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Abstract

In this article, a non-singular and boundary-type meshless method in two dimensions is developed to solve the poten-

tial problems. The solution is represented by a distribution of the kernel functions of double layer potentials. By using

the desingularization technique to regularize the singularity and hypersingularity of the kernel functions, the source

points can be located on the real boundary and therefore the diagonal terms of influence matrices are determined.

The main difficulty of the coincidence of the source and collocation points then disappears. By employing the two-point

function, the off-diagonal coefficients of influence matrices are easily obtained. The numerical evidences of the proposed

meshless method demonstrate the accuracy of the solutions after comparing with the results of exact solution, conven-

tional MFS and BEM for the Dirichlet, Neumann and mix-type boundary conditions (BCs) of interior and exterior

problems with simple and complicated boundaries. Good agreements with exact solutions are observed.
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1. Introduction

During the last decade, scientific researchers have paid attention to the meshless methods in which the

mesh or element is free. The meshless methods are the mesh reduction methods with no meshes require-

ments and only boundary nodes are necessary. The mesh reduction techniques possess great progresses

to compete with the FVM, FEM and FDM as dominant numerical methods. Because neither domain

nor surface meshing is required, the meshless methods have become very attractive for engineers in model
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creation, and important tools for scientific computing. Several meshless methods have been reported in the

literature, for example, the smooth particle hydrodynamics (SPH) method [12], the element-free Galerkin

(EFG) method [2], the reproducing kernel particle method (RKPM) [16], the method of fundamental solu-

tions (MFS) [6,11,18–21], boundary knot method (BKM) [8,9], boundary collocation method (BCM) [3–7]

and boundary node method (BNM) [22–24]. These methods are truly meshless, since no domain or bound-
ary meshes are required.

The MFS has been extensively applied to solve some engineering problems [10,11,18–21]. It is a kind of

meshless methods, since only boundary nodes are distributed. A comprehensive review of the MFS was gi-

ven by Fairweather and Karageorghis [11]. The solution procedure makes use of the fundamental solutions,

which satisfies the governing equation in the interested domain. To avoid the singularity problem, the solu-

tion is represented as a set of singular kernels or the single layer potentials on non-physical boundary (fic-

titious boundary). The kernel function is composed of two-point function which is one kind of the radial

basis functions (RBFs). The independent variable of two-point function depends on point position only. A
regular singularity-free formulation was obtained as a result, and achieving an attractive truly boundary-

type and mathematically simple meshfree method. However because of the controversial artificial boundary

(off-set boundary) outside the physical domain, the MFS has not become a popular numerical method. The

meaning of off-set boundary is an auxiliary boundary to offset a distance from the real boundary. In general

for real engineering problems especially for a complicated geometry, the off-set boundary distance is diffi-

cult to determine. The diagonal coefficients of influence matrices are divergent due to the point collocation

when the off-set boundary approaches to the real boundary. Despite its gain in singularity free, the influence

matrices become ill-posed matrices when the off-set boundary is far away from the real boundary. It results
in an ill-posed problem since the condition number for the influence matrix becomes very large. The loca-

tion of source and observation points is vital to the accuracy of the solution by implementing the conven-

tional MFS.

An improved approach called the BKM or BCM was introduced very recently, by Chen and his co-

workers [3–7], and Kang and his collaborators [14,15] as well as Chen and his co-workers [8,9]. Instead

of using the singular fundamental solutions, the non-singular kernels were employed to evaluate the homo-

geneous solution. These methods dealt successfully with many kinds of problems and eliminated the well-

known drawback of ambiguous off-set boundary. The major differences in these meshless methods come
only from the techniques used for the chosen non-singular kernels RBFs. However, the introduction of

non-singular kernels may jeopardize the accuracy of the solutions as comparing with using the singular fun-

damental solutions. Another improved method is called the Hybrid boundary node method (Hybrid

BNM), which combines the moving least squares (MLS) interpolation scheme with the hybrid displacement

variational formulation [23,24]. However, some integration is still needed as far as with the BNM or Hybrid

BNM.

In these BKM and BCM references, the methods only worked well in regular geometry with the Dirichlet

and Neumann BCs. Even though these methods can locate the source points on the physical boundary and
use the non-singular kernels, there still accompanies some difficulty at the ill-posed problems. Therefore, the

purpose of this paper is to develop a novel meshless method for solving the potential problems based on the

potential theory as well as the desingularization of subtracting and adding-back technique [13,17] to regu-

larize the singularity and hypersingularity of the kernel functions. The proposed method is to distribute the

observation and source points on the coincident locations of the real boundary even using the singular ker-

nels (double layer potentials) instead of non-singular kernels and still maintains the spirit of the MFS. The

diagonal terms of the influence matrices can be derived by using the proposed technique. Also, the influence

coefficients by numerical methods are compared with analytical solutions by using separable kernels [1] and
circulants [4] for the circular domain. Finally, a new program of the novel meshless method is constructed

to solve the Laplace problems subject to the Dirichlet, Neumann and mix-type problems. This includes con-

tinuous or discontinuous BCs with the smooth and non-smooth simple and complicated boundaries.
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2. Formulation

