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Abstract

A high-order boundary element method for time-harmonic acoustic impedance boundary value problems is presented.

The method is based on the Galerkin-type formulation of the Burton–Miller integral equation (BMIE) with high-order

polynomial basis and testing functions. This formulation has several important advantages: It is free of the interior

resonance problem, the hypersingular integral operator of the traditional BMIE formulation can be avoided, it leads to

faster convergence in terms of the number of unknowns than the low-order methods and it shows a good performance with

iterative solvers. To avoid the numerical difficulties associated to the implementation of the singular surface integral

equations, the singularity extraction technique is applied to evaluate the integrals in the singular and near-singular cases.

The resulting matrix equation is solved iteratively with the generalized minimal residual method (GMRES) and a simple

preconditioner based on the incomplete LU factorization is applied to expedite the convergence. Numerical results indicate

that the BMIE formulation with Galerkin method and high-order basis functions has good convergence properties for

various geometries and boundary conditions on a wide frequency range when the GMRES method is applied to solve the

matrix equation iteratively. This, in turn, indicates that the formulation is well suited for an efficient application of fast

solution procedures, such as the fast multipole method.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Integral equation methods have been widely used to solve various time harmonic acoustic problems. For
open-region problems the boundary element method (BEM) is attractive since the radiation conditions are
automatically satisfied and the dimensionality of the problem is decreased by one. One drawback of the BEM
is that for the exterior acoustic problems the traditional integral equation formulations suffer from the
problem of interior resonances [1]. These frequencies are due only to the numerical method, which has no
unique solution at some eigenfrequencies of the corresponding interior problem. Two methods have been
proposed to remove this non-uniqueness problem. In the first method, the Combined Helmholtz Integral
Equation Formulation (CHIEF) [2,3], a set of interior collocation points are taken as an auxiliary condition to
overdetermine the equations and to make up a deficient condition. However, the number and position of the
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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www.elsevier.com/locate/jsvi


ARTICLE IN PRESS
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points are usually case dependent and difficult to determine for complicated structures [4,5]. In the second
method, Burton–Miller integral equation (BMIE) formulation (also known as Composite Outward Normal
Derivative Overlap Relation (CONDOR)) [6], a linear combination of the Kirchhoff–Helmholtz integral
equation and its normal derivative is applied. The drawback of the BMIE is that it includes a hypersingular
integral operator and special techniques are required to regularize it [7–11]. In Refs. [12–15], Demkowicz and
Oden et al. presented an alternative weakly singular formulation of the BMIE, which is solved with the
Galerkin method and the derivatives of the hypersingular integral operator are transformed from the singular
kernel into non-singular testing and basis functions. The resulting weak form includes only weakly singular
integral operators and complicated regularization schemes can be avoided.

The BEM has two major numerical difficulties. Firstly, the integral kernels are singular as the field point
coincides with the source point. Traditional integration schemes like a Gaussian quadrature usually gives
results that are too inaccurate, leading to ineffective and slowly converging solution. Integration of singular
terms has been considered in the literature by both numerical and (semi-)analytical techniques. Widely applied
numerical techniques are for example Duffy’s method [16] and polar coordinate transformation [17]. Another
approach that can be applied on planar triangular elements is to use the singularity extraction technique
[18,19]. In this method a suitable singular term is extracted from the kernel and integrated analytically.

The second drawback of the BEM is that discretization of an integral equation leads to a dense system
matrix which is expensive to store and solve. A direct solution of such linear system requires OðN3Þ CPU time
and OðN2Þ computer memory, where N is the number of unknowns. These numbers are prohibitively expensive
for large-scale three-dimensional problems. There are several strategies available for high-wavenumber
problems. One possibility is to increase the order of the approximation of the unknown function. In Refs.
[13,14], Demkowicz et al. apply adaptive high-order methods in elastic and acoustic scattering problems. In
Ref. [20] Gennaretti et al. use third-order basis functions and point collocation to solve the BMIE. In Ref. [21]
Harris and Chen apply piecewise polynomial basis functions and Galerkin method for acoustic scattering by
rigid objects. With the high-order basis functions higher accuracy can be obtained with a reduced number of
unknowns [21], but the CPU time and memory requirements are still the same as with the low-order methods.

