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ABSTRACT

This work describes two perspectives for understanding the numerical difficulties that arise in
the solution of wave problems, and various advances in the development of efficient discretiza-
tion schemes for acoustics. Standard, low-order, continuous Galerkin finite element methods
are unable to cope with wave phenomena at short wave lengths because the computational ef-
fort required to resolve the waves and control numerical dispersion errors becomes prohibitive.
The failure to adequately represent subgrid scales misses not only the fine-scale part of the so-
lution, but often causes severe pollution of the solution on the resolved scale as well. Since
computation naturally separates the scales of a problem according to the mesh size, multi-
scale considerations provide a useful framework for viewing these difficulties and developing
methods to counter them. The Galerkin/least squares method arises in multiscale settings,
and its stability parameter is defined by dispersion considerations. Bubble enriched methods
employ auxiliary functions that are usually expressed in the form of infinite series. Dispersion
analysis provides guidelines for the implementation of the series representation in practice. In
the discontinuous enrichment method, the fine scales are spanned by free-space homogeneous
solutions of the governing equations. These auxiliary functions may be discontinuous across
element boundaries, and continuity is enforced weakly by Lagrange multipliers.
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1. INTRODUCTION

Wave problems present a major challenge to com-
putation when the geometric length scale is large in
proportion to the natural wavelength. This work
describes two perspectives for understanding the
numerical difficulties that arise in the solution of
wave problems: loss of best approximation and fail-
ure to adequately represent subgrid scales. These
views lead to various approaches to the develop-
ment of efficient discretization schemes for acous-
tics, some of which are reviewed.

Computational acoustics has been an area of ac-
tive research for almost half a century, also related to
other fields of application such as geophysics, me-
teorology, electromagnetics, and so on. The chal-
lenge of efficient computation, at high wave num-
bers in particular, has been designated as one of the
problems still unsolved by current numerical tech-
niques [1]. Standard computational methods are un-
able to cope with wave phenomena at short wave-
lengths because they require a prohibitive computa-
tional effort to resolve the waves and control numer-
ical dispersion errors. The failure to adequately rep-
resent subgrid scales misses not only the fine-scale
part of the solution, but often causes severe pollu-
tion of the solution on the resolved scale as well.
This phenomenon is related to the deterioration of
numerical stability due to accumulation of disper-
sion errors. Many current discretization techniques
are being developed in response to the challenge of
controlling such errors effectively.

The Helmholtz equation describes time-
harmonic acoustic and electromagnetic waves.
The indefinite Helmholtz operator may lose ellip-
ticity with increasing wave number since in that
case, its weak form no longer induces a norm. This
is related to the pollution effect, in which Galerkin
finite element solutions with continuous low-order
piecewise polynomials differ significantly from the
best approximation [2] due to spurious dispersion
in the computation, unless the mesh is sufficiently
refined. In practical terms, pollution leads to a
substantial increase in the cost of the finite element
solution of the Helmholtz equation at higher wave
numbers.

Domain-based methods such as finite elements
are suitable for solving interior problems as well
as exterior radiation and scattering problems in
bounded domains that have been truncated by ab-
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sorbing boundary conditions, infinite elements, or
absorbing layers (see, e.g., the book by [3]). His-
torically, boundary element schemes based on in-
tegral equations [4-6], which do not require spe-
cial treatment of the unbounded domain, were the
preferred computational method in acoustics due
to the reduced dimensionality of the domain, lead-
ing to fewer degrees of freedom. Over a decade
ago, it became apparent that finite elements can
be more efficient on large-scale problems because
of the structure of their matrices in comparison to
the global nature for boundary element discretiza-
tion [7, 8]. While this conclusion becomes less ob-
vious with the recent incorporation of fast multi-
pole methods [9, 10], finite element methods retain
the advantages of robustness and ease of integration
with other discrete models in coupled problems.

2. ABSTRACT DIRICHLET PROBLEM

Let Q C R? be a d-dimensional, open, bounded re-
gion with smooth boundary I'.

For simplicity, consider the following (homo-
geneous) Dirichlet boundary value problem: find
u: Q — R such that

Lu=f in Q 1)

u=0 on I 2)

Here f: 2 — R is given. We think of £ as a second-
order differential operator. Generalization of the
following results to problems with other types of
boundary conditions and inhomogeneous bound-
ary data, including radiation conditions represent-
ing unbounded domains, is straightforward. (See
Sections 3.3, 4.3, and 5.3 for numerical results with
other types of boundary conditions.)

The standard variational form is stated in terms
of the set of functions V = H}(Q): find u € V such
that

a(v,u) = (v, f),

Here (-, -) is the L2(£2) inner product. (The form of
the right-hand side assumes sufficiently smooth f.)
The bilinear operator is related to the differential op-
erator via integration by parts:

Yo ey €)

a(v,u) = (v, Lu) = (LT, u) (4)

for sufficiently smooth u,v € V.
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The conventional finite element method is based
on continuous Galerkin approximation in terms of
the set of functions V* C V, typically made up of
continuous piecewise polynomials: find u"* € V*
such that

a(v™ u) = (", f), Vol e Yh (5)
For some operators, this approach assures high
coarse-mesh accuracy, but not for others.

2.1 Best Approximation: Nearly Optimal
Petrov-Galerkin

The “best approximation” property can explain the
difficulties that arise in some cases. When the bi-
linear operator is an inner product, the norm that
it induces is often called the energy norm. Best ap-
proximation in the energy norm implies optimality
of the finite element method in the sense that it min-
imizes the error e = u" — u:

ale,e) = a(UM —u,U" —u), YU" e V" (6)
For the Laplace operator the energy norm is the
H' seminorm. In geometric terms, the finite element
solution can be described as the H' projection of the
unknown exact solution onto the finite-dimensional
subspace
(Vol', Vul) = (Vo' Vu), Yo" eV (7)
This property is associated with nodal exactness in
one dimension, but more importantly, it ensures
good performance of multidimensional computa-
tion at any mesh resolution.

Best approximation in the energy norm is re-
tained for many elliptic operators.  Reaction-
diffusion, where an undifferentiated term is added
to the Laplace operator, is one such case. However,
as the value of the reaction coefficient grows, the en-
ergy norm tends to the L, norm, losing the ability
to control derivatives. The solution is still optimal,
but in a norm that has become too weak. In com-
putation, this takes the form of spurious oscillations
in the vicinity of the thin layers that appear in the
solutions of such problems, unless the mesh is suffi-
ciently refined [11, 12].