Consider a boundary value problem with a potential /(x), which satisfies the Laplace equation as

follows:
Fig. 1.

meshle

(propo
r2/ðxÞ ¼ 0; x 2 D ð1Þ

subject to BCs
/ðxÞ ¼ �/; x 2 B1; ð2Þ

wðxÞ ¼ �w; x 2 B2; ð3Þ

where $2 is the Laplacian operator, D is the domain of the problem. The boundary conditions are described

as following: where wðxÞ ¼ o/ðxÞ
onx

and B1 is the essential boundary (Dirichlet boundary) in which the potential

is prescribed as �/; B2 is the natural boundary (Neumann boundary) in which the normal derivative is pre-
scribed as �w; and B1 and B2 construct the whole boundary of the domain D as well as the outside domain De

as shown in Fig. 1. The real physical problems for the Laplace equation contain potential flow problems,

torsion bar problems, Stokes equations of the vorticity transport equations, etc. By employing the RBF

technique [8,18], the representation of the solution for interior problem can be approximated in terms of

the strengths aj of the singularities sj as
The source point and observation point distributions and definitions of r, h, q, u by using the conventional MFS and the novel

ss method for the interior and exterior problems: (a) interior problem (MFS), (b) exterior problem (MFS), (c) interior problem

sed method), (d) exterior problem (proposed method).



D.L. Young et al. / Journal of Computational Physics 209 (2005) 290–321 293
/ðxiÞ ¼
XN
j¼1

AðiÞðsj; xiÞaj; ð4Þ

wðxiÞ ¼
XN
j¼1

BðiÞðsj; xiÞaj; ð5Þ
where A(i)(sj,xi) is RBF in which the superscript (i) denotes the interior domain, aj are the jth unknown

coefficients (strengths of the singularities), sj is jth source point (singularity), xi is ith observation point,

N is the numbers of source points and BðiÞðsj; xiÞ ¼ oAðiÞðsj;xiÞ
onxi

. The coefficients fajgNj¼1 are determined so that

BC is satisfied at the boundary points, fxigNi¼1. In Fig. 1 the distributions of source points and observation

points are shown for the interior and exterior problems. The descriptions of the terminology of observation

points, source points, field points, collocation points, boundary points, two-point function, off-set bound-

ary and strength of singularity can also be found in [4,6].

By collocating N observation points to match with the BCs from Eq. (4) for Dirichlet problems and Eq.
(5) for the Neumann problems, we have the following linear systems of the form
a1;1 a1;2 � � � a1;N
a2;1 a2;2 � � � a2;N

..

. ..
. . .

. ..
.

aN ;1 aN ;2 � � � aN ;N

2
66664

3
77775 ajf g ¼ AðiÞ� �

ajf g ¼ /
ðiÞn o

; ð6Þ

b1;1 b1;2 � � � b1;N
b2;1 b2;2 � � � b2;N

..

. ..
. . .

. ..
.

bN ;1 bN ;2 � � � bN ;N

2
66664

3
77775 ajf g ¼ BðiÞ� �

ajf g ¼ w
ðiÞn o

; ð7Þ
where
ai;j ¼ AðiÞðsj; xiÞ; i; j ¼ 1; 2; . . . ;N ; ð8Þ

bi;j ¼ BðiÞðsj; xiÞ; i; j ¼ 1; 2; . . . ;N ð9Þ
For the mixed-type problems, a linear combination of Eqs. (6) and (7) is made to satisfy the mixed-type

BCs. After solving the unknown density functions fajgNj¼1 with the linear algebraic solver, the solutions

for the interested domain are calculated from the field equations (4) and (5).

Similarly for the exterior problems, we have
/ðxiÞ ¼
XN
j¼1

AðeÞðsj; xiÞaj; ð10Þ

wðxiÞ ¼
XN
j¼1

BðeÞðsj; xiÞaj; ð11Þ
where the superscript of A(e)(sj,xi) denotes the exterior domain. After collocating N observation points with

the Dirichlet or Neumann BCs, we obtain
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�a1;1 �a1;2 � � � �a1;N

�a2;1 �a2;2 � � � �a2;N

..

. ..
. . .

. ..
.

�aN ;1 �aN ;2 � � � �aN ;N

2
666664

3
777775 ajf g ¼ AðeÞ� �

ajf g ¼ /
ðeÞn o

; ð12Þ

�b1;1 �b1;2 � � � �b1;N
�b2;1 �b2;2 � � � b2;N

..

. ..
. . .

. ..
.

