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Time-harmonic exterior acoustic problems are solved by using a singular meshless method in this
paper. It is well known that the source points cannot be located on the real boundary, when the
method of fundamental solutions �MFS� is used due to the singularity of the adopted kernel
functions. Hence, if the source points are right on the boundary the diagonal terms of the influence
matrices cannot be derived. Herein we present an approach to obtain the diagonal terms of the
influence matrices of the MFS for the numerical treatment of exterior acoustics. By using the
regularization technique to regularize the singularity and hypersingularity of the proposed kernel
functions, the source points can be located on the real boundary and therefore the diagonal terms of
influence matrices are determined. We also maintain the prominent features of the MFS, that it is
free from mesh, singularity, and numerical integration. The normal derivative of the fundamental
solution of the Helmholtz equation is composed of a two-point function, which is one of the radial
basis functions. The solution of the problem is expressed in terms of a double-layer potential
representation on the physical boundary based on the potential theory. The solutions of three
selected examples are used to compare with the results of the exact solution, conventional MFS,
boundary element method, and Dirichlet-to-Neumann finite element method. Good numerical
performance is demonstrated by close agreement with other solutions. © 2006 Acoustical Society of
America. �DOI: 10.1121/1.2141130�

PACS number�s�: 43.28.Js �SFU� Pages: 96–107
I. INTRODUCTION

For practical engineers, the boundary element method
�BEM� has been more useful than the finite element method
�FEM� during the last two decades, since the model setup
takes less time for one-dimension reduction. Science and en-
gineering communities have recently started paying attention
to meshless methods that are element free. For the foresee-
able future this mesh reduction technique will provide a sig-
nificant and promising alternative to dominant numerical
methods such as the FEM and BEM. Since neither domain
nor surface meshing is required for the meshless methods,
they could be more attractive for engineers to use. In this
paper, we will develop a singular meshless method �SMM�
as an efficient and novel numerical technique for solving
two-dimensional �2D� exterior acoustics.

The mesh-free methods have become popular tools for
scientific computing in recent years because of the strong
demand for the reduction of mesh generation in higher di-
mensional domains. These methods are considered as prom-
ising alternatives to the FEM and BEM in solving physical
problems numerically. Meshless methods have been success-
fully applied to some realistic problems1 but not previously
in acoustics. Several important types of meshless methods
with their applications have been reported in the
literature.2–15,1,16–20
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Among the above-mentioned mesh-free studies, the
method of fundamental solutions �MFS� is extensively ap-
plied to solve certain engineering problems.11,13,17–19 The
MFS is one kind of meshless method, since only boundary
nodes are needed. Comprehensive reviews of the MFS were
published by Fairweather and Karageorghis11 and Golberg
and Chen.13 In order to avoid the problem of singularity, the
solution is presented as a set of single layer potentials �cor-
responding to the fundamental solutions� on a nonphysical
boundary �namely a fictitious boundary�. The unknown den-
sities of the fundamental solutions are determined in such a
way that the boundary conditions �BCs� are satisfied by the
method of collocation. The kernel function is composed of a
two-point function that is one kind of radial basis function
�RBF�. A regular meshless formulation and singularity-free
method are then obtained, which are attractive and relatively
easy to use. However the MFS has not become a popular
numerical method because it involves a controversial artifi-
cial boundary outside the physical domain. In general a fic-
titious boundary is difficult to choose for a complicated ge-
ometry. This will produce a restriction on the implementation
of the MFS, since the locations of the source points require
good estimates. The diagonal coefficients of the influence
matrices are divergent in common cases when the off-set
boundary approaches the real boundary. Despite the lack of
singularities, the influence matrices become ill posed when
the off-set boundary is far away from the real boundary. The
results become very sensitive, since the condition number