In time-harmonic acoustics, governed by the
Helmholtz equation, the sign of the undifferenti-
ated term is reversed, and the coefficient is the wave
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number squared. As the wave number increases,
the Helmholtz operator becomes indefinite and no
longer induces a norm. This is related to the “pollu-
tion effect” [2], which can be interpreted physically
as accumulation of spurious dispersion, or phase er-
TOr.

Similar spurious phenomena related to the loss
of good numerical performance at any mesh resolu-
tion by the standard finite element method are evi-
dent in other problems as well. In such cases, finite
element computation can become prohibitively ex-
pensive in the presence of sharp gradients and rapid
oscillations. This perspective motivates the devel-
opment of methods that possess best approximation
in the H'! seminorm, as in Eq. (7), rather than the en-
ergy norm, retaining the high coarse-mesh accuracy
of standard finite elements for the Laplace operator.

For simplicity, the following presentation is lim-
ited to operators for which the corresponding
boundary operator is the normal derivative. Ac-
counting for other cases merely requires additional
notation. Partition the domain ) in the usual way
into ne nonoverlapping regions ¢ (element do-

mains) with boundaries I'¢, e = 1,... no. Denote
the union of element interiors by
Nel
O=|[]Jo° (8)
e=1

Similarly, the union of element boundaries is de-
noted

Nel

r=|Jre )
e=1

Following [13], assume that V" is given. The so-
lution of the Petrov-Galerkin equation

") =" ),

is optimal in the H! seminorm, as desired, provided
that the weighting functions 9" € V" C V satisfy

a(@",u Vol e ph (10)

Lo = —Avh in Q

(070 = [/ (12)

Here [-] is the jump at an element boundary. Un-

fortunately, these functions are generally global and

extremely difficult to find, except for some special
cases [13, 14].

The goal, then, is to formulate a problem that

retains optimality in the sense of Eq. (7), at least

(11)

onf



approximately, yet may be solved readily. This is
achieved by replacing the condition on the jump in
normal derivatives across element boundaries (12)
with the condition

ot =l on T (13)

Note that the functions v® = 9" — v" are bub-
bles over the elements, yet they are not residual-
free, except in special cases such as piecewise linear
Galerkin weighting functions on regular meshes.

The nearly optimal Petrov-Galerkin (NOPG) for-
mulation [15] is stated in Eq. (10), with modified
weighting functions defined in Egs. (11) and (13).
The label “nearly optimal” can be justified by the
fact that this formulation approximates the H!-
optimal result (7), in the sense that its solution satis-
fies

(Vo Ve) = (v, = o" ], )z (14)

The nonzero right-hand side is a measure of the dis-
tance of the Petrov-Galerkin solution from H' opti-
mality. This is related to the lack of symmetry of the
formulation.

The basis for V" is defined on the element level,
in terms of the standard local shape functions N,.
Since v" in an element is expressed as a linear
combination of nodal shape functions and arbitrary
nodal coefficients, 7" is expressed as a similar linear
combination of modified nodal shape functions N,
and the same arbitrary nodal coefficients. The mod-
ified shape functions are found by solving

L*Ny = —AN,

in Qe (15)

N, =N, on I* (16)

The modified shape functions retain the interpo-
lation property of the standard polynomial shape
functions.

2.2 Variational Multiscale Framework

The multiscale perspective offers another interpre-
tation of the lack of good numerical performance at
any mesh resolution by the standard finite element
method in some cases. Numerous approaches to al-
leviating this deficiency are based on modifications
of the continuous piecewise polynomial Galerkin
approximation. Several such related methods can
be derived by the variational multiscale (VMS) ap-
proach [16, 17].
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By this method, we consider an overlapping sum
decomposition of the solution. In finite element
computation, we have

a = ul + P 17)

Here u" € V" is based on standard, finite element

polynomials, representing coarse scales that are re-
solved by the mesh, and u® € V¥ is an enhancement
or enrichment, representing fine or subgrid scales,
so that

f}h _ Vh D VE (18)

Such a decomposition of the solution into a linear
part and a bubble was already considered by [18].
The determination of the fine scales is key to the
multiscale representation.

Following [17], we obtain a formula for the unre-
solved, fine scales

u® = ME(Lu" — f) (19)

in terms of the integral, generally nonlocal opera-
tor ME, which depends on the space of fine scales
(see [17] for details). The unresolved scales may be
viewed as being driven by the residual of the re-
solved scales. This formula leads to an equation for
the coarse scales:

a(v", uh) +(L* 0", MELuP) = (", f)
(20)
+<E*Uh, MEf)

which includes the nonlocal effect of the fine scales.
The term £*v" is interpreted as a Dirac distribution
on the entire domain, with integrals over element
interiors and jump terms integrated across element
boundaries [17].

Various practical approximations arise from dif-
ferent treatments of the unresolved fine scales. The
simplest approach is to employ a bubble represen-
tation of the fine scales [18-20], thereby localizing
the effect of the fine scales. Solving a homogeneous
Dirichlet, element-level problem for the fine scales is
the approach that underlies the concept of residual-
free bubbles (RFB) [21-23], as well as the related
NOPG method. A similar result is obtained by em-
ploying an element Green’s function [16], and the
link to RFB was explored by [24]. The obvious limi-
tation related to the loss of essential global effects in-
herent in local approaches may be overcome by em-
ploying nonconforming methods [25, 26]. The rela-
tionship of VMS methods based on fine-scale Green’s
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functions to optimal stabilized methods with global
and local character is described by [27].

3. LEAST SQUARES STABILIZATION

Some stabilized methods may be derived directly
within the VMS framework as well, and others are
closely related. Stabilized methods stand out among
the numerous improved approaches by combining
substantial improvement in performance with ex-
tremely simple implementation.

