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SUMMARY

In this paper, several boundary element regularization methods, such as iterative, conjugate gradient,
Tikhonov regularization and singular value decomposition methods, for solving the Cauchy problem
associated to the Helmholtz equation are developed and compared. Regularizing stopping criteria
are developed and the convergence, as well as the stability, of the numerical methods proposed are
analysed. The Cauchy problem for the Helmholtz equation can be regularized by various methods, such
as the general regularization methods presented in this paper, but more accurate results are obtained by
classical methods, such as the singular value decomposition and the Tikhonov regularization methods.
Copyright � 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Helmholtz equation arises naturally in many physical applications related to wave propaga-
tion and vibration phenomena. It is often used to describe the vibration of a structure [1], the
acoustic cavity problem [2], the radiated wave [3] and the scattering of a wave [4]. Another
important application of the Helmholtz equation is the problem of heat conduction in fins, see
e.g. References [5–7], and we focus on the later problem in this study.

The well-posedness of the direct problems of the Helmholtz equation via the removal of
the eigenvalues of the Laplacian operator is well established, see e.g. Reference [8]. However,
many engineering problems do not belong to this category. In particular, the boundary con-
ditions are often incomplete, either in the form of underspecified and overspecified boundary
conditions on different parts of the boundary or the solution is prescribed at some internal
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points in the domain. These are inverse problems, and it is well known that they are gen-
erally ill-posed, i.e. the existence, uniqueness and stability of their solutions are not always
guaranteed.

Unlike in direct problems, the uniqueness of the Cauchy problem is guaranteed without the
necessity of removing the eigenvalues for the Laplacian. However, the Cauchy problem suffers
from the non-existence and instability of the solution. A boundary element method (BEM)-
based acoustic holography technique using the singular value decomposition (SVD) for the
reconstruction of sound fields generated by irregularly shaped sources has been developed by
Bai [9]. The vibrational velocity, sound pressure and acoustic power on the vibrating boundary
comprising an enclosed space have been reconstructed by Kim and Ih [10] who have used
the SVD in order to obtain the inverse solution in the least-squares sense and to express
the acoustic modal expansion between the measurement and source field. Wang and Wu [11]
have developed a method employing the spherical wave expansion theory and a least-squares
minimization to reconstruct the acoustic pressure field from a vibrating object and their method
has been extended to the reconstruction of acoustic pressure fields inside the cavity of a
vibrating object by Wu and Yu [12]. DeLillo et al. [13] have detected the source of acoustical
noise inside the cabin of a medium-sized aircraft from measurements of the acoustical pressure
field inside the cabin by solving a linear Fredholm integral equation of the first kind. Recently,
Marin et al. [14, 15] have solved the Cauchy problem associated to the Helmholtz equation
using the BEM in conjunction with an alternating iterative procedure consisting of obtaining
successive solutions to well-posed mixed boundary value problems and with the conjugate
gradient method (CGM), respectively.

The purpose of this paper is to describe and compare several boundary element regular-
ization methods, such as iterative, conjugate gradient, Tikhonov regularization and singular
value decomposition methods, for solving the Cauchy problem for the Helmholtz equation.
The regularization is obtained by matching the number of iterations performed, the choice
of the regularization parameter, or the choice of the optimal truncation number to the level
of the noise in the input data. Regularizing stopping criteria are developed by using the resid-
ual of the ill-conditioned system of linear equations obtained from the BEM discretization, in
conjunction with the discrepancy principle.

2. MATHEMATICAL FORMULATION

Referring to heat transfer for the sake of the physical explanation, we assume that the temper-
ature field T (x ) satisfies the Helmholtz equation in an open bounded domain � ⊂ Rd , where
d is the dimension of the space in which the problem is posed, namely

LT (x ) ≡ (� + k2)T (x ) = 0, x ∈ � (1)

where k = � + i� ∈ C, i = √−1.
The general equation describing the temperature distribution along an isolated fin for steady-

state two-dimensional heat transfer is obtained by completing a heat balance over an incremental
surface element, dy = (y1 − dy1/2, y1 + dy1/2) × (y2 − dy2/2, y2 + dy2/2), at some point,
y = (y1, y2) within the fin surface, see e.g. References [5–7]. The heat balance over the
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increment, dy, for steady-state heat flow is given by