�bN ;1
�bN ;2 � � � �bN ;N

2
666664

3
777775 ajf g ¼ BðeÞ� �

ajf g ¼ w
ðeÞn o

: ð13Þ
Similar procedures as the interior problems are undertaken to obtain the field solutions for the exterior

problems. According to the dependence of the outward normal vectors in the two kernel functions for inte-

rior and exterior problems, their relationships are
AðiÞðsj; xiÞ ¼ �AðeÞðsj; xiÞ; i 6¼ j;

AðiÞðsj; xiÞ ¼ AðeÞðsj; xiÞ; i ¼ j;

(
ð14Þ

BðiÞðsj; xiÞ ¼ BðeÞðsj; xiÞ; i 6¼ j;

BðiÞðsj; xiÞ ¼ BðeÞðsj; xiÞ; i ¼ j:

(
ð15Þ
The chosen RBFs in this study are the double layer potentials in the potential theory and were derived in

Appendix A for the exterior problems or can be found in [4,5] as
AðeÞðsj; xiÞ ¼ nkyk
�r2ij

; ð16Þ

BðeÞðsj; xiÞ ¼ 2
ykylnk�nl

�r4ij
� nk�nk

�r2ij
; ð17Þ
where �rij ¼ jsj � xij, nk is the kth component of the outward normal vector at sj; �nk is the kth compo-

nent of the outward normal vector at xi and yk ¼ xik � sjk. The chosen RBF is a kind of the two-point

function.

It is noted that the double layer potentials have both singularity and hypersingularity at the origin,

which lead to troublesome singular kernels and controversially auxiliary boundary in the conventional
MFS. The off-set distance between the off-set (auxiliary) boundary (B 0) and the real boundary (B) de-

fined by, d, as shown in Figs. 1(a) and (b) needs to be chosen deliberately. To overcome the above-

mentioned drawback, sj is distributed on the real boundary as shown in Figs. 1(c) and (d) by using

the proposed regularization technique. The rationale for choosing double layer potential instead of

the single layer potential as used in the proposed method for the form of RBFs is to take advantage

of the desingularization of the subtracting and adding-back technique, so that no off-set distance is

needed when evaluating the diagonal coefficients of influence matrices as explained in Section 3. The

single layer potential will not be chosen as the form of RBFs, because Eqs. (20) and (21) in Section
3 are not satisfied. If the single layer potential is used, the desingularization of subtracting and add-

ing-back technique will fail.
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3. Derivation of diagonal coefficients of influence matrices for arbitrary domain

When the collocation point xi approaches to the source point sj, Eqs. (4) and (5) will become singular.

Eqs. (4) and (5) for the interior problems need to be regularized by using special treatment of the desingu-

larization of subtracting and adding-back technique [13,17] as follows:
Table

The pr

Kernel

Eigenv

Diagon

Where
/ðxiÞ ¼
XN
j¼1

AðiÞðsj; xiÞaj �
XN
j¼1

AðeÞðsj; xiÞai

¼
Xi�1

j¼1

AðiÞðsj; xiÞaj þ
XN
j¼iþ1

AðiÞðsj; xiÞaj þ
XN
m¼1

AðiÞðsm; xiÞ � AðiÞðsi; xiÞ
" #

ai; xi 2 B; ð18Þ

wðxiÞ ¼
XN
j¼1

BðiÞðsj; xiÞaj �
XN
j¼1

BðeÞðsj; xiÞai

¼
Xi�1

j¼1

BðiÞðsj; xiÞaj þ
XN
j¼iþ1

BðiÞðsj; xiÞaj �
XN
m¼1

BðiÞðsm; xiÞ � BðiÞðsi; xiÞ
" #

ai; xi 2 B ð19Þ
in which
XN
j¼1

AðeÞðsj; xiÞ ¼ 0; xi 2 B; ð20Þ

XN
j¼1

BðeÞðsj; xiÞ ¼ 0; xi 2 B: ð21Þ
In Appendix A, the detail derivations of Eqs. (20) and (21) are given. The original singular terms of

A(i)(si,xi) and B(i)(si,xi) in Eqs. (4) and (5) have been transformed into regular terms ½
PN

m¼1A
ðiÞ

ðsm; xiÞ � AðiÞðsi; xiÞ� and �½
PN

m¼1B
ðiÞðsm; xiÞ � BðiÞðsi; xiÞ� in Eqs. (18) and (19), respectively. In which the

terms of
PN

m¼1A
ðiÞðsm; xiÞ and

PN
m¼1B

ðiÞðsm; xiÞ are the adding-back terms and the terms of A(i)(si,xi) and
B(i)(si,xi) are the subtracting terms in the two brackets for the special treatment technique. After using

the desingularization of subtracting and adding-back technique [13,17], we are able to remove the singular-

ity and hypersingularity of the kernel functions. Therefore, the diagonal coefficients for the interior prob-