3.1 Methods
Stabilized methods of adjoint type

a(v”, uh) —(E*Uh,’fﬁuh)ﬁ = (", f)
(21)
—(,C*’Uh,’tf)ﬁ

also called “unusual stabilized finite element meth-
ods” [28, 29], may be derived in the VMS framework
and are related to RFB. The additional stabilizing
terms (cf. Eq. (5)), are integrated over element in-
teriors to respect regularity requirements of typical,
piecewise smooth, finite element functions, super-
seding the distributional interpretation in this case.
In practice, standard finite element procedures that
assemble global arrays from element contributions
are employed without modification. The stability
parameter T is defined on the element level, depend-
ing on the element size, the finite element interpola-
tion, and the coefficients of the problem. The struc-
ture of the additional stabilizing terms compared to
Eq. (20) indicates that the stability parameter pro-
vides an algebraic approximation of the integral op-
erator M¥.

In practice, for the self-adjoint Helmholtz
operator, this method is form-identical to the
Galerkin/least squares (GLS) method [12]

a(v®, u)+ (L™, Tﬁuh)ﬁ = (", f)+(Lo", f)g (22)

(the only difference is in the sign of the stabil-
ity parameter). The stability parameter for acous-
tics is usually defined by dispersion considera-
tions [12, 30, 31], which typically don’t account for
unstructured meshes, although improved perfor-
mance in computation is not limited to structured
meshes [30, 32]. There is recent progress in the def-
inition of the stability parameter for distorted ele-
ments [33]. The VMS distributional interpretation

Volume 6, Number 5&6, 2008

motivated the development of a stabilized method
that includes the inter element jump terms [34],
which are usually omitted in the local approach.

The related method of Galerkin-gradient/least
squares (GGLS),

a(v, u) +(VL" TV LuM) g = (V" f)
(23)
+(VL" 19V f)g

was originally developed to stabilize problems gov-
erned by the modified Helmholtz equation [12], and
was later shown to be effective on the Helmholtz
equation as well [35]. The GLS and GGLS meth-
ods are quite similar for linear finite elements. In
fact, both produce identical solutions on structured
meshes of linear elements (for constant-coefficient
Dirichlet problems with uniform source distribu-
tions, see [35]). Numerical comparisons of the two
methods in more elaborate configurations show that
their performance is similar [30].

3.2 Stability Parameter by Dispersion Analysis

Consider time-harmonic acoustics, where Lu =
—Au — k?u is the self-adjoint, indefinite, Helmholtz
operator with given wave number k. Dispersion
analysis of numerical methods for the Helmholtz
equation examines the dependence of the numeri-
cal error on mesh resolution as well as mesh orien-
tation, by comparison to exact, free-space solutions
of the constant-coefficient, homogeneous equation,
typically in the form of plane waves. These ideas
can be extended to cylindrical and spherical waves
as well [36]. The analysis measures the performance
of the standard Galerkin method and provides a tool
for the design of improved methods. A homoge-
neous, isotropic continuum is nondispersive. This
is usually no longer the case for discrete represen-
tations. Each numerical method is characterized by
a resolution-dependent approximate wave number,
which accounts for numerical dispersion.

Free-space solutions of the homogeneous
Helmbholtz equation with constant wave number
are plane waves:

u = exp(ik - x) (24)

Here |k| = k. For a plane wave propagating in the 6
direction in two dimensions, k? = k{c, s), ¢ = cos 9,
and s = sin 6.



In contrast to exact solutions in isotropic con-
tinua, numerical solutions are anisotropic in the
sense that they depend on the orientation of the
mesh with respect to the direction of propagation,
in addition to mesh resolution. This phenomenon is
known for both Cartesian [31, 34, 37-44] and trian-
gular [40, 43] mesh topologies.

The finite element representation of a plane
wave parallel to element faces on a uniform three-
dimensional mesh of hexahedra is identical to prop-
agation at an arbitrary direction in two dimen-
sions. Consider a uniform two-dimensional mesh
of four-noded bilinear quadrilateral elements of size
h, aligned with the global axes, with nodal points lo-
cated at (mh,nh), m,n € Z. Values of a plane wave
in two dimensions (24), oriented at an angle 0 to the
mesh, at the nodal points are

u(mh,nh) = (exp(ikhc))™ (exp(ikhs))"™ (25)
Dispersion analysis considers corresponding nodal
values of finite element solutions in the form
u"(mh,nh) = (exp(ik"hc))™ (exp(ik"hs))™  (26)
The following analysis determines the depen-
dence of the approximate wave number k" on the

mesh resolution
G2
~ kh

(representing the number of nodal points per wave-
length) and orientation. Each internal node in a
structured planar mesh of bilinear quadrilaterals is
shared by four elements. In the banded global co-
efficient matrix, the equation for each internal node
depends only on the values of the nodes belonging
to those four elements—nine nodes altogether. Con-
sequently, the dispersion analysis considers such a
typical nine-point patch (Fig. 1).

Substituting the plane wave form (26) into the
nine-point stencil that arises at any interior node
yields the following Galerkin dispersion relation for
a Cartesian mesh aligned with element faces paral-
lel to a plane wave:

(27)

(kh)2:6(4 — cos(k"he) — cos(k"hs)
~2cos(k"he) cos(k‘hhs))/<(2+cos(khhc)) (28)
x(2+ cos(k‘hhs)))
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FIGURE 1. Nine-node Cartesian patch

The variation with respect to the direction of propa-
gation 0 is a manifestation of anisotropy.

This is an implicit relation for k". The response
is a symmetric function of orientation, with a peri-
odicity of 7/2. Consequently, it is sufficient to ex-
amine the response between 0 and 7/4. Values of
k"h satisfying the implicit relation (28) for interme-
diate orientations are obtained numerically, and are
shown in Fig. 2, for different levels of the mesh res-
olution (see Eq. (27)). Note that the bilinear element
solution is more dispersive when the mesh is aligned
with waves. The dispersion varies approximately
50% with the orientation.

