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Abstract

This paper gives explicitly the kernels required for numerical imple-
mentations of the method of fundamental solutions for Kirchhoff plates
in equilibrium as well as simply and multiply connected vibrational
plates. The kernels associated to the boundary conditions of lateral
displacement, slope, normal moment, and effective sheer force of the
prescribed three cases are all derived. They are addressed in forms
suitable for numerical implementations of the method of fundamental
solutions. Also, the formulations of method of fundamental solutions
for these three cases are briefly reviewed. And, the linear least squares
method of fundamental solutions are supplied for obtaining eigenfunc-
tions of vibrational plates.
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1 Introduction

Meshless numerical methods have recently become alternatives to the classi-
cal mesh dependent numerical methods, such as the finite difference method
(FDM), finite element method (FEM), and boundary element method (BEM).
The method of fundamental solutions (MFS), first developed by Kupradze and
Aleksidze [1] in 1964, has re-emerged as a promising meshless numerical scheme
for solving various types of partial differential equations. The basic idea of the
MFS is to decompose the solutions of the partial differential equations into a
linear combination of the fundamental solutions, in which source points are
located on a fictitious boundary outside the computational domain. Here, the
intensities of the sources are the unknown parameters to be found. Excellent
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reviews of the MFS are available in the recent literature [2-5].

There are many numerical methods available in the analysis of plate problems.
Leissa [6] has provided a comprehensive survey for the numerical solutions of
plate vibration problems. Integral equations and BEM have also been utilized
to solve plate vibration problems for a long time. Kitahara [7] employed the
complex-valued boundary integral equation (BIE) method to solve the eigen-
values and eigenmodes for plate vibrations with various boundary conditions.
On the other hand, Hutchinson [8] has carried out a series of studies by utiliz-
ing the BIE with real-part kernel to solve plate vibration problems. Recently,
Chen et al. [9] further developed this method and utilized the SVD updating
technique to avoid the occurrence of the spurious eigenvalues.

The MFS has also applied to plate problems. In 1989, Raamachandran and
Bhaskar [10] first solved the problem of clamped circular plate in equilibrium
by the MFS. It was later revisited by Poullikkas et al. [11] by considering the
sources also as unknowns and solving the algebraic system by nonlinear opti-
mization. For vibrational plates, Young et al. [12] and Tsai et al. [13] applied
the MF'S for simply and multiply connected domains, respectively. Inwhich the
basic theories of avoiding the spurious eigenvalues was established by Tsai et
al. [14] for Helmholtz equations. On the other hand, Tsai et al. [15] developed
the linear least squares MFS for solving the acoustic modes. However, none of
the previous studies expressed explicitly the kernels of boundary conditions of
normal moment and effective sheer force.

In this paper, we first revisit the MF'S formulations for the following three cases:
Kirchhoff plates in equilibrium, simply connected vibrational plates, and mul-
tiply connected vibrational plates. The linear least squares MF'S for obtaining
eigenfunctions of vibrational plates are also supplied. Furthermore, the kernels
associated to the boundary conditions of lateral displacement, slope, normal
moment, and effective sheer force of the prescribed three cases are derived.
They are addressed in a form suitable for numerical implementations of the
method of fundamental solutions.
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2 MFS formulation for Kirchhoff plates in equi-
librium

The governing differential equation and boundary conditions for a Kirchhoff
plate in equilibrium subjected to transverse loading g(x1, x2) is given as

D
il L

T il N N\ A T

KUy, T2) = U(X1,T2) O Lo+ L
K,u(xy,29) = 0(x1,22) on I, (1)
K, u(xy,22) = m(zy,22) on I's + T

K, u(zy,z2) = 0(x1,22) on Iy

[ V2V2u(2, 20) = L0122 iy ()

where 1, 0, m & © are given boundary data, u(z1,x2) is the lateral deflection
of the plate, D = 1251,) is the the flexural rigidity of the thin plate, v is
the Poisson ratio, E is the Young’s modulus, €2 is the domain of the plate,
and I' = I'; + I'; + I'; is the plate boundary, in which I'; is the clamped part,
I's is the simply-supported part, as well as I'y is the free part. Furthermore,
the boundary operators of lateral displacement K, (e), slope Ky(e), normal

moment K,, (o), and effective sheer force K, (o) are given by:

K.(o)=1 (2a)

d(e)
K =—= (2
(0) = 5t (@)
0(e)
K =vV? 1-— 2
w(8) =PV + (10 G (20
OVi(e) 0 0(e)
Kol = e P o, 20
where % and % are the normal and tangential derivatives, respectively, on

the boundary point x = (z1,25). Therefore, (2a) and (2b) are selected for
plate vibrations with clamped boundary condition, (2a) and (2c) for simply-
supported boundary condition, and (2c) and (2d) for free boundary condition.
Egs. (2) can also be written more clearly as follows:

K.(e)=1 (3a)

Ky(o) = X 1 90 ()

0*(e) 0*(e)

+f3 axg (30)
L)
3 0r, 022 I o3

al‘% * f2 81:18132

Plo) Pl P

K, (o) =
() =g o’ 02201,

(3d)
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with
fi=Dn?+vDn3 (4a)

fo=2(1 —v)Dniny (4b)
fs = Dnj +vDn} (4c)
g1 = Dny(1 +n3) —vDnini  (4d)
g2 = vDny(14+n2) +2(1 — v)Dnj — Dniny,  (4e)
g3 = vDn (14 n3) +2(1 —v)Dn? — Dn2n, (4f)
g1 = Dny(1 +n?) —vDngn?  (4g)
where n, = (ny,ns) is the outward boundary normal vector.

Formally, Eq. (1) can be transformed to homogeneous problem by the dual
reciprocity method (DRM) [3], whose details are omitted here.

[ V2V2 (.Z'l,.ill'g) =01in Q

1 7¢ — a3 A Ve \
1xuw \‘bl,.,uz) = U\, , L2) i s O uP \.,ul €9 )

K, u(z1,22) = (21, 22) — K,uP(21,22) on F
K, u(z1,22) = m(x1,22) — K, uP(21,22) on I's + T’y
K, ut(zy, 29) = 0(x1, 29) — K uP(x1,22) on T

where u? (1, x2) obtained by the DRM is the particular solution satisfying
VAV (21, 19) = w in Q2 (6)

and the complementary solution u°(x1,xs) is defined by
u(xy, x2) = u(xy, v2) — uP(x1,22) (7)

Then, Eq. (5) can formally be solved by the MFS for Kirchhoff plates in
equilibrium [10] as

x) = Z {a; |x — s;[*log(|x — s;]) + B log(jx — s;)}  (8)

where s; are L prescribed sources located outside the computational domain
as depicted in Figure 1. For simplicity, we define the following notations of

kernels:
Ui(x,s) = K,(Jx — s|*log(|x — s])) (9a)

Us(x,8) = Ky (log(jx —s[))  (9b)
O1(x,8) = Ko(|x — s/ log(|x —s[))  (9¢)
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Figure 1: Geometry configuration for a simply connected plate

O2(x,s) = Ky(log(|x —s[))  (9d)
Mi(x,s) = Kn(|x —s|*log(]x = s])) (%)
My (x,8) = Ko (log(|x —s[))  (9f)
Vi(x,s) = K, (jx —s|” log(|x —s[))  (99)
Va(x,s) = Ky (log(|x —s]))  (97)
Eq. (8) can then be written as

) = z_:{ale x,s;) + B;Ua(x,s;)}  (10)

To obtained the unknown intensities a; and (3;, 2 x L boundary conditions
should be collocated as follows:

Z:l {o;Us(x4,85) + B Us(x4,8;) } = u(x;) — K, (uP(x;))for {Xl}f e+l (11a)

Z {01 (x4, 8;) + 3;02(xi,8;) } = 0(x;) — Ko(uP(x;))for {x;}7 € . (11b)

Sy M(xi, 8;)+8; Ma(xi,8)} = imn(x:)— Ko (w?(x,))for {x;}* € T+ T, (110)