(Q̇f(y1 − dy1/2, y2) − Q̇f(y1 + dy1, y2/2)) dy2

+(Q̇f(y1, y2 − dy2/2) − Q̇f(y1, y2 + dy2/2)) dy1 − Q̇c(y1, y2) = 0 (2)

where Q̇f(y1, y2) is the conductive heat flow at y = (y1, y2) and Q̇c(y1, y2) is the heat lost
from the incremental surface of the fin. From the Postulation of Fourier, we have

Q̇f(y1, y2) = −�fAf∇�f(y1, y2) (3)

where �f is the thermal conductivity of the fin and Af is the cross-sectional area of the fin,
and by using a Taylor-series expansion around y = (y1, y2) and neglecting terms after the
first-order derivatives we obtain

(Q̇f(y1 − dy1/2, y2) − Q̇f(y1 + dy1, y2/2)) dy2

+(Q̇f(y1, y2 − dy2/2) − Q̇f(y1, y2 + dy2/2)) dy1 = ∇ · (�fAf∇�f(y1, y2)) dy1 dy2 (4)

The heat lost from the surface of the incremental fin is assumed to be by convection and, by
Newton’s law of cooling, this is given by

Q̇c(y1, y2) = hA′
f(�f(y1, y2) − �∞) dy1 dy2 (5)

where h is the surface heat transfer coefficient, A′
f is the surface area of the fin per unit length

and �∞ is the temperature of the surrounding medium.
Substitution of Equations (4) and (5) into the heat balance equation (2) provides the following

second-order partial differential equation:

∇ · (�fAf∇�f(y)) − hA′
f(�f(y) − �∞) = 0 (6)

The following assumptions are invoked in order to obtain the general fin equation:

(i) The thermal conductivity of the fin, �f , is invariant;
(ii) the surface heat transfer coefficient, h, is uniform along the fin;
(iii) the temperature of the surrounding medium, �∞, is constant.

Additionally, if we assume that the cross-sectional area of the fin is constant (i.e. the fin
thickness, 2�f , is invariant) then the fin equation (6) recasts as

��f(y) − h

�f �f
(�f(y) − �∞) = 0 (7)

On introducing the following dimensionless variables:

xj = yj/�f , j = 1, 2, T (x ) = (�f(y) − �∞)/(�b − �∞) (8)

where �b is the fin base temperature (�b 	= �∞), then the non-dimensional temperature distribu-
tion along an isolated fin of constant cross-sectional area for steady-state two-dimensional heat
transfer is described by the Helmholtz equation (1) with k = �+ i�, � = 0 and � = √

h/(�f�f).
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We now let �(x ) be the outward normal vector at the boundary � = �� and �(x ) ≡
(�T/��)(x ) be the flux at a point x ∈ �. The Cauchy problem under investigation requires
solving the partial differential equation (1) subject to the boundary conditions

T (x ) = T̃ (x ), �(x ) = �̃(x ), x ∈ �2 (9)

where T̃ and �̃ are prescribed functions and �2 ⊂ �, meas(�2) > 0. In the above formulation of
the boundary conditions (9), it can be seen that the boundary �2 is overspecified by prescribing
both the temperature T |�2 and the flux �|�2 , whilst the boundary �1 = �\�2 is underspecified
since both the temperature T |�1 and the flux �|�1 are unknown and have to be determined.

3. BOUNDARY ELEMENT METHOD

The Helmholtz equation (1) can also be formulated in integral form, see e.g. Reference [8], as

c(x )T (x ) + −
∫

�

�E(x, y)

��(y)
T (y) d�(y) =

∫
�

E(x, y)�(y) d�(y) (10)

for x ∈ � = �∪�, where the first integral is taken in the sense of the Cauchy principal value,
c(x ) = 1 for x ∈ � and c(x ) = 1/2 for x ∈ � (smooth), and E is the fundamental solution
for the Helmholtz equation (1), which in two dimensions is given by

E(x, y) = i

4
H

(1)
0 (k|x − y|) (11)

with H
(1)
0 the Hankel function of order zero of the first kind.