The stability parameter of stabilized methods is
usually defined by dispersion considerations. The
original form of the GLS method for acoustics [12]

0 | ‘ ) T
I ——
-0.02f
—0.04k-mccmmmmmmTTT
< _o006f . e
=, -0.08F e
§ L--7]—G=10
-0.1; g
T It e 9|
014 . 3
"0 005 0.1 015 0.2 0.25
o/m

FIGURE 2. Dispersion of the bilinear element at various
resolutions, G = 27 /(kh)
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incorporates a stability parameter that eliminates
dispersion on uniform meshes of quadrilaterals
aligned with the direction of propagation (¢ — 0):

6 1—cos(kh)

=1- (kh)Z (2 + cos(kh)

(29)

This was generalized to other directions of propa-
gation [31] such as eliminating dispersion when el-
ement diagonals are aligned with the direction of
propagation (@) — 7/4). In particular, the bisecting
direction (Q) — 7/8) was advocated. Extending these
ideas to linear triangular elements, the parameter is
defined by dispersion on hexagonal patches, which
exhibit low anisotropy [45]. The method parameter
that eliminates spurious dispersion of plane waves
along the altitude of linear triangular elements in a
hexagonal mesh topology (I" — 7/6) is quite simple,

8 1 —cos(v3kh/2)
(kh)? (2 + cos(v/3kh/2)

yet provides an excellent approximation of the pa-
rameter Q-7 /8. Figure 3 compares the stability pa-
rameters.

The definition of the element size h is a matter of
consequence in computational methods with mesh-
dependent parameters. The stability parameters are
usually defined from dispersion analyses, which are
performed on uniform meshes. The natural defi-
nition of the mesh size is the element side in such
cases. However, the generalization of this concept
to unstructured meshes is less clear-cut. Possible
options for quadrilaterals are the average element

TR =1-

(30)

0
-0.1}
Nx—O.Z’ \\\\ ,\/‘,\' |
- \\ \,\/\' 'l
-0.3| -~ Q-4 S
““““ Q-8 N o
o4l — Q-6
0450 | |
0O 01 02 03 04 05

1/G=kh/(2m

FIGURE 3. GLS stability parameters
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side (i.e., a quarter of the perimeter), the square root
of the area, and the ratio of the area to the average
element side. These alternatives coincide with the
usual definition on uniform meshes.

3.3 Numerical Results

A series of computations compares the numerical
performance of the GLS and GGLS methods for sev-
eral configurations with different kinds of bound-
ary conditions employing structured and unstruc-
tured meshes of four-noded quadrilaterals [30]. The
numerical tests examine the effects of different def-
initions of the stability parameters as well as defi-
nitions of the element size on which they depend.
Results for radiation in an automotive interior are
reported as a sample of these numerical tests.
Consider a domain related to a car compartment
(Fig. 4) with no distributed sources (f = 0), similar
to a problem solved by [46, 47]. Of the two wave
numbers examined, kL = 5 and 20 (nondimension-
alized by the length of the compartment), only re-
sults for the higher wave number with relatively
low resolution are reported. The boundary condi-
tions, representing acoustic properties of a simpli-
fied car construction, are a plane wave in the di-
rection 8 = 7/3.6 for the vibration of the firewall,
an impedance condition with o« = 0.9 for the ab-
sorbing roof and a homogeneous Neumann condi-
tion elsewhere. The domain is discretized by a set
of three increasingly refined unstructured meshes
(Fig. 5). In the coarsest mesh, there are 127 nodes
with 100 quadrilaterals. The resolution in this mesh
ranges from 3.56 to 29.1 (with a mean over the reso-
lutions of 6.54) points per wavelength. The lower
limit of resolution in this mesh is clearly insuffi-
cient to resolve the higher wave number adequately.

+1kau70

= exp (ik(z cos O + ysin 9)@

o

FIGURE 4. Radiation in an automotive interior: domain
and boundary conditions
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FIGURE 5. Radiation in an automotive interior: meshes

In the intermediate mesh, there are 454 nodes with
400 quadrilaterals. The resolution in this mesh
ranges from 6.93 to 60.7 (with a mean of 13.2) points
per wavelength. In the finest mesh, there are 1708
nodes with 1600 quadrilaterals. The resolution in
this mesh ranges from 13.7 to 124 (with a mean of
26.6) points per wavelength.

A Galerkin reference solution is computed with a
mean resolution of 212 points per wavelength. The
differences between the various methods are negli-

o

gible at this high resolution. Results obtained with
various definitions of the stability parameter, and
the element size h defined as the average side of
an element (or one-quarter of the perimeter), are re-
ported in Fig. 6. The stabilized methods exhibit su-
perior performance on these unstructured meshes.
In fact, at the lowest resolution, the Galerkin re-
sults are not physically meaningful, yet the stabi-
lized methods consistently provide reasonable so-
lutions even at very low resolutions (recall that the

o

10 10
£ £ A
5 E °2
& & o
5 5
o o
2 -1 7,% -1/ == Galerkin :
g 10 810 | .a. GLs A
& 2 -A- GGLS
5 10 25 5 10 25
Mean Resolution Mean Resolution
_10° 10
E E
o o
i i
& &
5 5
o o
g 4 g 4
£ 10 g0
(] (O]
o o
5 10 25 5 10 25

Mean Resolution

Mean Resolution

FIGURE 6. Radiation in an automotive interior: kL = 20 and element size defined as the average side; @ — 0 (top,
left), @ — /4 (top, right), @ — 7 /8 (bottom, left), and T' — 7 /6 stability parameters. (The mean resolution is the average

over resolutions of the unstructured meshes)
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lowest resolution on the coarsest mesh is 3.56 points
per wavelength). The GLS method usually pro-
vides better results on coarser meshes. A compar-
ison of the stability parameters repeats the pattern
observed previously: that the results of the ) — 0 pa-
rameter are uniformly the best, whereas those of the
@ — m/4 parameter are invariably the worst. Results
of the Q@ — 7/8 and the simpler 7' — 7 /6 parameters,
virtually indistinguishable from each other even at
these lower resolutions, lie between these two ex-
tremes.

4. BUBBLE STABILIZATION

The RFB and NOPG improved methods, obtained
by bubble-based enrichment, are closely related,
and identical in some cases.

4.1 Methods

The NOPG formulation [15] is stated in Eq. (10),
with modified weighting functions defined in
Egs. (11) and (13).