gets very large.
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An improved approach called the boundary knot method
�BKM� or the boundary collocation method �BCM� was in-
troduced recently by Chen and co-workers,3–8 Kang and
collaborators,14,15 and Chen and co-workers.9,10 Nonsingular
kernels were employed to evaluate the complementary solu-
tions instead of using singular fundamental solutions. Many
types of problems have been successfully treated with these
methods. The major differences between the nonsingular
schemes and MFS formulations are that the BKM and BCM
choose nonsingular general solutions while MFS uses more
effective singular kernel functions such as the RBFs. The
Trefftz method is also one improved method for MFS. The
Trefftz method uses the complementary set of fundamental
solutions, i.e., the solutions of homogeneous differential
equations. Hence it does not encounter the singularity since
the RBFs are regular. On the other hand the MFS uses fun-
damental solutions of inhomogeneous differential equations
which are appropriate as well. It is worth noticing that MFS
and the Trefftz method are mathematically equivalent in spite
of their essentially minor and apparent differences in formu-
lation. The link between the Trefftz method and the MFS has
been discussed in detail in Refs. 6 and 7. The study on the
similarities between the Trefftz method and the MFS has
been emphasized recently.

In the above-mentioned references, these methods only
work well in regular geometry with Dirichlet and Neumann
BCs. Even though those methods can locate the source
points on the physical boundary and have nonsingular ker-
nels, it still is an ill-posed problem. Further, for exterior
acoustics problems the satisfaction of the BC at infinity such
as Sommerfeld radiation condition becomes difficult. How-
ever the singular kernel functions for the MFS and proposed
SMM will automatically satisfy the Sommerfeld radiation
condition. The goal of this paper is to develop a new mesh-
less method with the source points on the physical boundary
to solve scattering and radiation problems without the above-
mentioned difficulty of BKM, BCM, conventional MFS, and
the Trefftz method. We present an alternative approach for
the numerical treatment of exterior acoustics, retaining the
salient MFS meshless characteristics and selecting the nor-
mal derivative of the fundamental solution of the Helmholtz
equation as the RBF. The proposed method can be viewed as
a special case of indirect BEM using the discrete double
layer potential method21–23 as well as an expansion method
of the MFS.20 The solution of the problem is expressed in
terms of a double-layer potential instead of a single-layer
potential representation on the physical boundary without the
integral process. By comparison with other meshless or mesh
reduction schemes such as BKM, BCM, or BEM, the dis-
cretization processes or regularization techniques are still
needed for those methods and can be found in Refs. 22–25.
However the proposed SMM behaves like the MFS by im-
proving the singularity evaluation of diagonal terms, when
the source and boundary points are coincident to avoid the
ambiguity of off-set distance of the fictitious boundary for
the conventional MFS.

By using the proposed regularization technique of sub-
tracting and adding-back, the singularity and hypersingular-

ity of the kernel functions can be regularized. The main idea
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is to add one singular term in the series and then to subtract
the same singular term from the series of the solution repre-
sentation. The two singular terms are equal and the sum of
the augmented series is zero. In general the diagonal terms of
the influence matrices can then be derived by using the pro-
posed technique for an arbitrary domain. Also, the influence
coefficients for a circular domain are computed analytically
by using separable kernels and circulants, and the validity of
the diagonal terms can be verified by using the proposed
regularization technique. The main part of this paper deals
with the strongly singular and hypersingular kernel functions
without integration. Furthermore, the innovative concept of
this study is that this regularization technique has never been
used in the context of meshless methods, except for the writ-
ers’ recent publication on potential problems.20 Finally, we
present several case studies using the developed singular
meshless program to demonstrate that the proposed scheme
can be utilized to solve 2D acoustic radiation and scattering
problems in circular and square domains subject to Dirichlet
and Neumann BCs.

II. FORMULATION

Acoustic problems are usually modeled by the Helm-
holtz equation. By making the time harmonic assumption,
p�x , t�=Re���x�ei�t�, the classical wave equation then re-
duces to the Helmholtz equation as follows:

�2��x� + k2� = 0, x � De �1�

with the two kinds of BCs as

��x� = �̄, x � B �2�

or

��x� = �̄, x � B , �3�

where �2 is the Laplacian, ��x� is the acoustic pressure,
��x�=���x� /�nx is the normal derivative, nx is the outward
normal vector, k is the wave number, and De is the domain of
the exterior problem. The two BCs in Eqs. �2� and �3� are
stated as follows: Eq. �2� is the essential boundary �Dirichlet
boundary� on which the potential is prescribed as �̄ and Eq.
�3� is the natural boundary �Neumann boundary� on which

the flux is prescribed as �̄. B is the boundary of the domain
De. Furthermore, in order to obtain a well-posed problem;
the pressure field is constrained to vanish at infinity. This is
accomplished by imposing a radiation condition at infinity.
An appropriate radiation condition at infinity is given by the
Sommerfeld radiation condition23,26 as

lim
r→�

r�1/2��d−1�� ��

�r
− ik�� = 0, r → � , �4�

where d is the dimension �d=2 in this study�. Equation �4�
stems from the Sommerfeld radiation condition which en-
sures that no sources at infinity contribute to the acoustic
field. Only outgoing traveling waves are acceptable, guaran-
teeing a net acoustic energy flow toward infinity. This BC
implies an integral form, the Rellich–Sommerfeld radiation

condition in the form
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lim
r→�

	
Br


 ��

�r
− ik�
2

dB = 0, �5�

where Br is the surface of a sphere with a radius r. The
radiation condition requires the energy flux at infinity to be
positive, thereby assuring a unique solution to the boundary-
value problem �1�–�4�. Appropriate representation of this
condition is crucial to the reliability of any numerical formu-
lation of the problem. A correct and exhaustive presentation
of the radiation decay condition has been given in Ref. 27.

By employing the RBF technique, the solution for an
exterior problem can be approximated in terms of the
strengths of the singularities �sj� as

��xi� = �
j=1

N

Ae�sj,xi�� j, x � De, �6�

��xi� = �
j=1

N

Be�sj,xi�� j, x � De, �7�

where Ae�sj ,xi� is the RBF in which the superscript denotes
the exterior domain, � j are the unknown coefficients, N is
the number of source points, sj, and

Be�sj,xi� =
�Ae�sj,xi�

�nx
.

The coefficients �� j� j=1
N are determined, such that BC is sat-

isfied at the boundary points ��xi�i=1
N �. By collocating N ob-

servation points, xi, to match the BCs from Eq. �2� for Di-
richlet problems and Eq. �3� for Neumann problems, we have
the following N�N linear systems in the form of

��̄i� = �
a1,1 a1,2 ¯ a1,N

a2,1 a2,2 ¯ a2,N

] ] � ]

aN,1 aN,2 ¯ aN,N


�� j� = �Ae��� j� , �8�

��̄i� = �
b1,1 b1,2 ¯ b1,N

b2,1 b2,2 ¯ b2,N

] ] � ]

bN,1 bN,2 ¯ bN,N


�� j� = �Be��� j� , �9�

where

ai,j = Ae�sj,xi�, i, j = 1,2, . . . ,N , �10�

bi,j = Be�sj,xi�, i, j = 1,2, . . . ,N . �11�

The chosen RBFs are the double layer potentials from poten-
tial theory given as

Ae�sj,xi� = −
i�k

H1
�1��krij�

nkyk , �12�

2 rij
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Be�sj,xi� =
i�k

2 �k�H2
�1���krij�

ykylnkn̄l

rij
2 − H1

�1��krij�
nkn̄k

rij
� ,

�13�

where H1
�1��krij� and H2

�1��krij� are the Hankel functions of the
first kind of the first and second order, respectively. rij

=�k=1
2 �sk

j −xk
i �, yknk=�k=1

2 �xk
i −sk

j�nk, nk is the kth component
of the outward normal vector at source point sj; n̄k is the
kth component of the outward normal vector at field point
xi. It is noted that the double layer potentials in Eqs. �12�
and �13� have both singularity and hypersingularity at the
origin, which lead to troublesome singular kernels and a
controversial auxiliary boundary for the MFS. The off-set
distance between the off-set �auxiliary� boundary �B�� and
the real boundary �B� needs to be chosen deliberately. To
overcome this drawback, sj is distributed on the real
boundary by using the following proposed regularization
techniques. The rationale for choosing the double layer
potential instead of single layer potential as used in the
proposed method for the form of RBFs is to take advan-
tage of the regularization of the subtracting and adding-
back technique, so that no off-set distance is needed when
evaluating the diagonal coefficients of influence matrices
as explained in Sec. III. The single layer potentials cannot
be chosen as RBFs, because Eqs. �20� and �21� in the
following text of Sec. III are not satisfied. If the single
layer potential is used, the regularization technique of
subtracting and adding-back will fail.