A BEM with constant boundary elements, see e.g. References [14, 15], is used in order to
solve the Cauchy problem for the Helmholtz equation by using the regularization methods
described in the next section. If the boundaries �1 and �2 are discretized into N1 and N2
constant boundary elements, respectively, such that N = N1+N2, then on applying the boundary
integral equation (10) at each node/collocation point, we arrive at the following system of linear
algebraic equations:

AT = B� (12)

Here A and B are matrices which depend solely on the geometry of the boundary � and
the vectors T and � consist of the discretized values of the temperature and the flux on the
boundary �. The discretization of the boundary conditions (9) provides the values of 2N2 of
the unknowns and the problem reduces to solving a system of N equations with 2N1 unknowns
which can be generically written as

CX = F (13)

where F is computed using the boundary conditions (9), the matrix C depends solely on the
geometry of the boundary � and the vector X contains the unknown values of the temperature
and the flux on the boundary �1.
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4. REGULARIZATION METHODS

4.1. Singular value decomposition (SVD)

In this section, we give a brief description of the SVD and for further details see References
[16, 17]. Consider the ill-conditioned system of linear algebraic equations (12), where C ∈
RN×2N1 , X ∈ R2N1 , F ∈ RN and assume for the moment that N � 2N1. Then the SVD of the
matrix C is a decomposition of the form

C = W�VT =
2N1∑
i=1

wi�iv
T
i (14)

where W = (w1, . . . , w2N1
) ∈ RN×2N1 and V = (v1, . . . , v2N1

) ∈ R2N1×2N1 are matrices with
orthonormal columns, i.e. WTW = VTV = I2N1 , and � = diag(�1, . . . , �2N1) is a diagonal
matrix with non-negative diagonal elements appearing in the order

�1 � �2 � · · · � �2N1 � 0 (15)

The numbers �i are called the singular values of the matrix C, whilst the vectors wi and vi

are the left and the right singular vectors of the matrix C, respectively. The SVD (14) can
be defined for any N1 and N2 since, if N2 < N1, we can simply apply the SVD (15) to the
matrix CT.

The most common approach to regularize numerically rank deficient problems is to consider
the given matrix C as a noisy representation of a mathematically rank deficient matrix and
to replace C by a matrix that is close to C and mathematically rank deficient. The standard
choice is the rank-n matrix Cn defined as

Cn =
n∑

i=1
wi�iv

T
i (16)

i.e. we replace the small non-zero singular values �n+1, . . . , �2N1 with exact zeros.
The regularized or stabilized TSVD solution X(n) is obtained by first replacing the ill-

conditioned matrix C with the rank-n matrix Cn, followed by computing the minimum norm
least-squares solution to the problem

min ‖X‖2 subject to ‖CnX − F‖2 � � (17)

where � is a measure of the perturbations in the system matrix C and in the Cauchy data T̃

and �̃ on the boundary �2 and of the incompatibility of the exact solution of the system of
equations (12). The optimal truncation number and hence the regularization or stabilization of
the numerical solution can be obtained using the discrepancy principle, see Reference [17].

4.2. Tikhonov regularization method

In this section, we give a brief description of the Tikhonov regularization method and the choice
of the regularization parameter. For further details on this method see References [18–20].
Consider again the ill-conditioned system of linear algebraic equations (12) whose Tikhonov
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regularized solution is given by

X�: T�(X�) = min
X∈R2N1

T�(X) (18)

where T� represents the Tikhonov functional given by

T�(X) = ‖CX − F‖22 + �2‖LX‖22 (19)

and L ∈ R2N1×2N1 induces the smoothing norm ‖LX‖2 with � ∈ R the regularization parameter
to be chosen. Formally, the Tikhonov regularized solution X� of problem (18) is given as the
solution of the regularized equation

(CTC + �2LTL)X = CTF (20)

Regularization is necessary when solving inverse problems because the simple least-squares
solution, i.e. � = 0, is completely dominated by contributions from data errors and rounding
errors. By adding regularization we are able to damp out these contributions and maintain the
norm ‖LX‖2 to be of reasonable size. If too much regularization, or damping, i.e. �2 is large,
is imposed on the solution then it will not fit the given data F properly and the residual norm
‖CX − F‖2 will be too large. If too little regularization is imposed on the solution, i.e. �2 is
small, then the fit will be good, but the solution will be dominated by the contributions from
the data errors, and hence ‖LX‖2 will be too large.