To define the RFB method, we assume that V" is
given and that the enrichment functions u® (and v*)
are element-level bubbles; that is, they vanish at ele-
ment interfaces. The fine-scale problem can then be
written in strong form:

Lo =—(Lu"—f) in  Q (31)

u? =0 on r (32)

In this case, the coarse-scale equation is simplified
since the interelement jumps in the second term on
the left-hand side vanish due to the bubble nature
of the enrichment functions, leaving only integrals
over element interiors:

a(™,u") + (L0, u®)g = (v, f) (33)
This is the RFB problem, with the residual-free bub-
bles defined in Egs. (31) and (32).
Remark. This form of the equation justifies the
use of simplifications of u® in practical implemen-
tation. For advection-diffusion, a reduced solution
for the advective limit is considered, lacking a thin
boundary layer along the outflow boundary to sat-
isfy compatibility requirements. The presence of
such a boundary layer is of little consequence in the
integration of the bubble in Eq. (33) so that it may be
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replaced in practice by the simpler reduced solution
with interelement jumps.

The basis for VE is defined on the element level,
in terms of N,, the standard polynomial shape func-
tion of local node a. Since u” in an element is ex-
pressed as a linear combination of nodal polynomial
shape functions and nodal coefficients, u® is also ex-
pressed as a linear combination of nodal bubble ba-
sis functions b, and the same nodal coefficients. The
bubble basis functions are found by solving
in Q°

Lby = —(LNa — f) (34)

by =0 on T° (35)

To compare the two methods, recall that the RFB
method can be written in terms of a modified ap-
proximate solution

a" =+ (36)
and the the modified weighting function of NOPG

can be expressed in terms of a bubble

o = ol 4o (37)
In both cases, the nodal basis can be formed either
in terms of modified shape functions or bubble basis
functions

N, = N, +b, (38)

Thus the modified shape function can be defined di-
rectly or via the bubble basis function.

The element-level auxiliary boundary value
problem that defines the RFB bubble basis functions
can also be stated in terms of modified shape func-
tions, and conversely the NOPG problem for modi-
fied shape functions can also be expressed for bub-
ble basis functions [48]. The boundary conditions
for both methods, either in terms of modified shape
functions or bubble basis functions, are identical,
and the governing differential equations are quite
similar.

The differential operators are identical for the
self-adjoint Helmholtz operator. The differences be-
tween the auxiliary functions of the two methods
lie in the presence of the given function f and the
Laplacian of the standard shape function AN,. The
performance of numerical methods for problems of
acoustics is often evaluated by dispersion analysis,
which examines homogeneous solutions on regular
meshes. Under these conditions, again, the func-
tions for the two methods are identical.
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Remark. In many cases, the two methods with iden-
tical auxiliary functions lead to the same nodal so-
lutions. However, the RFB solution is enriched with
bubbles, whereas the NOPG solution is not. Thus
the RFB method may exhibit superior performance
measured in an integral norm (see Section 4.3).

In summary, the auxiliary functions are ex-
pressed either by modified shape functions that sat-
isfy a homogeneous Helmholtz equation within the
element with inhomogeneous Dirichlet boundary
conditions on the element boundary,
in Q°

LN, =0 (39)

N,=N, on T¢ (40)

or by bubble basis functions that satisfy an inho-
mogeneous Helmholtz equation within the element
with homogeneous Dirichlet boundary conditions
on the element boundary,

in Q°

Lb, = k2N, (41)

bo=0 on I° (42)

4.2 Auxiliary Functions

Several expressions for the auxiliary functions were
derived independently, without recognizing the
connection between them. Beginning with a two-
noded linear element of length & in one dimension,
a = 1 or 2, the parent domain is the biunit interval
with nodal coordinate &, = (—1)®. The linear shape
functions are

Ne=g(l+88),  a=12 @)
The modified shape functions [15]
N 5 (khN4(&)) (44)

* sinkh

are expressed concisely in terms of the linear shape
functions, satisfying the element-level boundary
value problems (39) and (40). As expected, N, —
N, as kh — 0. The modified shape functions be-
come unbounded at kh = m, the first resonance of
the boundary value problems (39) and (40). This
corresponds to an unrealistically low mesh resolu-
tion of G’ = 2 and thus poses no practical difficulty.
As a prelude to the more complicated two-
dimensional configurations, consider an alternative

HARARI

representation for the one-dimensional case as an
infinite series for the bubbles. The bubble basis
function is expressed in terms of eigenfunctions of
the Dirichlet problem for the Laplacian

b, = i Ay, sin (nmN,(§)) (45)
n=1

satisfying the homogeneous boundary conditions
(42). To satisfy the inhomogeneous differential
Eq. (41), by orthogonality,

nm nm\ 2

- ()
At resolutions over G = 2 (i.e., kh < 7), the bound-
ary value problems (39)-(40) and (41)—(42) have
unique solutions so that the modified shape func-
tions (44) and the full series representation of the
bubble basis functions (45) satisfy the relationship
(38).

Consider a four-noded bilinear square element
of side h in two dimensions. Three series repre-
sentations are outlined for this case, with more de-
tails provided by [48]. The first is a simplification
of a double-index series derived in a manner simi-
lar to that just presented in one dimension [15], de-
noted here BH. The bubble basis function is again
expressed in terms of eigenfunctions of the Dirich-
let problem for the Laplacian, satisfying the homo-
geneous boundary conditions (42), with coefficients
determined by orthogonality to satisfy the inhomo-
geneous differential Eq. (41). In practice, the series is
truncated after a finite number of terms. Let A/ and
N denote the upper limit of each index. We consider
only cases in which M = N.

An alternative approach was employed in the
first application of the RFB method to the Helmholtz
equation [22], denoted here FFML. Separation of
variables leads to a single-index series for the mod-
ified shape function, satisfying the homogeneous
Eq. (39), with coefficients determined by orthogo-
nality to satisfy the inhomogeneous boundary con-
ditions (40). In practice, the series is truncated af-
ter M terms. Numerical tests were performed with
M = 200 terms in this series [22, 40].

An unpublished approach (C. Farhat personal
communication, 1996), denoted here CF, also con-
siders the bubble. A single-index series is obtained

(46)
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by separation of variables, treating the homoge-
neous and particular solutions in one of the direc-
tions separately and satisfying the homogeneous
boundary conditions (42), with coefficients that en-
sure satisfaction of the inhomogeneous Eq. (41).
Again, in practice, the series is truncated after M
terms.

As in the one-dimensional case, the boundary
value problems (39)—(40) and (41)—(42) have unique
solutions at resolutions over G = 2 (i.e., kh < m).
Thus the full series representations of the BH and CF
bubble basis functions are equal and, together with
the FFML modified shape functions, satisfy the re-
lationship (38). As a practical guideline, we wish
to determine which of these three alternative series,
BH, FFML, or CF, provides adequate representation
of the improved shape functions with the fewest
terms, and the number of terms that should be used.