III. DERIVATION OF DIAGONAL COEFFICIENTS
OF INFLUENCE MATRICES FOR AN ARBITRARY
DOMAIN USING SMM

When the collocation point xi approaches the source
point sj, Eqs. �12� and �13� will be approximated by

lim
xi→sj

Ae�sj,xi� = Āe�sj,xi� =
nkyk

rij
2 , �14�

lim
xi→sj

Be�sj,xi� = B̄e�sj,xi� = �2
ykylnkn̄l

rij
4 −

nkn̄k

rij
2 � +

k2

4
i ,

�15�

by using the limiting form for small arguments and the iden-
tities from the generalized function as shown in the
following:28

lim
rij→0

H1
�1��krij� =

krij

2
+

2

�krij
i , �16�

lim
rij→0

H2
�1��krij� =

�krij�2

8
+

4

��krij�2 i . �17�

The kernels in Eqs. �14� and �15� have the same singularity
strength as the Laplace equation.20 Therefore, Eqs. �6� and
�7� for the exterior problem need to be regularized by using

special treatment such as
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�̄�xi� = �
j=1

N

Ae�sj,xi�� j − �
j=1

N

Āe�sj,xi��i

= �
j=1

i−1

Ae�sj,xi�� j + �
j=i+1

N

Ae�sj,xi�� j

− ��
m=1

N

Āe�sm,xi� − Ae�si,xi���i, xi � B , �18�

�̄�xi� = �
j=1

N

Be�sj,xi�� j − �
j=1

N

B̄e�sj,xi��i

= �
j=1

i−1

Be�sj,xi�� j + �
j=i+1

N

Be�sj,xi�� j

− ��
m=1

N

B̄e�sm,xi� − Be�si,xi���i, xi � B , �19�

¯ e j i ¯ e j i
where A �s ,x � and B �s ,x � are the double layer potentials

lated by using the field equations �6� and �7� since the un-
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of the exterior problem of the Laplace equation for the same
domain, in which

�
j=1

N

Āe�sj,xi� = 0, �20�

�
j=1

N

B̄e�sj,xi� = 0. �21�

The detailed derivations of Eqs. �20� and �21� are given
in Appendix A. The original singular terms of Ae�si ,xi� and
Be�si ,xi� in Eqs. �6� and �7� have been transformed into regu-

lar terms −��m=1
N Āe�sm ,xi�−Ae�si ,xi�� and −��m=1

N B̄e�sm ,xi�
−Be�si ,xi�� in Eqs. �18� and �19�, respectively. The terms of

�m=1
N Āe�sm ,xi� and �m=1

N B̄e�sm ,xi� are the adding-back terms
and the terms of Ae�si ,xi� and Be�si ,xi� are the subtracting
terms in the two brackets for the special treatment technique.
After using the regularization technique of subtracting and
adding-back, we are able to remove the singularity and hy-
persingularity of the kernel functions. Therefore, the diago-
nal coefficients for the exterior problem can be extracted out

as
��̄i� = �
�
m=1

N

ā1,m − a1,1 a1,2 ¯ a1,N

a2,1 �
m=1

N

ā2,m − a2,2 ¯ a2,N

] ] � ]

aN,1 aN,2 ¯ �
m=1

N

āN,m − aN,N


�� j� , �22�

��̄i� = �
− ��

m=1

N

b̄1,m − b1,1� b1,2 ¯ b1,N

b2,1 − ��
m=1

N

b̄2,m − b2,2� ¯ b2,N

] ] � ]

bN,1 bN,2 ¯ − ��
m=1

N

b̄N,m − bN,N� 
�� j� , �23�
where aij =Ae�sj ,xi�, āij = Āe�sj ,xi�, bij =Be�sj ,xi�, and b̄ij