For the zeroth-order Tikhonov regularization method, i.e. L = I2N1 , the optimal value of
the regularization parameter � and hence the regularization or stabilization of the numerical
solution can be obtained using the discrepancy principle, see Reference [17].
4.3. Conjugate gradient method (CGM)

In this section, we describe a variational method that can be applied to solve the Cauchy
problem for the Helmholtz equation. Since the boundary conditions on the boundary �1 are to
be determined, we consider the boundary temperature on the underspecified boundary �1 as a
control v ∈ H 1/2(�1) in a direct problem formulation to fit the Cauchy data T̃ ∈ L2(�2) on
the overspecified boundary �2. Therefore, the functional

J : H 1/2(�1) → L2(�2), v → J (v) ≡ 1
2 ‖Av − T̃ ‖2

L2(�2)
(21)

is minimized with respect to v ∈ H 1/2(�1). It has been established that functional (21) is twice
Fréchet differentiable and a formula for its first gradient can be obtained by considering an
adjoint problem, see Reference [15].

Thus, the CGM applied to our problem has the form of the following algorithm:

Step 1: Set n = 0 and choose T (0) ∈ H 1/2(�1).
Step 2: Solve the direct problem

LT (T (n), �̃)(x ) = 0, x ∈ �

T (T (n), �̃)(x ) = T (n)(x ), x ∈ �1

(�T (T (n), �̃)/��)(x ) = �̃(x ), x ∈ �2

to determine the residual r(n) = T (T (n), �̃)|�2 − T̃ = AT (n) − T̃ .
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Step 3: Solve the adjoint problem

L�(0, r(n))(x ) = 0, x ∈ �

�(0, r(n))(x ) = 0, x ∈ �1

(��(0, r(n))/��)(x ) = r(n)(x ), x ∈ �2

to determine the gradient g(n) = −(��(0, r(n))/��)|�1 . Calculate d(n) as follows:

d(n) =
{

g(n), n = 0

g(n) + (‖g(n)‖2
H 1/2(�1)

/‖g(n−1)‖2
H 1/2(�1)

)d(n−1), n � 1

Step 4: Solve the direct problem

LT (d(n), 0)(x ) = 0, x ∈ �

T (d(n), 0)(x ) = d(n)(x ), x ∈ �1

(�T (d(n), 0)/��)(x ) = 0, x ∈ �2

to determine A0d
(n) = T (d(n), 0)|�2 and compute

T (n+1) = T (n) + (‖g(n)‖2
H 1/2(�1)

/‖A0d
(n)‖2

L2(�2)
)d(n)

Step 5: Set n = n + 1. Repeat steps 2–4 until a stopping criterion is prescribed.

As a stopping criterion we choose the one suggested by Nemirovskii [22], namely choose the
first n ∈ N such that

‖r(n)‖L2(�2)
� �� (22)

where � > 1 is a constant which can be taken heuristically to be 1.1, as suggested by Hanke and
Hansen [22]. It follows from Nemirovskii’s result that the above iterative procedure converges
with an optimal convergence rate to the exact solution of the problem as the noise level tends
to zero.

4.4. An alternating iterative method

Apart from general regularization methods which can be applied for solving any ill-posed
problem, typical solution methods may be developed for solving particular ill-posed problems.
In this section, we describe such a particular regularization algorithm developed for Cauchy
problems. This algorithm uses the fact that a part of the boundary, namely �2, is overspecified
and the remainder, namely �1, is underspecified in order to reduce the original ill-posed problem
to a sequence of well-posed problems by alternating the given data on the overspecified part of
the boundary. The iterative algorithm, which was proposed by Kozlov et al. [23] for Cauchy
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problems associated to linear, elliptic, self-adjoint and positive-definite operators, consists of
the following steps:

Step 1: Specify an initial approximation �(0)(x ) for the flux on �1 and solve the well-posed
mixed boundary value problem

LT (1)(x ) = 0, x ∈ �

�(1)(x ) ≡ (�T (1)/��)(x ) = �(0)(x ), x ∈ �1

T (1)(x ) = T̃ (x ), x ∈ �2

(23)

in order to determine T (1)(x ) for x ∈ � and T (1)(x ) for x ∈ �1.
Step 2: Having constructed the approximation T (2n−1)(x ), n � 1, the well-posed mixed

boundary value problem

LT (2n)(x ) = 0, x ∈ �

T (2n)(x ) = T (2n−1)(x ), x ∈ �1

�(2n)(x ) ≡ (�T (2n)/��)(x ) = �̃(x ), x ∈ �2

(24)