In the practical implementation of the bubble-
enriched methods, dispersion depends on the num-
ber of terms employed in the series M. Let k%,
denote the approximate wave number obtained by
the truncated representation of a given series. The
approximate wave number k" is obtained by the
full representation of any of the series (computed
by taking a large number of terms in one of the
series). The incremental error in the approximate
wave number,

Eh — kh
_ m ; M-1 (47)
knr—a

is used to evaluate the convergence of each series.
The incremental error for each series depends also
on the resolution and orientation. The dependence
of the incremental error on the number of terms in
two of the series, for a low resolution of G = 4 and
an intermediate resolution of G = 10, and the two
extreme values of orientation, are shown in Fig. 7.

The number of terms in each series required to
keep the incremental error in the approximate wave
number below a threshold of 10~ is shown in Ta-
ble 1. The CF series with six terms provides this
accuracy at any resolution above four points per
wavelength. Consequently, we advocate the use
of the CF series with about six terms for the four-
noded RFB and NOPG elements.

Now that the bubble representation has been
determined, the dispersion properties of the four-
noded RFB and NOPG elements can be examined.

Volume 6, Number 5&6, 2008

11

TABLE 1. The numb terms required in each series
to bound the incremen ror in the approximate wave
number by e < 10~*, se¢ Fig. 7

G | BH FFML CF
10 | 4 x4 18 4
4 | 6x6 16 6

-4
25X 10 ‘ ‘ ‘ ‘
-©-G=10,6=0
2t = 0 =174
\ -0-G= 4,6=0

S B SR A
3 14 15 16 17 18 19 20
M

(b)

FIGURE 7. Incremental error in the approximate wave

number e = k% /k;_; — 1 of the truncated FEML (a), and
CF series (b)

Of course, all three series representations converge
to the same dispersion behavior with a sufficient
number of terms. Figure 8 (left) shows the depen-
dence of the relative error in wave number on the
orientation of the mesh with respect to the direc-
tion of propagation, varying between the two ex-
treme cases of propagation. The reduction in disper-
sion of the bubble-enriched methods over the stan-
dard Galerkin method is clear, most noticeably at
the lower resolutions. The particularly good per-


Administrator
Note
Position of Table 1 and Fig. 7 is the style of journal. 
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— RFB/NOPG

--- Galerkin

0.1 0.15 0.2
0/m

0 005 0.25

HARARI
--- GLS (174)
— NOPG/RFB
00% 005 01 015 02 025
e/m

FIGURE 8. Dispersion error of four-noded elements: bubble-enriched vs. Galerkin (left), and vs. GLS Q — 7 /4

formance of the improved methods along element
diagonals is striking and agrees with behavior ob-
served in numerical tests for advection-diffusion
[21].

The superior performance of the bubble-enriched
methods over the Galerkin method motivates the
comparison to other improved methods such as the
GLS-stabilized method. Figure 8 (right) compares
the behavior of the bubble-enriched methods to that
of the version of GLS that eliminates spurious dis-
persion along element diagonals (QQ — 7/4). In this
case, the dispersion properties of GLS are superior
at every resolution.

4.3 Numerical Results

A series of computations examines the numeri-
cal performance of the bubble-enriched methods,
employing structured and unstructured meshes of
four-noded quadrilaterals for several wave guide

problems. The bubble enrichment is based on the
CF representation with six terms, as recommended
by the dispersion analysis. The behavior is com-
pared to the version of the least squares stabilized
method that eliminates spurious dispersion of plane
waves in the bisecting direction, as advocated by
[31], and denoted GLS (7/8). Results of some of
these numerical tests are reported.

Consider an a x a square with ka = 8 and no dis-
tributed sources (f = 0). Two cases are considered,
defined by different combinations of boundary con-
ditions (to be specified subsequently) that are im-
posed on the boundaries of the square so that the ex-
act solution is a plane wave propagating in a given
direction (24).

The domain is discretized by two sets of three in-
creasingly refined meshes each. The first set consists
of nested uniform meshes of 8 x8, 16 x 16, and 32 x 32
elements, that is, the element sides are halved from
one level of refinement to the next (Fig. 9). The cor-

FIGURE 9. Uniform meshes

International Journal for Multiscale Computational Engineering



MULTISCALE FINITE ELEMENTS FOR ACOUSTICS

responding resolutions are 6.3, 12.6, and 25.1 points
per wavelength.

The other set consists of three nonuniform
meshes each (Fig. 10). These meshes contain highly
distorted elements with large variations in mesh
size to test computational performance under ex-
treme conditions. Each mesh has a mean element
size roughly the same as the corresponding uniform
mesh. The element size of a distorted element is
taken as the average side of the element. The bub-
ble enrichment is originally constructed for square
elements. The same functions, defined in the par-
ent domain, are used for general quadrilateral ele-
ments as well, although they don’t satisfy the aux-
iliary boundary value problems exactly in distorted
elements. Integration in distorted elements is per-
formed with 2 x 2 Gaussian quadrature.

The first case presented is a plane wave aligned
with the z-axis, that is, 8 = 0 in Eq. (24), specified

13

by appropriate inhomogeneous Dirichlet boundary
conditions on the boundaries that are normal to the
z-axis and homogeneous Neumann boundary con-
ditions on the boundaries that are normal to the y-
axis. Results for the various meshes are reported in
Fig. 11, measured in the H I seminorm. Nodal re-
sults of the NOPG and RFB methods on meshes that
are not uniform are indistinguishable, although not
theoretically identical. Accounting for the bubble
enrichment in the RFB results (i.e., interpolating the
nodal results by the modified shape functions that
include polynomials and bubbles), denoted RFB(+),
considerably reduces the error. The RFB/NOPG re-
sults are comparable to GLS (r/8) and slightly bet-
ter than the Galerkin solution, particularly at lower
resolutions. However, the RFB(+) results are notice-
ably superior.