= B̄e�sj ,xi�.
By collocating N observation points to match the BCs

from Eq. �2� for Dirichlet BCs and Eq. �3� for Neumann
BCs, we can get the final system of Eqs. �8� and �9�. For
mixed-type problems, a linear combination of Eqs. �8� and
�9� is made to satisfy the mixed-type BCs. After the un-
known density, �� j� j=1

N , is solved by using the linear algebraic
solver, the solutions for the domain of interest can be calcu-
known density function �� j� is solved by Eqs. �22� and �23�.
The numerical procedure of SMM can be found in Fig. 1.

The diagonal terms of the two influence matrices for
exterior problems can also be derived analytically for a cir-
cular domain as shown in Eqs. �B21� and �B22�.

IV. NUMERICAL RESULTS

In order to show the accuracy and validity of the pro-

posed method, three case studies, involving radiation and
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scattering problems with circular and square domains subject
to Dirichlet and Neumann BCs, are given in the following
examples.

1. Radiation problem (Dirichlet BC). For the first case, a
nonuniform radiation problem from a sector of a circular
cylinder26 is considered. The BC has a constant nonzero
value on the arc �−� /2�	�� /2� and zero elsewhere. Two
points of discontinuity of the BC can be found. Problem
sketch and nodes distribution by using SMM are plotted in
Figs. 2 and 3, respectively. The normalized analytical solu-
tion is available as follows:

��r,	� = −
2

�
�
n=0

�


n
sin�n��

n

Hn
�1��kr�

Hn
�1��ka�

cos�n	� , �24�

where 
n is the Neumann factor and a is the radius of the
circular cylinder. We choose �=� /9. After collocating 100
nodes on the physical boundary, both the real and imaginary
components for � on r=2a for ka=1 are plotted in Figs. 4�a�
and 4�b�, respectively. The results are used for comparison
with the exact solution and the conventional Cauchy singular

FIG. 1. �Color online� Flow chart of SMM.

FIG. 2. The nonuniform radiation problem for a circular cylinder subject to

Dirichlet BC in Case 1.
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FIG. 3. �Color online� Nodes distribution �100 nodes� in Case 1.
FIG. 4. �Color online� Nonuniform radiation for a circular cylinder subject

to Dirichlet BC in Case 1 for ka=1, r=2a: �a� real part, �b� imaginary part.
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BEM solution. The discretization method of the BEM is col-
location discretization with constant elements. These results
demonstrate the convergence of the proposed method. The
comparison of error norms between the present SMM using
double layer potentials and the conventional MFS utilizing
single layer potentials with different off-boundary distances
�Rs=the radius of source points=0.5,0.8,0.99� is shown in
Fig. 5. This illustrates the drawback of the location of
source being dubious when the conventional MFS is used.
The result using the present method is more efficient than
the solution using the conventional MFS with the same
number of nodes. Figures 6�a�, 6�b�, and 6�c� show the
contour plots for the real part of the potential for ka=1 by
adopting the analytical solution, the proposed SMM, and
the BEM. The result from using the present method
matches the exact solution and the BEM result very well.

2. Radiation problem (Neumann BC). The second ex-
ample is the same as the first problem except the Dirichlet
BC is replaced by the Neumann BC as depicted in Fig. 7.
The nodes distribution employing the proposed method is
shown in Fig. 8. The discontinuous BC is as follows:

��a,	� = �1, −
�

2
� 	 �

�

2

0, otherwise.
� �25�

In this case, the analytical solution is found as follows:26

��r,	� = −
2

�k
�
n=0

�


n
sin�n��

n

Hn
�1��kr�

Hn
�1��ka�

cos�n	� , �26�

We select �=� /9. By collocating 100 nodes on the circular
boundary, both the real and imaginary components for � on
r=2a for ka=1 are plotted in Figs. 9�a� and 9�b�, respec-
tively. They are used for comparison with the results of exact
solution and the conventional Cauchy singular BEM solution
with constant elements. These results demonstrate the con-