is solved to determine T (2n)(x ) for x ∈ � and �(2n)(x ) ≡ (�T (2n)/��)(x ) for x ∈ �1.
Step 3: Having constructed the function T (2n)(x ), n � 1, the well-posed mixed boundary

value problem

LT (2n+1)(x ) = 0, x ∈ �

�(2n+1)(x ) ≡ (�T (2n+1)/��)(x ) = �(2n)(x ), x ∈ �1

T (2n+1)(x ) = T̃ (x ), x ∈ �2

(25)

is solved to determine T (2k+1)(x ) for x ∈ � and T (2k+1)(x ) for x ∈ �1.
Step 4: Repeat steps 2 and 3 until a prescribed stopping criterion is satisfied.

As a stopping criterion we use again the Morozov discrepancy principle [24] which ceases
the iterative procedure described above when the residual norm of the discretized system of
equations reaches a threshold value, which is a measure of the perturbations in the matrix of
the discretized system of equations and in the Cauchy data, and the incompatibility of the exact
solution. A detailed numerical implementation of this algorithm can be found in Reference [14]
where it was shown that the iterative algorithm produces a convergent and stable numerical solu-
tion for the Cauchy problem considered, provided that a regularizing stopping criterion is used.

5. NUMERICAL RESULTS AND DISCUSSION

In this section, we illustrate and compare the numerical results obtained using the regularizing
BEMs described in Section 4. In order to present the performance of the numerical methods
proposed, we solve the Cauchy problem for a typical benchmark test example in a two-
dimensional smooth geometry, namely the annular domain � = {x = (x1, x2)|R2

i < x2
1 + x2

2 <

R2
o}, Ri = 0.5 and Ro = 1.0, since the condition of a smooth domain is required by the
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theoretical analysis of Kozlov et al. [23]. We assume that the boundary � of the solution
domain is divided into two disjointed parts, namely �1 = {x ∈ �|x2

1 + x2
2 = R2

i } and �2 =
{x ∈ �|x2

1 + x2
2 = R2

o}, and consider the following analytical solution for the temperature:

T (an)(x ) = exp(a1x1 + a2x2), x = (x1, x2) ∈ � (26)

where k = � + i�, � = 0, � = 2.0, a1 = 1.0 and a2 =
√

�2 − a21 . This example has a flux on
the boundary � given by

�(an)(x ) = (a1�1(x ) + a2�2(x ))T (an)(x ), x = (x1, x2) ∈ � (27)

5.1. Comparison of the numerical results

It is the purpose of this section to present and compare the numerical results for the Cauchy
problem considered in this study which have been obtained using the four regularization methods
described in Section 4. In order to investigate the stability and the regularization properties of
the numerical methods considered, the boundary data T̃ |�2 has been perturbed as

T̃ �|�2 = T̃ |�2 + �T̃ , �T̃ = G05DDF(0, 	), 	 = max
�2

|T̃ |(p/100) (28)

where �T̃ is a Gaussian random variable with mean zero and standard deviation 	, generated
by the NAG subroutine G05DDF, and p is the percentage of additive noise included in the
input data T̃ |�2 in order to simulate the inherent measurements errors. The numerical results
presented in this section have been obtained using N = 80 and N1 = N2 = N/2 constant
boundary elements. These values were found to be sufficiently large such that any further
refinement of the mesh size did not significantly improve the accuracy of the results.

Both the CGM and the alternating iterative algorithm described in Section 4.4 require an
initial guess to be specified for the temperature or the flux, respectively, on the underspecified
boundary �1. This initial guess is improved at every iteration and approaches the exact solution.
Therefore, the rate of convergence and the accuracy of these methods clearly depend on how
close the initial guess is to the exact solution.

The numerical solutions for the temperature and the flux on the boundary �1 obtained by
the CGM for the initial guess T (0)|�1 = 0 and different amounts of noise added into the
temperature data T̃ |�2 are presented in Figures 1(a) and (b), respectively, in comparison with
the exact solution. It should be noted that the example considered in this paper is a very severe
example for iterative methods since the exact solution is very far from the most natural guess
available. Numerous other examples have been considered and it has been found that the CGM
produces very good results for examples for which the initial guess is not too far from the
exact solution.