lems can be extracted out as:
1

operties of the influence matrices for the Laplace equation

function Aðsj; xiÞ ¼ �yknk
�r2ij

Bðsj; xiÞ ¼ 2yk ylnk�nl
�r4ij

� nk�nk
�r2ij

Exterior Interior Exterior Interior

alue kl tðeÞ0 ¼ 0; tðeÞl ¼ N
2r tðiÞ0 ¼ N

r ; tðiÞl ¼ N
2r dðeÞ0 ¼ 0; dðeÞl ¼ Nl

2r2 dðiÞ0 ¼ 0; dðiÞl ¼ Nl
2r2

Analytical solution: 1
N

PN�1

m¼0

km ¼ Sum of diagonal terms
N ðcircular domain onlyÞ

al value N�1
2r � p

2pr
N

Nþ1
2r � p

2pr
N

NðN�1Þ
4r2 � p2

ð2prN Þ2
NðN�1Þ

4r2 � p2

ð2prN Þ2

Numerical solution (arbitrary domain)PN
k¼1ai;k � ai;i

PN
k¼1ai;k � ai;i �ð

PN
k¼1bi;k � bi;iÞ �ð

PN
k¼1bi;k � bi;iÞ

�rij ¼ jxi � sjj, yk ¼ xik � sjk , �nk denotes the kth components of outward normal vector on xi, respectively.
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Fig. 2. Problem sketch and the nodes distribution (60 nodes) in the case 1.1: (a) problem sketch, (b) nodes distribution, (c) exact

solution.
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Fig. 3. The field solutions by using the conventional MFS (60 nodes) for the case 1.1: (a) d = 0.01, (b) d = 0.5, (c) d = 1.0.
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/i� �
¼

PN
m¼1

a1;m � a1;1 a1;2 � � � a1;N

a2;1
PN
m¼1

a2;m � a2;2 � � � a2;N

..

. ..
. . .

. ..
.

aN ;1 aN ;2 � � �
PN

aN ;m � aN ;N

2
666666666664

3
777777777775

ajf g; ð22Þ
m¼1
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Fig. 4. The field solutions by using the proposed method, BEM and conventional MFS for the case 1.1; (a) /(x, 0), (b) /(0,y).
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In a similar way, the desingularization of subtracting and adding-back technique was applied to the exterior

problems, we then have
/ðxiÞ ¼
XN
j¼1

AðeÞðsj; xiÞaj �
XN
j¼1

AðeÞðsj; xiÞai; ð24Þ
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j¼1

BðeÞðsj; xiÞaj �
XN
j¼1

BðeÞðsj; xiÞai: ð25Þ
After using Eqs. (14) and (15), the diagonal coefficients for the exterior problems can be extracted out

as:
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Fig. 5. The field solutions for the case 1.1 by using the novel meshless method (60 nodes).
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Fig. 6. The error analyses for the case 1.1: (a) relative error with exact solution for entire domain (60 source nodes), (b) norm error (at

radius = 0.5) versus the numbers (N) of nodes.
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Problem sketch and the nodes distribution (60 nodes) in the case 1.2: (a) problem sketch, (b) nodes distribution, (c) exact

n.
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Fig. 8. The field solutions by using the conventional MFS (60 nodes) for the case 1.2: (a) d = 0.001, (b) d = 0.2, (c) d = 0.5.
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Fig. 9. The field solutions, /(2,u), by using the proposed method, BEM and conventional MFS for the case 1.2.
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Fig. 10. The field solution for the case 1.2 by using the novel meshless method (60 nodes).
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The diagonal terms of the two influence matrices for both interior and exterior problems can also be derived

analytically for a circular domain as shown in Appendix B. Table 1 shows the properties of the influence

matrices for both circular and arbitrary domains.
4. Numerical results

In order to show the accuracy and validity of the proposed method, the potential problems with circular,

square and arbitrary domains subject to the Dirichlet, Neumann, and mixed-type problems with continu-

ous and discontinuous BCs are considered. The results will be compared to the solutions obtained by using

the conventional MFS, BEM and exact solutions.

4.1. Example 1: Circular domain cases (cases 1.1 and 1.2)

In cases 1.1 and 1.2, the interior and exterior Dirichlet problems with discontinuous BCs are given. The

interior Dirichlet problem is considered in case 1.1. Case 1.2 is the exterior Dirichlet problem. Both figures

in the following two cases are the results with 60 source nodes.
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Fig. 11. Problem sketch and the nodes distribution (120 nodes) in the case 2.1: (a) problem sketch, (b) nodes distribution, (c) exact

solution.
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4.1.1. Case 1.1: interior Dirichlet problem

Problem sketch and the nodes distribution employing the proposed method are depicted in Figs. 2(a)

and (b), respectively. The problem is subject to Dirichlet discontinuous BC as follows:
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g. 12. The field solutions by using the conventional MFS (120 nodes) for the case 2.1: (a) d = 0.1, (b) d = 0.5, (c) d = 1.0.
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In this case, an analytical solution is found as follows:
Fig. 13