FIG. 5. �Color online� Comparison of error norms using the conventional
MFS and proposed SMM for Case 1.
vergence of the proposed method. The comparison of error
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norms between the present SMM and the conventional MFS
with different off-boundary distances �Rs=0.5,0.8,0.99� is
shown in Fig. 10. This illustrates again the drawback of

FIG. 6. �Color online� The contour plots for the real-part solutions in Case
1: �a� analytical solution, �b� proposed SMM �100 nodes�, �c� BEM �100
elements�.
the well known ill-posed influence matrices when the con-
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ventional MFS is used. The solution using the present
SMM is more efficient than the conventional MFS, if the
same number of nodes is used. The contour plots for the
real part of the potential for ka=1 by adopting the analyti-
cal solution, the proposed SMM, and the BEM are shown
in Figs. 11�a�, 11�b�, and 11�c�, respectively. Figure 11
reveals that the present model provides very promising
results as compared to the analytic and BEM solutions.

3. Scattering problem for a square rod (Neumann BC).
Having demonstrated the present technique on a circular cyl-
inder, we proceed to a scattering problem for a square rod
�square measure=4�, as shown in Fig. 12 in which the exact
solution is not available.29 Due to nonsmooth boundaries at
the four corners of the square, the scattering by the square
rod becomes multidirectional. By collocating 120 nodes on
the square boundary as depicted in Fig. 13, both the real and
imaginary components for � on r=1/0.425 for ka=4� are
plotted in Figs. 14�a� and 14�b�, respectively, for comparison
with the BEM and Dirichlet-to-Neumann �DtN� FEM results.
The type of finite elements used is linear triangle elements.
The DtN-FEM evaluation uses the h-refinement and Galerkin
least-squares finite element formulation with fully coupled
DtN BCs. These results demonstrate the numerical conver-
gence and easy treatment of BCs for exterior acoustics prob-
lems by the proposed technique. The contour plots of field
solution for the real part of the potential for ka=4� by
adopting the proposed SMM, the FEM with DtN method,29

and the BEM are shown in Figs. 15�a�, 15�b�, and 15�c�,

FIG. 7. The nonuniform radiation problem for a circular cylinder subject to
Neumann BC in Case 2.
FIG. 8. �Color online� Nodes distribution �100 nodes� in Case 2.
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respectively. Figure 15 shows the better convergence of the
present solution in comparison with the other two numerical
solutions, BEM and DtN FEM.

V. CONCLUSIONS

In this study, we implement a singular meshless method
using double layer potentials to solve radiation and scattering
problems in two dimensions. Only the boundary nodes on
the real boundary are required. The major difficulty of the
coincidence of the source and collocation points that causes
singularity in the conventional MFS is circumvented. The
finite values of the diagonal terms for the influence matrices
have been subtracted off by the proposed regularization tech-
nique to regularize the singularity and hypersingularity of the
kernel functions, when the source and boundary points are
coincident. The numerical results obtained by using the pre-
sented SMM for the three examples match very well with the

FIG. 9. Nonuniform radiation for a circular cylinder subject to Neumann BC
in Case 2 for ka=1, r=2a: �a� real part, �b� imaginary part.
analytical solutions and other numerical solutions using con-
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ventional MFS, BEM, or DtN FEM. A much simpler mesh-
less numerical method is claimed as far as modeling of 2D
exterior acoustics is concerned.
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APPENDIX A: THE DETAILED DERIVATIONS OF EQS.
„20… and „21…

The null-fields of the boundary integral equations �BIEs�
based on the direct method are

0 = 	
B

���e��s,xi�
�ns

��s�dB�s�

− 	
B

��e��s,xi�
���s�
�ns

dB�s�, xi � De, �A1�

0 = 	
B

�2��e��s,xi�
�ns�xi

��s�dB�s�

− 	
B

���e��s,xi�
�nxi

���s�
�ns

dB�s�, xi � De, �A2�

where the superscript e denotes the exterior domain, � is the
single layer potential, and is equal to ln�rij� for the 2D