Figures 2(a) and (b) present the numerical solution for the temperature and the flux, respec-
tively, on the boundary �1, retrieved using the alternating iterative algorithm originally proposed
by Kozlov et al. [23] with the initial guess �(0)|�1 = 0 in comparison with the exact solution.
It can be seen from these figures that, as p decreases, the numerical solution approximates
better the exact solution while remaining stable. Even if the numerical results obtained by the
alternating iterative algorithm of Kozlov et al. [23] are less accurate than the numerical results
obtained by the CGM, they are still a reasonably good approximation to the exact solution of
the problem since we have solved a highly ill-posed problem.
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Figure 1. (a) The analytical T (an) (——) and the numerical T (num) temperatures; and (b) the analytical
�(an) (——) and the numerical �(num) fluxes, retrieved on the underspecified boundary �1 by using the

CGM for various amounts of noise p = 1% (�), p = 2% (©) and p = 3% (�).
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Figure 2. (a) The analytical T (an) (——) and the numerical T (num) temperatures; and (b) the
analytical �(an) (——) and the numerical �(num) fluxes, retrieved on the underspecified
boundary �1 by using the alternating iterative algorithm for various amounts of noise

p = 1% (�), p = 2% (©) and p = 3% (�).
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Figure 3. (a) The analytical T (an) (——) and the numerical T (num) temperatures; and (b) the analytical
�(an) (——) and the numerical �(num) fluxes, retrieved on the underspecified boundary �1 by using

the SVD method for various amounts of noise p = 1% (�), p = 2% (©) and p = 3% (�).

Although not presented here, it is reported that the Morozov discrepancy principle [24] and
the stopping rule proposed by Nemirovskii [21] have been found to be very efficient in choosing
the regularization parameter, i.e. the number of iterations at which the numerical methods are
stopped, for the alternating iterative method described in Section 4.4 and the CGM, respectively,
see Reference [14, 15].

The SVD and the Tikhonov regularization methods have been applied to the system of linear
algebraic equations (12) in order to simultaneously retrieve the temperature and the flux on
the boundary �1. Figures 3(a) and (b) present the numerical solution obtained by using the
SVD method for the temperature and the flux, respectively, on the underspecified boundary
�1 for various levels of noise, namely p ∈ {1, 2, 3}. It can be seen from these figures that
even for large amounts of noise added into the input data there is a very good agreement
between the numerical and the exact solution to the problem considered. Figures 4(a) and (b)
show the numerical solution for the temperature and the flux, respectively, on the boundary
�1 obtained by applying the Tikhonov regularization method to the system of linear algebraic
equations (12) for various levels of noise added into the temperature data, namely p ∈ {1, 2, 3}.
It should be noted that the numerical solution for the temperature and the flux, respectively, is
convergent with respect to decreasing the amount of noise added into the input data and even
for large amounts of noise added into the input data, there is a very good agreement between
the numerical and the exact solution to the problem considered.

Although not presented here, it is reported that both the SVD and the Tikhonov regular-
ization methods are convergent with respect to the refinement of the mesh size discretization.
As a stopping criterion we have used the Morozov discrepancy principle [24] for both the
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Figure 4. (a) The analytical T (an) (——) and the numerical T (num) temperatures; and (b)
the analytical �(an) (——) and the numerical �(num) fluxes, retrieved on the underspecified
boundary �1 by using the Tikhonov regularization method for various amounts of noise

p = 1% (�), p = 2% (©) and p = 3% (�).

Tikhonov regularization method and the SVD and this stopping criterion has been found to
be very efficient in choosing the regularization parameter and the optimal truncation number,
respectively.

In order to compare the four regularization methods considered, Figures 5(a) and (b) present
on the same graphs the numerical solution for the temperature and the flux, respectively, on the
boundary �1 obtained with each of these methods for p = 2% noise added into the temperature
data T̃ |�2 . It can be seen from these figures that the most accurate solutions are the ones given
by the SVD and the Tikhonov regularization method. Both the CGM and the alternating iterative
algorithm of Kozlov et al. [23] give reasonably good approximations for the temperature and
the flux on the underspecified boundary �1, but less accurate in comparison with numerical
solutions obtained by the SVD and the Tikhonov regularization method. However, for less
severe examples and for which we have a better initial guess, it was found that the CGM and
the alternating iterative algorithm of Kozlov et al. [23] also produce numerical solutions almost
as accurate as the numerical solutions obtained by the SVD and the Tikhonov regularization
method. The differences between the regularization methods considered are even larger in the
case of the numerical solution for the flux, as can be seen from Figure 5(b).