Another possibility to reduce the computational cost is to solve the matrix equation with iterative methods,
such as the conjugate gradient method [22] or the generalized minimal residual method (GMRES) [23].
Iterative methods typically reduce the CPU time requirement to N iterOðN

2Þ, where N iter is the number of
iterations in which convergence is achieved. In Ref. [24] Amini and Maines apply these Krylov subspace
methods to solve BMIE in two dimensions. In Ref. [25] Chen and Harris study iterative solution of the BMIE
in three dimensions when the point collocation technique was applied to discretize the integral equation. Later
in Ref. [21] the same authors consider iterative solution of the high-order Galerkin discretization of the BMIE
formulation. In Refs. [26,27], Marburg and Schneider compare four different iterative methods for solving
BMIE with discontinuous basis functions. In Ref. [28], the authors apply an improved GMRES method for
solving acoustic scattering problems. However, in some cases iterative solvers may converge rather slowly
leading to a long computing time. A usual technique to expedite the convergence of an iterative solver is
preconditioning [29,30]. In the aforementioned papers several techniques were investigated, including, e.g.
periodic triangular preconditioner [24], one based on operator splitting [25,21], diagonal [26] and incomplete
LU factorization [27].

The CPU time and memory requirements of an iterative solver are, although convergence is achieved in a
relative low number of iterations, still fairly high for dense matrix equations making them impractical for
problems with a very high number of unknowns and additional techniques, so-called fast methods, are
required to further reduce the computational cost. Widely applied fast methods based on speeding up the
calculation of the matrix–vector product of an iterative solver are, e.g. the fast multipole method (FMM) [31],
its multilevel version, multilevel fast multipole algorithm (MLFMA) [32], and the fast Fourier transform-
(FFT) based methods [33,34]. Recent applications of these methods in computational acoustics can be found,
e.g. in Refs. [35–38]. Other approaches to consider high-wavenumber problems, including microlocal
discretization [39] and plane wave basis BEM [40], are presented in Ref. [41] and references therein.

In this paper, some of the aforementioned difficulties of the BEM are addressed in the context of time-
harmonic acoustic impedance boundary value problems. The implementation is based on the Galerkin-type
discretization of the BMIE formulation. The weakly singular weak form of BMIE formulation of Ref. [12] is
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solved with the high-order polynomial basis and testing functions. To avoid numerical difficulties associated
to the implementation of the singular surface integral equations, the singularity extraction technique is applied
to evaluate the integrals of the BMIE formulation in the singular and near-singular cases. Recently, this
method has been generalized for the high-order integral equation methods in Ref. [42] and applied for solving
electrostatic field problems with the high-order basis functions in Ref. [43].

In order to consider problems with a higher number of unknowns, iterative solution of a dense linear system
arising from the high-order Galerkin discretization of the BMIE formulation is studied with the GMRES
method. To expedite the convergence of the GMRES method a simple incomplete LU preconditioner [44] is
developed. Similar preconditioning technique has been applied successfully in the electromagnetic scattering
problems in Refs. [45,46] and also in the acoustic scattering problems [27]. One of the main objectives of this
paper is to demonstrate that the high-order BEM based on the BMIE formulation and discretized via the
Galerkin method is well-conditioned for various boundary conditions and geometries on a wide frequency
range. As a result, the developed formulation leads to rapidly converging iterative solutions and is a very
promising candidate for an efficient application of fast methods, like the MLFMA.
2. Statement of the problem

Consider scattering of time-harmonic acoustic waves by a bounded impenetrable object D in a
homogeneous medium in three dimensions. The time factor is e�iot with the frequency o ¼ 2pf . Let k0 ¼

o=c0 denote the wavenumber of the homogeneous background, where c0 is the speed of sound. Let the object
D be impinged with an incident acoustic wave, let pinc denote the pressure of the incident wave and let psca

denote the pressure of the scattered wave. In the sequel, the exterior of D is denoted by Dext and the surface of
D is denoted by S.