(a) /(x
/ðx; yÞ ¼ 1

p
arctan

1� x2 � y2

2y

� �
: ð29Þ
The exact field solution is plotted in Fig. 2(c). We obtain the results of the field potential solutions by using

the conventional MFS for distributing source points (60 nodes) on the fictitious boundary with different
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off-set distances as depicted in Figs. 3(a)–(c). It is obvious that the relative errors of the conventional MFS

comparing with the exact solution in Fig. 2(c) for d = 0.01 and d = 1.0 are larger than d = 0.5, where d is the

distance between the off-set (auxiliary) boundary (B 0) and the real boundary (B). This illustrates the draw-

back that the location of source is dubious by using the conventional MFS. The comparisons of results by

using the proposed novel method, the conventional MFS (d = 0.5), the BEM, and the analytical solution
are displayed in Fig. 4(a) for /(x,0) and Fig. 4(b) for /(0,y), respectively. The field solution of the present

method is plotted in Fig. 5. The results match the exact solutions very well by using the present meshless

method. To see the sensitivity analysis of the boundary layer effect, the relative error with exact solution in

the interested domain field with 800 inner points is given in Fig. 6(a). Fig. 6(b) shows the norm error of the

numerical results plotted versus number of nodes and displays the changes of norm error at radius = 0.5

with the increase of source nodes N. The norm error is defined as
R 2p
0

j/exactðq ¼ 0:5;uÞ�
/ðq ¼ 0:5;uÞj2 du in Fig. 6(b).
4.1.2. Case 1.2: exterior Dirichlet problem

In this case, we investigate a circular domain with the Dirichlet discontinuous BC given as follows:
�/ð1;uÞ ¼
1; 0 < u < p;

�1; p < u < 2p:

�
ð30Þ
Problem sketch and the nodes distribution using the proposed method are depicted in Figs. 7(a) and (b),

respectively. In this case, an analytical solution is available as following:
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: ð31Þ
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Fig. 14. The field solution of the case 2.1 by using the novel meshless method (120 nodes).



308 D.L. Young et al. / Journal of Computational Physics 209 (2005) 290–321
The exact field solution is plotted in Fig. 7(c). We obtain the results of the field potential solutions by

using the conventional MFS (60 nodes) for different off-set distances to boundary as shown in Figs.

8(a)–(c). The relative errors of the conventional MFS are larger for d = 0.001 and d = 0.5 than

d = 0.2. This clearly illustrates the drawback of the well-known ill-posed influence matrices by using

the conventional MFS. The field results, /(2,u) by using the present novel method, the conventional
MFS (d = 0.2), the BEM and the analytical solutions are plotted in Fig. 9. In Fig. 10 the field solution

of the proposed technique is plotted. The present numerical results are very close to the exact solutions

by using the proposed novel method.
4.2. Example 2: square domain cases (cases 2.1 and 2.2)

In cases 2.1 and 2.2, the interior Dirichlet and mixed-type problems are given for the square domain,

respectively. The two problems considered here are all with discontinuous BCs.
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Fig. 15. Problem sketch and the nodes distribution (120 nodes) in the case 2.2: (a) problem sketch, (b) nodes distribution, (c) exact

solution.
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4.2.1. Case 2.1: interior Dirichlet problem (discontinuous BC)

A square domain (1 · 1) subject to the Dirichlet BC is considered as
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Fig
/ðx; 0Þ ¼ x; /ðx; 1Þ ¼ /ð0; yÞ ¼ /ð1; yÞ ¼ 0: ð32Þ

Problem sketch and the nodes distribution using the proposed method are depicted in Figs. 11(a) and

(b), respectively. An analytical solution is available as follows:
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. 16. The field solutions by using the conventional MFS (120 nodes) for the case 2.2: (a) d = 0.01, (b) d = 0.5, (c) d = 1.0.
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Fig. 17. The field solutions by using the proposed method, BEM and conventional MFS by adding a rigid body term for the case 2.2:

(a) /(x, 0.5p), (b) /(0.5p,y).
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/ðx; yÞ ¼
X1
n¼1

Cn sinhðnpð1� yÞÞ sinðnpxÞ; ð33Þ
where
Cn ¼
2ð�1Þnþ1

ðnpÞ sinhðnpÞ : ð34Þ
The exact field solution is plotted in Fig. 11(c). After distributing 120 nodes, we obtain the results by
using the conventional MFS for different off-set distances to boundary (d) as depicted in Fig. 12, where

d is the off-set distance between the off-set (auxiliary) boundary (B 0) and the real boundary (B). It is

obvious that the relative errors of the conventional MFS comparing with the exact solution in Fig.