In Table I we present the accuracy errors

eT = ‖T (num) − T (an)‖L2(�1)
, e� = ‖�(num) − �(an)‖L2(�1)

(29)

where T (an) and �(an) are the analytical temperature and flux and T (num) and �(num) are
the numerical temperature and flux, respectively, obtained using the regularization methods
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Figure 5. (a) The analytical T (an) (——) and the numerical T (num) temperatures; and (b) the an-
alytical �(an) (——) and the numerical �(num) fluxes, retrieved on the underspecified boundary �1
by using the alternating iterative algorithm (�), the CGM (©), the Tikhonov regularization method

(�) and the SVD (∗), for p = 2% noise.

Table I. The accuracy errors eT = ‖T (num) − T (an)‖L2(�1)
and e� = ‖�(num) − �(an)‖L2(�1)

obtained
using the four regularization methods described in Section 4 for various levels on noise added into

the input data T (an)|�2 , namely p ∈ {1, 2, 3}.
p 1% 2% 3%

eT (Kozlov et al.) 1.30 × 10−1 2.30 × 10−1 3.35 × 10−1

eT (CGM) 1.04 × 10−1 2.24 × 10−1 2.83 × 10−1

eT (Tikhonov) 1.00 × 10−1 1.58 × 10−1 2.09 × 10−1

eT (SVD) 8.24 × 10−2 1.82 × 10−2 2.31 × 10−1

e� (Kozlov et al.) 6.51 × 10−1 1.01 × 100 1.31 × 100

e� (CGM) 6.21 × 10−1 9.75 × 10−1 1.22 × 100

e� (Tikhonov) 5.33 × 10−1 7.27 × 10−1 8.86 × 10−1

e� (SVD) 3.77 × 10−1 7.84 × 10−1 8.80 × 10−1

presented in Section 4 on the underspecified boundary �1 for different levels of noise added
into the input data. From this table, it can be seen that the SVD and the Tikhonov regularization
method are the regularization methods which provide the most accurate numerical results, whilst
the alternating iterative algorithm of Kozlov et al. [23] and the CGM produce less accurate
numerical results.
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All the numerical computations have been performed in FORTRAN 90 in double precision
on a Pentium 42.4 GHz machine available on the computing system in the School of the
Environment at the University of Leeds. It should be noted that the computational times are
very good for all the numerical methods analysed in this paper. For example, the lowest
computational time, namely 2.46 s, corresponds to the CGM algorithm which performs only
three iterations in order to obtain the regularized numerical solution. The SVD and the Tikhonov
regularization methods have accounted for almost the same computational time, i.e. 3.37 and
3.49 s, respectively, whilst the alternating iterative algorithm of Kozlov et al. [23] has been
found to be the most expensive with respect to the computational cost, namely 10.23s. However,
all the regularizing algorithms require a very low computational effort and hence this represents
another advantage of the numerical methods employed to solve the Cauchy problem associated
with the Helmholtz equation.

6. CONCLUSIONS

In this paper, four regularization methods for the Cauchy problem associated with the Helmholtz
equation have been investigated. Three of the methods are general regularization methods, whilst
the fourth one is an alternating iterative algorithm developed for Cauchy problems for elliptic
linear partial differential equations. It was found that the Cauchy problem for the Helmholtz
equation can be regularized by any of the methods considered since all of them produced a
stable numerical solution.

However, the numerical solutions obtained by these methods differ in terms of accuracy.
It has been found that the CGM outperforms the alternating iterative algorithm which was
originally proposed by Kozlov et al. [23] and was presented in Section 4.4. However, these
two methods are second best compared to the SVD and the Tikhonov regularization method
which produce numerical solutions of almost the same accuracy. We note that for the severe test
example considered, the alternating iterative algorithm is less accurate than the other methods
considered. The CGM and the alternating iterative algorithm of Kozlov et al. [23] have been
found to produce reasonably accurate results for the temperature and, as expected, less accurate
numerical results for the flux. However, the SVD and the Tikhonov regularization method have
been found to be the methods which produced a good approximation for both the temperature
and the flux. Furthermore, all the regularizing algorithms analysed in this paper require a very
low computational effort and hence this represents another advantage of the numerical methods
employed to solve the Cauchy problem associated with the Helmholtz equation.
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