Laplace problem. Let ����e��s ,xi�� /�ns= Ā�e��s ,xi�, and
2 �e� i ¯ �e� i

FIG. 10. �Color online� Comparison of error norms using the conventional
MFS and proposed SMM for Case 2.
�� � �s ,x �� /�ns�nxi =B �s ,x �. By employing the simple

J. Acoust. Soc. Am., Vol. 119, No. 1, January 2006
test method ����s� /�ns=0 when ��s�=1�, we can write
Eqs. �A1� and �A2� as follows:

	 Āe�s,xi�dB�s� = 0 xi � De, �A3�

FIG. 11. �Color online� The contour plots for the real-part solutions in Case
2: �a� analytical solution, �b� proposed SMM �100 nodes�, �c� BEM �100
elements�.
B
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B

B̄e�s,xi�dB�s� = 0, xi � De. �A4�

When the field point xi approaches the boundary, we can
discretize Eqs. �A3� and �A4� as follows:

�
j=1

N

Ā�e��sj,xi�� j = 0, xi � B , �A5�

�
j=1

N

B̄�e��sj,xi�� j = 0, xi � B , �A6�

where � j is the half distance of the �j−1�th source point and
the �j+1�th source point. When the distribution of nodes is
uniform, we are able to reduce Eqs. �A5� and �A6� to the
following:

�
j=1

N

Ā�e��sj,xi� = 0, xi � B , �A7�

�
j=1

N

B̄�e��sj,xi� = 0, xi � B , �A8�

where

Ā�e��sj,xi� =
���e��sj,xi�

�ns
=

nkyk

rij
2 , �A9�

FIG. 12. The scattering problem for a square rod subject to Neumann BC in
Case 3.
FIG. 13. �Color online� Nodes distribution �120 nodes� in Case 3.
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B̄�e��sj,xi� =
�2��e��sj,xi�

�nsj�nxi
= 2

ykylnkn̄l

rij
4 −

nkn̄k

rij
2 , �A10�

which are Eqs. �20� and �21� in the text of Sec. III.

APPENDIX B: ANALYTICAL DERIVATION OF
DIAGONAL COEFFICIENTS OF INFLUENCE
MATRICES FOR CIRCULAR DOMAIN USING
SEPARABLE KERNELS AND CIRCULANTS

By adopting the addition theorem, in a special case of
the circular domain the two kernels in Eqs. �12� and �13� are
expanded into separable kernels which segregate the field
point, x, and source point, s, as follows:2

Ae�s,x� = �
m=−�

�
�k

2
�− iJm�k
� + Ym�k
��

�J� �kR�cos�m�	 − ���, 
 � R , �B1�

FIG. 14. �Color online� Plane wave scattering for a square rod subject to
Neumann BC in Case 3 for ka=4�, r=0.425: �a� real part, �b� imaginary
part �only the top half of the boundary is plotted�.
m
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Be�s,x� = �
m=−�

�
�k

2
�− i

�Jm� �k
� + Ym� �k
��Jm� �kR�cos�m�	 − ���, 


� R , �B2�

FIG. 15. The contour plots for the real-part solutions in Case 3: �a� proposed
SMM �120 nodes�, �b� BEM �120 elements�, �c� FEM with DtN method
�4129 elements, Stewart and Hughes �1997��.
where s= �R ,	� and x= �
 ,�� in polar coordinates and the
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superscript denotes the derivative operator. Since the rotation
symmetry is preserved for a circular boundary, the two in-
fluence matrices in Eqs. �8� and �9� are circulants with the
elements

Kij = K�R,	 j;
,�i� , �B3�

where the kernel K can be Ae or Be in Eqs. �8� and �9� for the
exterior problem, 	 j, �i are the angles of collocation and
source points, respectively. By superimposing N lumped
strength along the boundary, we have the influence matrices,

�K� = �
k0 k1 ¯ kN−1

kN−1 k0 ¯ kN−2

] ] � ]

k1 k2 ¯ k0


 , �B4�

where the elements of the first row can be obtained from

kj = K�R,	 j;
,0� , �B5�

in which �=0 is set without loss of generality. The matrix
�K� in Eq. �A4� is found to be a circulant, since the rotational
symmetry for the influence coefficients is observed. By in-
troducing the following bases for the circulants, I, �CN�1,
�CN�2 , . . ., and �CN�N−1, we can expand �K� into

