2.0 1.015 0.2819 �0.0032 �0.0198 1.028 0.2924 �0.0108 �0.0272
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problem was ever analyzed by Theocaris [12] by optical method and documented by Murakkami [13]. The

schematic of the asymmetric branched crack is shown in Fig. 3. In the present analysis, the following cases

are considered
Table

Norma

b/c

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
c=a ¼ 0.1; 0.15; 0.20; 0.25;

h ¼ 15�; b=c ¼ 0.2; 0.4; 0.6; 0.8; 1.0; 1.2; 1.4; 1.6; 1.8; 2.0;

h ¼ 30�; b=c ¼ 0.2; 0.4; 0.6; 0.8; 1.0; 1.2; 1.4; 1.6; 1.8; 2.0;

h ¼ 45�; b=c ¼ 0.2; 0.4; 0.6; 0.8; 1.0; 1.2; 1.4; 1.6; 1.8; 2.0; 2.2; 2.4; 2.6; 2.8; 3.0.
The stress intensity factors at the crack tips B and C are normalized by mode-I stress intensity factors at the

crack tip A, i.e.,
F IB ¼ KIB=KIA; F IIB ¼ KIIB=KIA;

F IC ¼ KIC=KIA; F IIC ¼ KIIC=KIA.
Regarding the discretization of boundary elements, here, the number of elements discretized on segments

AD, DB and DC is denoted by na nb and nc, respectively, and is varied with ratios c/a and b/c, as listed in

Table 4. Stress intensity factors for the branched crack angles 15�, 30� and 45� are given in Tables 5–7. If the

reader compares the numerical results here with those reported in [12], it is found that the consistency be-

tween the two is very good in tendency. But because the results reported in [12] were represented by curves,
6

lized stress intensity factors for an asymmetric branching crack angle h = 30�

c/a = 0.10 c/a = 0.15

F B
I F B

II F C
I F C

II F B
I F B

II F C
I F C

II

�0.0722 0.0617 0.9975 �0.0033 �0.0881 0.0734 0.9976 �0.0038

�0.064 0.0615 0.9979 �0.0119 �0.0847 0.077 0.998 �0.0145

0.0236 0.0373 0.9989 �0.0165 �0.0006 0.0431 1.0023 �0.0233

0.2356 0.0204 0.9759 0.0126 0.2163 0.0337 0.9824 0.0004

0.5057 0.0913 0.8641 0.0852 0.4928 0.1106 0.8744 0.0729

0.6847 0.21 0.6838 0.139 0.677 0.2342 0.6929 0.1282

0.7656 0.3016 0.5204 0.1485 0.7612 0.329 0.5256 0.1387

0.8 0.3587 0.4013 0.136 0.7983 0.3884 0.4022 0.1262

0.8165 0.3947 0.3176 0.1178 0.8176 0.426 0.3148 0.1074

0.8262 0.4191 0.2574 0.0997 0.8301 0.4517 0.2514 0.0887

c/a = 0.20 c/a = 0.25

F B
I F B

II F C
I F C

II F B
I F B

II F C
I F C

II

�0.1004 0.0824 0.9975 �0.0043 �0.1103 0.0898 0.9974 �0.0047

�0.1032 0.0836 0.9991 �0.0158 �0.1175 0.0904 0.9998 �0.0175

�0.0179 0.0558 1.0037 �0.0286 �0.0317 0.0656 1.0048 �0.033

0.2018 0.047 0.9864 �0.0083 0.1905 0.0571 0.9896 �0.0153

0.4834 0.1259 0.8806 0.0633 0.4766 0.1374 0.8854 0.0556

0.6719 0.2522 0.6981 0.1195 0.669 0.2659 0.7018 0.1125

0.7594 0.3493 0.5277 0.1306 0.7593 0.3646 0.529 0.124

0.7993 0.4101 0.4011 0.118 0.8018 0.4266 0.3997 0.1113

0.8212 0.4487 0.3109 0.0987 0.8261 0.466 0.3071 0.0916

0.8363 0.4753 0.2451 0.0793 0.8435 0.4932 0.2394 0.0716



Table 7

Normalized stress intensity factors for an asymmetric branching crack angle h = 45�

b/c c/a = 0.10 c/a = 0.15

F B
I F B

II F C
I F C

II F B
I F B

II F C
I F C

II

0.2 �0.1343 0.0382 1.0005 �0.0047 �0.1621 0.048 1.0009 �0.0057

0.4 �0.1208 0.0313 1.0056 �0.0192 �0.1564 0.0435 1.0067 �0.024

0.6 �0.0113 0.0337 1.0116 �0.0306 �0.0317 0.0542 1.0121 �0.0364

0.8 0.1685 0.0772 0.9967 �0.013 0.138 0.0936 1.0038 �0.0273

1.0 0.3345 0.1603 0.945 0.0258 0.3103 0.183 0.9547 0.0112

1.2 0.4514 0.2583 0.8612 0.0672 0.4305 0.2844 0.8721 0.0525

1.4 0.5191 0.3422 0.7694 0.0953 0.501 0.3714 0.7797 0.081

1.6 0.5559 0.4062 0.685 0.1097 0.5404 0.438 0.6935 0.0959

1.8 0.576 0.4541 0.6128 0.115 0.563 0.488 0.6189 0.1014

2.0 0.5874 0.4903 0.5523 0.1149 0.5769 0.526 0.556 0.1012

2.2 0.5944 0.5187 0.5017 0.1118 0.5862 0.5557 0.503 0.0979

2.4 0.5989 0.5415 0.4591 0.1072 0.5932 0.5798 0.458 0.0929

2.6 0.6023 0.5605 0.4227 0.1018 0.599 0.5999 0.4194 0.0871

2.8 0.6049 0.5768 0.3913 0.0961 0.6041 0.6171 0.386 0.0809

3.0 0.6073 0.5909 0.3638 0.0903 0.6088 0.6321 0.3567 0.0746

c/a = 0.20 c/a = 0.25

F B
I F B

II F C
I F C

II F B
I F B

II F C
I F C

II

.2 �0.1837 0.0554 1.0011 �0.0066 �0.2007 0.0618 1.0011 �0.0074

.4 �0.1691 0.0604 1.0065 �0.0264 �0.1827 0.0723 1.0063 �0.0286

.6 �0.0583 0.0648 1.0149 �0.0446 �0.0792 0.0726 1.0171 �0.0513

.8 0.1145 0.1053 1.0097 �0.0393 0.0968 0.1136 1.0143 �0.0491

1.0 0.2914 0.1971 0.9631 �0.0024 0.2779 0.2072 0.9695 �0.0133

1.2 0.4157 0.3013 0.8812 0.0389 0.4059 0.3134 0.888 0.028

1.4 0.4896 0.3907 0.788 0.0679 0.4827 0.4047 0.7939 0.0575

1.6 0.5318 0.4594 0.7002 0.0833 0.5275 0.4748 0.7047 0.0732

1.8 0.5569 0.5109 0.6236 0.089 0.5549 0.5273 0.6265 0.079

2.0 0.5732 0.55 0.5587 0.0887 0.5733 0.5674 0.5599 0.0787

2.2 0.5849 0.5808 0.5037 0.0853 0.5869 0.5989 0.5033 0.0751

2.4 0.5941 0.6057 0.4569 0.08 0.5981 0.6244 0.4549 0.0696

2.6 0.602 0.6265 0.4166 0.0738 0.6078 0.6458 0.4131 0.0631

2.8 0.6091 0.6443 0.3815 0.0672 0.6167 0.6641 0.3767 0.0562

3.0 0.6159 0.6599 0.3507 0.0605 0.6251 0.6801 0.3445 0.0492
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the quantitative comparisons cannot be made here. It can be seen from the curves of the normalized stress

intensity factors given in [12] and the present numerical results that the effect of the ratio b/c on the nor-

malized stress intensity factors is very obvious, especially for FIB, FIIB and FIC. However, the effect of

the ratio c/a on the normalized stress intensity factors FIB, FIIB, FIC and FIIC is not revealed from the curves

of the normalized stress intensity factors given in [12]. In fact, it can be seen from the present numerical

results, see Tables 5–7, that the ratio c/a affects also the normalized stress intensity factors FIB, FIIB, FIC

and FIIC. For example, for the case, h = 15�, b/c = 0.2, FIB and FIIB corresponding to c/a = 0.1, 0.15, 0.2,

0.25 are �0.0468, �0.0538, �0.0599, �0.0644, and 0.0579, 0.0656, 0.0708, 0.0754, respectively; on the other
hand, FIC and FIIC corresponding to c/a = 0.1, 0.15, 0.2, 0.25 are 0.9959, 0.9960, 0.9960, 0.9959 and

�0.0033, �0.0035, �0.0036, �0.0038, respectively. For this case, apparently, the effect of the ratio c/a

on FIB and FIIB is very obvious, but the effect of the ratio c/a on FIC and FIIC is almost negligible. For exam-

ple again, for the case, h = 30�, b/c = 2.0, the ratio c/a has an effect on FIB, FIIB, FIC, FIIC to some extent.
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5. Conclusion

This paper studies complex stress intensity factors at bifurcated cracks by using a boundary element

method. The present numerical results show that the numerical approach to the computation of stress

intensity factors of complex plane crack problems is simple, yet very accurate.
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