Inhomogeneous Robin boundary conditions are
now specified on all boundaries so that the exact so-

[T T T TTTT

FIGURE 10. Unstructured meshes

_ -o-Galerkin
E -8-GLS (178)
e A RFB/NOPG
£ < RFB(+)
g "
—
<
—_ -1
510
¥
o ’\'\\
B
6 13 25

Resolution

Rel. err. @—|1 seminorm)
[IRY
O\

8 17 34
Mean Resolution

FIGURE 11. Wave guide at 8 = 0, Dirichlet-Neumann boundary conditions: structured (left) and unstructured

meshes
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lution is a plane wave propagation at an angle of
0 = m/4 with respect to the z-axis (see Eq. (24)). Re-
sults for the various meshes are reported in Fig. 12.
The performance observed in the previous case is re-
peated here, namely, that the RFB/NOPG results are
comparable to GLS (7/8) and slightly better than the
Galerkin solution, particularly at lower resolutions,
and the RFB(+) results are noticeably superior.

5. DISCONTINUOUS ENRICHMENT METHOD

An alternative approach that has appeared predom-
inantly in time-harmonic acoustic applications is to
base the fine scales on free-space solutions of the ho-
mogeneous differential equation (e.g., plane waves
in the case of the Helmholtz equation). These func-
tions are often readily available, but are typically
global, and hence require specialized treatment in
practice. The generalized finite element method
(GFEM) of [49] is an extension of the partition of
unity method (PUM) of [50], applied to acoustics
[51], in which the free-space homogeneous solu-
tions are multiplied by conventional finite element
shape functions. The piecewise polynomial shape
functions localize the free-space homogeneous solu-
tions and provide interelement continuity. In PUM,
the product of free-space homogeneous solutions
and finite element shape functions constitutes the
entire approximation, whereas in GFEM, only the
fine scales are based on this product, together with
conventional finite element functions for the coarse
scales, thus alleviating the severe ill-conditioning to
which PUM is susceptible. The efficient integration
of oscillatory functions is also a crucial issue in these
methods.

‘ -e-Galerkin

€ -8-GLS (178)
s A RFB/NOPG
€10 < RFB(+) |
[0}
7] [
Al S ~
; h o Se
5 e
@ T
107 : :
6 13 25
Resolution
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Similar ideas for incorporating features of the dif-
ferential equation in the approximation, but in dis-
continuous frameworks with specialized treatment
for interelement continuity, go back to the weak
element method [52], as well as the recent ultra
weak variational formulation [53] and least squares
method [54]. Similarly, the variational theory of
complex rays is based on a formulation in which ad-
missible solutions satisfy the differential equation,
and interelement continuity is enforced weakly by
average flux-type quantities. This method was de-
veloped for structural vibrations [55], and its exten-
sion to acoustics should be straightforward. Such
formulations closely resemble Trefftz approaches
(see, e.g., [56]). As in PUM, the special basis func-
tions in these methods replace the standard finite
element polynomials. Various implementations of
hybrid approaches combining finite elements with
wave-based methods have been suggested [57, 58].
Some discontinuous formulations employ finite ele-
ment polynomials, instead of oscillatory basis func-
tions [59].

5.1 Fine Scales

In the discontinuous enrichment method (DEM),
standard finite element polynomials are retained for
the coarse scales and are enriched within each el-
ement by nonconforming free-space homogeneous
solutions representing fine scales, with continuity
enforced in the variational formulation [60]. This
approach, applicable to general multiscale compu-
tation [61], is also applied to elastic wave [62] and
fluid structure analysis [63, 64].

Rel. err. (H1 seminorm)
[ExY
oI

17 )
Mean Resolution

FIGURE 12. Wave guide at 8 = 7/4, Robin boundary conditions: structured (left) and unstructured meshes
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The strategy that underlies DEM is based on
the assumption that particular solutions are usually
well resolved and thus may be considered coarse
scales. The fine scales should therefore contain solu-
tions of the homogeneous partial differential equa-
tion. This interpretation of the fine scales differs
somewhat from that of conventional multiscale nu-
merical representations. Weak enforcement of in-
terelement continuity permits the use of free-space
solutions, that is, VE is spanned by solutions of

Lu® =0 in R? (48)
that are not already represented in the polynomial
basis, leading to relative ease of implementation, yet
retaining global, fine-scale effects.

The discontinuous Galerkin approximation is
stated in terms of the set of functions V" C Ly(Q) N

H! (ﬁ), with Lagrange multiplier approximations
Ne wh ¢ H1/? <f> defined on the union of el-

ement interiors T’ (and corresponding weights p).
The hybrid variational formulation that underlies

DEM may be decomposed as
a(™, u") +a(wh uF) — A" = (" F) (49)
a(W®,u®) + a(@®,u") — A" 0P = (05, f)  (50)
— (" ut) = (W u®) g = (A o) = (51)

Here (-,-) is the duality pairing between H~1/2(T")
and H'/%(T). Allowing for discontinuities, the weak
operator in this case is a(v, p) = (Vv, Vp)g—(v, k*p).

Due to its discontinuous nature, the enrich-
ment may be removed by static condensation, re-
sulting in a modified polynomial-Lagrange multi-
plier formulation [60], eliminating the zero diago-
nal block typically associated with the constraints.
The enrichment is obtained as a postprocess within
each element. This procedure, which ultimately
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simplifies and conditions the global formulation,
should be done carefully, due to potential local ill-
conditioning.

Element-level basis functions for u® that sat-
isfy Eq. (48) for constant k are plane waves of the
form (24). Conditioning considerations may be used
to determine the form of the plane wave [65]. The
integration required to evaluate DEM matrices may
be performed analytically for elements with flat
faces and straight edges [66, 67].

A DEM element is a combination of enrichment
and Lagrange multiplier configurations (with un-
derlying low-order polynomials). Quadrilateral
DEM elements are labeled “Quad-ng-n)” where ng
is the number of plane wave enrichment functions
in each element and n; is the number of Lagrange
multipliers per edge (Fig. 13). Various DEM quadri-
laterals are available: Quad-4-1 [60], Quad-8-2 [68],
Quad-12-3 [65], Quad-16-4, and Quad-32-8 [69].