11(c) for d = 0.1 and d = 1 are larger than d = 0.5. This illustrates the important fact that the location

of source is vital to the accuracy of the solution by using the conventional MFS. In such a situation, the

conventional MFS does not yield reliable and consistent solutions. The field solutions of / (x, 0.5) and /
(0.5,y) by employing the proposed novel method, the conventional MFS (d = 0.5), the BEM and the

analytical results are plotted in Figs. 13(a) and (b), respectively. The present method predicts the accu-
rate solutions after comparing with the analytical solutions as shown in Fig. 13. Good match is ob-

served from the comparison of the two solutions. Thus the selection of the off-set distances in the

conventional MFS is avoided by adopting the present study. The field solution by using the proposed

method is plotted in Fig. 14.
0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

Fig. 18. The field solution for the case 2.2 by using the novel meshless method (120 nodes).
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4.2.2. Case 2.2: interior mixed-type problem (discontinuous BC)

A square domain (p · p) subject to the mixed-type BC is considered as
Fig. 19

at line
/ðp; yÞ ¼ 1; wðx; 0Þ ¼ /ðx; pÞ ¼ wð0; yÞ ¼ 0: ð35Þ

Problem sketch and the nodes distribution using the proposed method are depicted in Figs. 15(a) and (b),

respectively. An analytical solution is available as follows:
/ðx; yÞ ¼
X1
n¼1

Dn cosh
ð2n� 1Þx

2

� �
cos

ð2n� 1Þy
2

� �
; ð36Þ
where
Dn ¼
4ð�1Þnþ1

ð2n� 1Þp cosh ð2n�1Þp
2

� 	 : ð37Þ
The field solution of the exact solution is plotted in Fig. 15(c). By collocating 120 nodes, we derive the

results by using the conventional MFS for different values of d as obtained in Fig. 16. It is obvious that

the results of the conventional MFS for d = 0.01 and d = 1.0 are larger than d =0.5 after comparing with

the exact solution in Fig. 15(c). The results of /(x, 0.5p) and /(0.5p,y) by using the proposed novel
meshless method, the conventional MFS (d = 0.5), the BEM and the analytical solutions are plotted
. The error analyses for the case 2.2: (a) relative error with exact solution for entire domain (120 source nodes), (b) norm error

ðx; p
2
Þ, (c) norm error at line ðp

2
; yÞ.



Fig. 20. Problems sketches in the case 3: (a) case 3.1, (b) case 3.2, (c) case 3.3.
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in Figs. 17(a) and (b), respectively. The field solution by using the proposed method is plotted in Fig.
18. To investigate the error analysis, we plot Figs. 19(a)–(c). In Fig. 19(a), the relative error with exact

solution in the interested domain with 400 inner points is plotted. Meanwhile Figs. 19(b) and (c) display
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the norm error along line y = p/2 and x = p/2 versus the number N of boundary nodes. The norm errors

are defined as
R p
0
j/exactðx; y ¼ p=2Þ � /ðx; y ¼ p=2Þj2 dx in Fig. 19(b) and

R p
0
j/exactðx ¼ p=2; yÞ�

/ðx ¼ p=2; yÞj2 dy in Fig. 19(b), respectively. The boundary layer effect is observed in Fig. 6(a) for case

1.1 and Fig. 19(a) for case 2.2. When the observation points are calculated, in the proximity of the inte-

rior points to the boundary owing to the singularities of the double layer kernels, the precision would
deteriorate quickly. In order to reduce the boundary layer effect to some extent, the remedy may be to

refine the local source points. This has been verified from Fig. 6(b) for case 1.1 and Figs. 19(b) and (c)

for case 2.2. As the node points are refined the boundary layer effects become less obvious.
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Fig. 21. The nodes distribution (70 nodes): (a) case 3.1, (b) case 3.2, (c) case 3.3.
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4.3. Example 3: arbitrary domain cases (cases 3.1–3.3)

In cases 3.1–3.3, the interior Dirichlet problems with peanut, armor-unit and gear wheel shapes for

more complex boundaries are undertaken. Figs. 20 and 21, respectively, depict the geometry sketch

and the node distributions of these three problems. The BCs and analytical solutions for the chosen
Fig. 22. The exact field solutions: (a) case 3.1, (b) case 3.2, (c) case 3.3.
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problems are also shown in Fig. 20. The three field potential analytical solutions are plotted in Figs.

22(a)–(c), respectively, while Figs. 23(a)–(c) plot the three numerical results by using the proposed no-

vel method. Fig. 23 shows good numerical results are obtained after comparing with the exact

solutions.
Fig. 23. The field solutions by using the novel meshless method (70 nodes): (a) case 3.1, (b) case 3.2, (c) case 3.3.
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5. Conclusions