=1

Z{%Vl (xi,85) + B3 Va(xi,85)} = 0(x;) — Ko (u”(x;))for {x;}; € Ty (11d)

7j=1
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When «; and f; are solved, the desired solution u(xy, x5) is able to be obtained
by Egs. (7) and (8). Before closing this section, we give the partial derivatives
of kernels required in Egs. (3) and (9) explicitly in forms suitable for numerical
implementations:

gg: — @1+ 2log(r)]  (12a)
0*U, 2d;d;
T s+ 21 % (120
o = Al 2loa(r)] + 5 (12
0z;0x 0z, N r2 rt
oU, d;
= — (12d
oxr;  r? (12d)
32U2 57Lj ded]
=% 12
Or;0x;  r? rt (12¢)
0°Us _ _2(5Z]d;c + 0jkd; + Orid;) N 8d;d;dy, (12f)
0x;0x;0xy, rd 76

where d; = x; — s; and r = |x — s| with s = (s1, 52). Also, d;; is the Kronecker
delta.

3 MFS formulation for simply connected vi-
brational plates

For free flexural vibration of a uniform thin plate, the governing equation and
the boundary conditions are [7]:

Kiuw=0onT.+T,
Kou=0o0nT, (13)
K,u=0o0nT;+1}

K,u=0o0nTy

In order to obtain the eigenvalues A for which the above equations have non-
trivial solution, u(xy, x2) is represented by the MFS approximation [12]:

) Z af Ho(A [x —85]) + B Ko(A x —s,[)]  (14)
Jj=1

where 2 x M is the number of sources, a]E and @E are the unknown source
intensities (as depicted in Figure 1), H,(\r) = H{Y(\r) is the Hankel function
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of the first kind of order n and K, (Ar) is the modified Bessel function of the
second kind of order n. Similarly, we define the following kernels:

Osr(x,8) = Ko(Ko(Mx —s|))  (15d)
Mia(x,8) = Kpn(Ho(M |x —s])  (15¢)
Mo a(x,8) = Kn(Ko(A|x —s|))  (15f)
Via(x,s) = K, (Ho(A x —s])) (159)

Voa(x,s) = Ky (Ko(A|x —s|)) (15h)

where the partial derivatives required are also given in explicit forms suitable
for numerical implementations as follows:

8U1’>\ _ _dz)\Hl()\T) (160,)

ox; r

62U1,>\ 513)\H1()\’I") didj)\QHQ()\r)

0z;0x; r * r? (165)
83(]1 by <6z‘jdk + 5]kdz + 5]ﬂd])>\2H2()\T) dzd]dk)\sH3(>\T)
A — ‘ (16¢)
0z;0x;0xy, r2 r3
3U2 by dz)\Kl(AT‘)
A= 16d
ox; r (16d)
62UQ7)\ _ _6Z]AK1(>\T) 4 didj)\ZK2<)\T) (166)
O0x;0x; r r2
63U27)\ o ((5Udk + 5]kdz + 5kld]))\2K2()\’l“) _ dzd]dk)\ng()\T) (16f)
Or;0x;0z), r? r3

Then, Eq. (14) can be rewritten as
) = Z aPUia(x,87) + B Usn(x,8;)]  (17)

In order to obtain af and ﬁjE , 2x M boundary should conditions be collocated,
le.:

M
Z {a]EULA(xZ-,Sj) + BfUQ,A(Xi,Sj)} =0 for {XZ}JIW el 4Ty (18a)

=1
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M
S {aPO1a(xi,85) + 8Os (xi,8;)} = 0 for {x;})" €T (18b)

Jj=1

M
Z{a Mi(xiy8j) + Y Mo (xi,8;)} = 0 for {x;})" € T+T;  (18¢)

M
Z {OCEVI A XZ7SJ> + ﬁ VQ}\(XHSJ>} = 0 for {Xl}i\/[ € Ff (18d)

Equatlon (18) is an eigenproblem for A and we are searching for eigenvalues
A1 < A2 < A3 < --- such that Eq. (18) has nontrivial solutions, which is
usually solved by the direct determinant search method [12].