Full approximation of the Lagrange multipliers
as the normal derivative of the enrichment is of-
ten undesirable due to stability considerations of the
hybrid numerical method. A necessary algebraic
condition to ensure a nonsingular global coefficient
matrix [68] is

Nepnn < 2ng

for n., element boundaries. The ratio of four be-
tween the number of plane waves in the enrich-
ment and the number of Lagrange multipliers per
edge of the quadrilaterals conforms to this algebraic
condition. The basis functions for the approximate
Lagrange multipliers are modified plane waves, re-
stricted to the edges, designed to improve the dis-
persion performance [65], see Section 5.2. Condi-
tioning considerations may be used to determine
the form of the plane wave [65].

1 e B

FIGURE 13. Quadrilateral DEM elements, from left to right: Quad-4-1, Quad-8-2, Quad-12-3, and Quad-16-4
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5.2 Dispersion Analysis

As in continuous formulations, dispersion analy-
sis is performed for the free-space, homogeneous,
constant-coefficient Helmholtz equation, for which
plane waves are exact solutions, on translation in-
variant meshes [70]. The analysis is applied to the
statically condensed form of the DEM equations, fo-
cusing on the Lagrange multipliers. Due to the local
support of the Lagrange multipliers, defined on el-
ement boundaries, each stencil couples only the de-
grees of freedom of the two adjacent elements shar-
ing a boundary. The analysis leads to a set of ho-
mogeneous linear algebraic equations for unknown
amplitudes, with coefficients that depend on the un-
known approximate wave number of the constraint
field k. Nontrivial solutions exist when the coef-
ficient matrix is singular. Thus the dispersion rela-
tion between between the numerical and exact wave
numbers is the characteristic equation, which is usu-
ally evaluated numerically.

The Quad-4-1 element is enriched with four
plane waves in the positive and negative axis di-
rections. The Lagrange multipliers are constants on
the element edges. The dispersion analysis is based
on two repeating stencils, related to Lagrange multi-
pliers approximating normal derivatives along both
axes, resulting in a system of two homogeneous
equations. The dependence of the dispersion in the
constraint field of the Quad-4-1 element on resolu-
tion G and orientation of the mesh with respect to
the direction of propagation 6 is shown in Fig. 14.

FIGURE 14. Dispersion in the constraint field of the
Q-4-1 element at various resolutions, G = 27 /(kh)

HARARI

The dispersion analysis of a quadrilateral DEM
element with n, Lagrange multipliers per edge re-
sults in a system of 2n) homogeneous equations.
The modified wave number in the Lagrange multi-
plier plane-wave basis functions is selected to mini-
mize the maximum dispersion [65].

5.3 Tetrahedral Element

Hexahedral DEM elements are available for a few
years [71]. The generation of uniform spherical di-
rections is more involved than in the plane. One ap-
proach is to choose the directions from the element
center to face nodes of Lagrange elements of cubic
geometry ([71], Algorithm 1), with special node po-
sitioning to improve uniformity. Alternatively, one
can minimize the maximum distance of any point
on a sphere from the closest point [72]. A correc-
tion of Beverly’s triangulation technique from the
field of crystallography for finding equally-spaced
points on latitudinal lines of a sphere [67] is another
option. This notion leads to competitive hexahedral
elements (Fig. 15).

There are many practical difficulties in the gener-
ation of hexahedral meshes so that tetrahedral el-
ements are often used in three-dimensional prob-
lems. Triangular elements provide a prelude to
the development of tetrahedral elements [65]. Of
the different configurations considered, those with
equally spaced enrichment, which is invariant to
the element geometry, identical to the correspond-
ing quadrilaterals (Fig. 16), perform the best. The
dispersion analysis in this case is performed on a
hexagonal mesh of equilateral triangles.

Of the tetrahedral elements examined, those
based on the corrected Beverly technique (Fig. 17),
show the best performance [67]. Regular tetrahe-
dra would be desirable for dispersion analysis, but
they are not space fillers. Instead, 48 trirectangu-
lar tetrahedra are used to form a rhombic dodec-
ahedron pattern, which is a space filler. Thus the
dispersion relation is the characteristic equation of a
system of 48n, homogeneous equations.

The tetrahedral DEM elements are compared nu-
merically to the standard linear, quadratic, and cu-
bic tetrahedral elements, labeled “Tet1,” “Tet2,” and
“Tet3,” respectively, to assess efficiency. Consider
a wave guide problem in a cube of side L. Robin
boundary conditions are specified so that the exact
solution is a plane wave propagating in a given di-
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FIGURE 15. Hexahedral DEM elements: Hex-8-1 (left), Hex-22-4 (center), and Hex-46-8

ks

=

FIGURE 16. Triangular DEM elements: Tri-4-1 (left) and Tri-8-2

FIGURE 17. Tetrahedral DEM elements: Tet-6-1 (left), Tet-22-4 (center), and Tet-34-8

rection. Nondimensional wave numbers, kL = 4
and 8, are examined. The domain is discretized by a
sequence of uniform cubical divisions of size h, from
1to 8 x 8 x 8. Each cube is divided into six tetrahe-
dra (Fig. 18). Resolutions vary from fewer than 2
elements per wavelength (kL = 8) to more than 15
(kL = 4).

Results for a plane wave propagating at a lon-
gitude (or azimuth) and colatitude (or polar) angle
0 = ¢ = 50°, in a k-scaled modified H' seminorm
(squared) |ah—u|§{1(§)+k|| [a"] ||2Lz(f\r)’ are reported
in Fig. 19. Little pollution is observed in the results
of the Tet-22-4 and Tet-34-8 elements (the error is
almost independent of kL). Approximate rates of
convergence are presented. The proposed configu-
rations of tetrahedral DEM elements become more

Volume 6, Number 5&6, 2008

FIGURE 18. Cube division into six tetrahedra
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FIGURE 19. Relative error of tetrahedral DEM elements (kL = 4 and 8, 0 = ¢ = 50°)

competitive as the enrichment and Lagrange multi-
pliers are enhanced.

6. SUMMARY

The development of efficient discretization schemes
for acoustics is a challenge due to the numerical dif-
ficulties that arise in the solution of wave problems,
particularly at high wave numbers. Since com-
putation naturally separates the scales of a prob-
lem according to the mesh size, multiscale con-
siderations provide a useful framework for view-
ing these difficulties and developing methods to
counter them. Tremendous progress has been made
in recent years. The diversity of these contribu-
tions demonstrates both the breadth of the numer-
ical methodology which is now applied to acoustic
problems and the many possibilities that exist for
future research in this area.
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