In this study, we implement a novel meshless method to solve the Laplace problems for arbitrary

domains subject to the Dirichlet, Neumann and mixed-type BCs. Only the boundary nodes on the real

boundary are required. The major difficulty of the coincidence of the source and collocation points in
the conventional MFS is then circumvented. Furthermore, the controversy of the artificial (off-set)

boundary outside the physical domain by using the conventional MFS no longer exists. Although it

results in the singularity and hypersingularity due to using the double layer potential, the finite values

of the diagonal terms for the influence matrices have been extracted out by the proposed desingulariza-

tion technique to regularize the singularity and hypersingularity of the kernel functions. The ill-posed

influence matrices generated by using the conventional MFS are eliminated when using the off-set

boundary far from the real boundary. The numerical results were obtained by using the developed pro-

gram for three category examples with different BCs and shapes of domain. Solutions were compared
very well with the analytical solutions or other numerical methods such as BEM and conventional

MFS.
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Appendix A. The detail derivations of Eqs. (20) and (21)

The null-fields of the boundary integral equations (BIEs) based on the direct method are
0 ¼
Z
B

oUðeÞðs; xiÞ
ons

/ðsÞ dBðsÞ �
Z
B
UðeÞðs; xiÞ o/ðsÞ

ons
dBðsÞ; xi 2 De; ðA:1Þ

0 ¼
Z
B

o
2UðeÞðs; xiÞ
onsonxi

/ðsÞ dBðsÞ �
Z
B

oUðeÞðs; xiÞ
onxi

o/ðsÞ
ons

dBðsÞ; xi 2 De; ðA:2Þ
where the superscript (e) denotes the exterior domain, U is the single layer potential, and is equal to lnð�rijÞ.
Let oUðeÞðs;xiÞ

ons
¼ AðeÞðs; xiÞ; and o2UðeÞðs;xiÞ

onsonxi
¼ BðeÞðs; xiÞ. By employing the simple test method (o/(s)/ons = 0 when

/(s) = 1), we can write Eqs. (A.1) and (A.2) as follows:
Z
B
AðeÞðs; xiÞ dBðsÞ ¼ 0; xi 2 De; ðA:3Þ

Z
B
BðeÞðs; xiÞ dBðsÞ ¼ 0; xi 2 De: ðA:4Þ
When the field point xi approaches the boundary, we can discretize Eqs. (A.3) and (A.4) and as follows:
XN
j¼1

AðeÞðsj; xiÞ‘j ¼ 0; xi 2 B; ðA:5Þ
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XN
j¼1

BðeÞðsj; xiÞ‘j ¼ 0; xi 2 B; ðA:6Þ
where ‘j is the half of distance of the (j � 1)th source point and the (j + 1)th source point. When the distri-

bution of nodes is uniform, we are able to reduce Eqs. (A.5) and (A.6) to the following
XN
j¼1

AðeÞðsj; xiÞ ¼ 0; xi 2 B; ðA:7Þ

XN
j¼1

BðeÞðsj; xiÞ ¼ 0; xi 2 B; ðA:8Þ
where
AðeÞðsj; xiÞ ¼ oUðeÞðsj; xiÞ
ons

¼ nkyk
�r2ij

; ðA:9Þ

BðeÞðsj; xiÞ ¼ o
2UðeÞðsj; xiÞ
ons onxi

¼ 2
ykylnk�nl

�r4ij
� nk�nk

�r2ij
; ðA:10Þ
where �rij ¼ jsj � xij, nk is the kth component of the outward normal vector at sj; �nk is the kth component of

the outward normal vector at xi and yk ¼ xik � sjk. Eqs. (A.7) and (A.8) are Eqs. (20) and (21) in the text of

Section 3; and Eqs. (A.9) and (A.10) are Eqs. (16) and (17) in the text of Section 2.
Appendix B. Analytical derivation of diagonal coefficients of influence matrices for circular domain by using

separable kernels and circulants

By adopting the addition theorem [1], we can expand the two kernels in Eqs. (16) and (17) for exterior

problems and also the corresponding two kernels for the interior problems into separable kernels which

separate the field point, xi, and source point, sj, as follows:
Aðsj; xiÞ ¼ o lnð�rijÞ
or

¼ r � q cosðh� uÞ
r2 þ q2 � 2rq cosðh� uÞ ¼

AðiÞðsj; xiÞ ¼ 1
r þ

P1
m¼1

qm

rmþ1 cosðmðh� uÞÞ; r > q;

AðeÞðsj; xiÞ ¼ �
P1
m¼1

rm�1

qm cosðmðh� uÞÞ; q > r;

8>><
>>:

ðB:1Þ

Bðsj; xiÞ ¼ o
2 lnð�rijÞ
oqor

¼ �2rqþ ðr2 þ q2Þ cosðh� uÞ
ðr2 þ q2 � 2rq cosðh� uÞÞ2

¼
BðiÞðsj; xiÞ ¼

P1
m¼1

mqm�1

rmþ1 cosðmðh� uÞÞ; r > q;

BðeÞðsj; xiÞ ¼
P1
m¼1

mrm�1

qmþ1 cosðmðh� uÞÞ; q > r;

8>><
>>:

ðB:2Þ

where sj = (r,h) and xi = (q,u) in the polar coordinates. The definitions of r, h, q, u for the interior and
exterior problems are plotted in Figs. 1(c) and (d). Since the rotation symmetry is preserved for a circular

boundary, the two influence matrices in Eqs. (6) and (7) are the circulants with the elements
Kij ¼ Kðr; hj; q;uiÞ; ðB:3Þ
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where the kernel K can be A or B in Eqs. (6) and (7) for the interior problems and Eqs. (12) and (13) for the

exterior problems, hj, ui are the angles of source and collocation points, respectively. By superimposing N

lumped strength along the boundary, we have the following influence matrices:
½K� ¼

k0 k1 � � � kN�1

kN�1 k0 � � � kN�2

..