It seems straightforward that the eigenfunctions can be obtained by substitut-
ing the corresponding eigenvectors to Eq. (17). However, it is found that the
linear least squares MFS [15] should be applied to obtain the eigenfunctions
stably. In other words, the following condition should be imposed in addition
to the given boundary conditions in Eq. (18) by substituting the obtained
eigenvalues A to the kernels.

K(u(x))=1latx=a (19)

where K(e) is one of the operators defined in Eq. (2), and a is a prescribed
point. Here, K(o) and a are so selected that they do not contradict with
the boundary conditions in Eq. (18). Egs. (18) and (19) compose an over-
determined linear equations system and can then be solved by linear least
squares method to obtain OCJE and ﬁJE . As a result, the desired eigenfunctions
can be obtained by utilizing Eq. (17).

4 MFS formulation for multiply connected vi-
brational plates

For plate vibrations in multiply connected domains, the MFS formulation
should be modified as [13]

N
Z a; UL A(x, S; )+5EU2,\ Z Q; U3 A (x, S +5 Us(x, SI)] (20)

where {a ,6F} and {al, 3} are the intensities of the sources at M exterior
sources s and N interior sources SI respectively. Figure 2 shows the geometry
conﬁguration of sources. The kernels are defined by Eq. (15a), Eq. (15b) and

the follows:
,6U17A (X, S)

U. =U 21
3a(X,8) 1a(x,8) +1 on. (21a)
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Figure 2: Geometry configuration for a multiply connected plate

U, \(x,s
U4’>\(X, S) = UQ’A(X, S) —f-ZL (21b)
Ong
where 8%5 is the normal derivative with respect to the outward normal vec-

tor, ng = (n1,M2), associated to the fictitious curve of interior sources. The
eigenvalues and eigenfunctions can also be obtained similarly by the direct
determinant search method [13] and the linear least squares MFS [15], respec-
tively. Before closing this section, we give the required partial derivatives of
the kernels explicitly in forms suitable for numerical implementations:

OUsy  (=di +ing) AHi(Ar)  ididiiy\* Hy(Ar)

= 5 (22a)

o0x; r r

82U37)\ o _(Sl])\Hl()\’f’) i (dzd] — lﬁld] — i’fbjdz — i5ijdl77ll))\2H2()\’l")

0z, 0x; N r r2
id.d:d: N3 H-
+1dldjdlnlé 3(Ar) (220)
r
PUsx  [0i(dy — ing) + dja(di — i) + Opa(dy — i0) ]\ Hy(Ar)
81’181']8$k a r2
_ [didjdy, — iy (6ijdi + Ojrdi + Oridy) — i(Tidydy + Njdidy + ﬁkdidj)])\?’H;g()\r)
3
_idzd]dkdlﬁiA4H4(>\r) (220)
r
OUsp _ (=di + i) AK (W) ididyiy\* Kp(Ar)

or; r 72 (22d)
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62U47)\ o _(SZ])\K1<)\7’) i (dld] — lﬁzd] — iﬁjdl — i5ijdl77ll))\2K2()\’l")

O0x;0x; N r r?
id,d;diu N3 K5 ()
TR K A7) 99¢)
r
PU, [05(de — i) + 6 (ds — i725) + Opi(dy — in;) ]\ Ky (Ar)
0x;0x 0z, - r?
B [did;dy, — idiny (8;5dy + 0jrd; + Oxidy) — i(nydjdy 4 Njdidy, + ngd;d;) | N2 K3(Ar)
r3
ldld 'dkleNLl)\4K4()\7’)
- ! rh (22f)

In the above equations, summations are applied with respect to the index [.

5 Main Results

The kernels required for numerical implementations of the method of fun-
damental solutions for Kirchhoff plate in equilibrium as well as simply and
multiply connected vibrational plates are all given explicit. These kernels in-
clude the lateral displacement, slope, normal moment, and effective sheer force
for all the three cases. They are addressed in forms suitable for numerical im-
plementations. Also, the formulations of method of fundamental solutions for
these three cases are briefly reviewed. And, the linear least squares method of
fundamental solutions are supplied for obtaining eigenfunctions of vibrational
plates.
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