�K� = k0I + k1�CN�1 + k2�CN�2 + ¯ + kN−1�CN�N−1, �B6�

where I is the unit matrix and

CN = �
0 1 0 ¯ 0 0

0 0 1 ¯ 0 0

] ] ] � ] ]

1 0 0 ¯ 0 0



N�N

. �B7�

Based on the circulant theory, the eigenvalues for the influ-
ence matrix, �K�, are found as follows:

�l = k0 + k1�l + k2��l�2 + ¯

+ k2N−1��l�N−1, l = 0,1,2, . . . ,�N − 1� , �B8�

where �l and �l are the eigenvalues of �K� and �CN�, respec-
tively. It is found that the eigenvalues of the circulants �CN�
are the roots of �N=1, as shown in the following:

�l = ei�2�l/N� l = 0,1,2, . . . ,N − 1. �B9�

Substituting Eq. �B9� into Eq. �B8�, we obtain

�l = �
m=0

N−1

km�l
m = �

m=0

N−1

kmei�2�ml/N�, l = 0,1,2, . . . ,�N − 1� .

�B10�

According to the definition of km in Eq. �B5�, we have

km = kN−m, m = 0,1,2, . . . ,N − 1. �B11�
Substitution of Eq. �B11� into Eq. �B10� yields
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�l = k0 + �
m=1

N−1

km��l
m + �l

N−m�

= �
m=0

N−1

km cos�2�ml

N
�, l = 0,1,2, . . . ,N − 1. �B12�

By setting �=0, without loss of generality, the Riemann sum
reduces to the following integral:

�l =
1

�	
lim
N→�

�
m=0

N−1

K�m�	,0�cos�ml�	��	

=
N

2�
	

0

2�

cos�l	�K�	,0�d	 , �B13�

where �	=2� /N.
By employing the separable kernel Ae�s ,x� for exterior

problem �R�
� in Eq. �B1� and the orthogonal conditions,
Eq. �B13� then reduces to

�l = �k
N

2
�− iJl�k
� + Yl�k
��

�Jl��kR�, l = 0,1,2,3, . . . ,N − 1. �B14�

Similarly, we have

�l = �k2N

2
�− iJl��k
� + Yl��k
��

�Jl��kR�, l = 0,1,2,3, . . . ,N − 1 �B15�

where �l and �l are the eigenvalues of �Ae� and �Be�, respec-
tively.

Employing the invariant property of the influence matri-
ces, the first invariant is the sum of all the eigenvalues. The
diagonal coefficients of the two matrices for the exterior
problem are obtained by the addition of all eigenvalues and
are shown as

Najj = �
l=0

N−1

�l, �B16�

Nbjj = �
l=0

N−1

�l. �B17�

Substituting Eqs. �B14� and �B15� into Eqs. �B16� and
�B17�, we obtain

ajj = −
ik�

4 �
l=0

N−1

Hl
�1��kR��Jl−1�kR� − Jl+1�kR�� , �B18�

bjj = −
ik2�

4 �
l=0

N−1

�Hl−1
�1� �kR� − Hl+1

�1� �kR���Jl−1�kR�

− Jl+1�kR�� . �B19�

Applying the addition theorem for the Bessel function,
the limiting forms for small argument and approaching the

collocation point to the source point, we obtain
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lim
N→�

�−
4kR�

N
+

2Ni

kR�
� = lim

N→�
�
l=0

N−1

Hl
�1��kR��Jl−1�kR�

− Jl+1�kR�� . �B20�

Hence, the diagonal elements are easily determined from
Eqs. �B18� and �B19� as follows:

ajj =
�

2�R

N

, N � 1. �B21�

Similarly, we have

bjj =
�1 + N�N

8R2 +
�k2

4
i, N � 1. �B22�

It is worth noticing that diagonal terms for general domains
of Eqs. �22� and �23� are analogous to Eqs. �B21� and �B22�
for the special circular domain.
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