. ..
. . .

. ..
.

k1 k2 � � � k0

2
66664

3
77775; ðB:4Þ
where the elements of the first row can be obtained by
kj ¼ kðr; hj; q; 0Þ; ðB:5Þ

in which u = 0 is assigned without loss of generality. The matrix [K] in Eq. (B.4) is found to be a circulant

since the rotational symmetry for the influence coefficients is considered. By introducing the following bases

for the circulants, I, (CN)
1, (CN)

2, . . . , and (CN)
N � 1, we can expand [K] into
½K� ¼ k0I þ k1ðCN Þ1 þ k2ðCNÞ2 þ � � � þ kN�1ðCN ÞN�1
; ðB:6Þ
where I is an unit matrix and
CN ¼

0 1 0 � � � 0 0

0 0 1 � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

1 0 0 � � � 0 0

2
66664

3
77775

N�N

: ðB:7Þ
Based on the circulant theory [4], the eigenvalues for the influence matrix, [K], are found as follows:
kl ¼ k0 þ k1sl þ k2ðslÞ2 þ � � � þ kN�1ðslÞN�1
; l ¼ 0; 1; 2; . . . ;N � 1; ðB:8Þ
where kl and sl are the eigenvalues for [K] and [CN], respectively. It is easily found that the eigenvalues sl for
the circulant [CN] are the roots for sN = 1 as shown below:
sl ¼ ei
2pl
N ; l ¼ 0; 1; 2; . . . ;N � 1: ðB:9Þ
Substituting Eq. (B.9) into Eq. (B.8), we have
kl ¼
XN�1

m¼0

kmsml ¼
XN�1

m¼0

kmei
2pml
N ; l ¼ 0; 1; 2; . . . ;N � 1: ðB:10Þ
According to the definition for km in Eq. (B.5), we obtain
km ¼ kN�m; m ¼ 0; 1; 2; . . . ;N � 1: ðB:11Þ

Substitution of Eq. (B.11) into Eq. (B.10) it yields
kl ¼
XN�1

m¼0

km cos
2pml
N

� �
; l ¼ 0; 1; 2; . . . ;N � 1: ðB:12Þ
By setting u = 0 without loss of generality, the Riemann sum of infinite terms reduces to the following

integral
kl ¼
1

Dh
lim
N!1

XN�1

KðmDh; 0Þ cosðmlDhÞDh � N
2p

Z 2p

0

cosðlhÞKðh; 0Þ dh; ðB:13Þ

m¼0
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where Dh ¼ 2p
N :

B.1. Interior problem

By employing the separable kernel A(i)(sj,xi) for interior problem (r>q) in Eq. (B.1) and the orthogonal
conditions, Eq. (B.13) reduces to
mðiÞl ¼
N
r ; l ¼ 0;
N
2r ; l ¼ 0; 1; 2; . . . ;N � 1:

(
ðB:14Þ
Similarly, we have
dðiÞl ¼
0; l ¼ 0
N jlj
2r2 ; l ¼ 0; 1; 2; . . . ;N � 1;

(
ðB:15Þ
where mðiÞl and dðiÞl are the eigenvalues of [A(i)] and [B(i)] matrices, respectively. By employing the invariant prop-

erty for the influencematrices, the first invariant is the sum of all the eigenvalues. The diagonal coefficients for

the twomatrices for the interior problem are obtained by adding all the eigenvalues and can be shown below:
Najj ¼
XN�1

m¼0

mðiÞm ðj no sumÞ; ðB:16Þ

Nbjj ¼
XN�1

m¼0

dðiÞm : ðB:17Þ
Hence, the diagonal elements are easily determined from the first invariant as follows:
ajj ¼
N þ 1

2r
� p

2pr
N

; N � 1; ðB:18Þ

bjj ¼
NðN � 1Þ

4r2
� p2

ð2prN Þ2
; N � 1: ðB:19Þ
B.2. Exterior problem

Similarly, we have the diagonal terms of the influence matrices for the exterior problem as follows:
�ajj ¼
N � 1

2r
� p

2pr
N

; N � 1; ðB:20Þ

�bjj ¼
NðN � 1Þ

4r2
� p2

ð2prN Þ2
; N � 1: ðB:21Þ
The properties of the influence matrices for interior and exterior problems are shown in Table 1.
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