The task is to find psca so that it satisfies homogeneous Helmholtz equation outside D

ðr2 þ k2
0Þp

scaðrÞ ¼ 0; r 2 Dext (1)

and the pressure of the total wave, p ¼ pinc þ psca, satisfies the impedance boundary condition on the surface
of D

qp

qn
ðrÞ ¼ Zðo; rÞpðrÞ þ gðrÞ; r 2 S. (2)

Here Zðo; rÞ ¼ �iorY ðrÞ, r is the density, Y is a complex-valued surface admittance with the positive real part
and g is a given function. In addition, the scattered pressure must satisfy the Sommerfeld radiation condition
at infinity [1]

lim
r!1

r
qpsca

qr
� ik0p

sca

����
���� ¼ 0, (3)

where r ¼ jrj. This exterior boundary value problem has a unique solution for all k0 provided that
ImðZÞp0 [1].
3. Boundary element method

In this section, we introduce the BEM in solving the aforementioned exterior boundary value problem of the
Helmholtz equation.
3.1. Integral equations

Let us begin by defining the following four integral operators at points r 2 Dext

ðSpÞðrÞ :¼

Z
S

Gðr; r0Þpðr0ÞdS0, (4)
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ðKpÞðrÞ :¼

Z
S

qG

qn0
ðr; r0Þpðr0ÞdS0, (5)

ðMpÞðrÞ :¼

Z
S

qG

qn
ðr; r0Þpðr0ÞdS0, (6)

ðNpÞðrÞ :¼
q
qn

Z
S

qG

qn0
ðr; r0Þ pðr0ÞdS0. (7)

Here

Gðr; r0Þ ¼
eik0jr�r

0 j

4pjr� r0j
(8)

is the Green’s function of the homogeneous background and q=qn0 and q=qn denote normal derivatives with
respect to the primed and unprimed coordinates, respectively, with the normal vectors pointing into the
exterior.

The integral representation for the pressure of the sound wave scattered from the object D can be written in
Dext as [1]

pscaðrÞ ¼ ðKpÞðrÞ � S
qp

qn

� �
ðrÞ; r 2 Dext. (9)

By letting r! S, denoting psca ¼ p� pinc, and by rearranging the terms, integral equation (9) on S takes the
form [1]

K�
1

2
I

� �
ðpÞðrÞ � S

qp

qn

� �
ðrÞ ¼ �pincðrÞ; r 2 S. (10)

Here I denotes the identity operator. Since this equation includes two unknowns, p and qp=qn, boundary
condition (2) must be applied to have a relation for the unknowns and to eliminate one of them. Eq. (10) (with
the boundary condition), however, does not give unique solution for all frequencies [1]. This non-uniqueness
problem is known as the problem of interior resonances and it is a purely mathematical problem arising from
the breakdown of the boundary integral formulation rather than from the nature of the physical problem. To
avoid this, BMIE formulation [6] is applied instead of Eq. (10). BMIE is a linear combination of the
Kirchhoff–Helmholtz integral equation (10) and its normal derivative with an appropriate coupling coefficient
b. With the operator notations (4)–(7), the BMIE can be written at points r 2 S as

K�
1

2
I

� �
ðpÞ � S

qp

qn

� �
þ b ðNpÞ � Mþ

1

2
I

� �
qp

qn

� �� �
¼ �pinc � b

qpinc

qn
. (11)

If the coupling coefficient b has a non-zero imaginary part, Eq. (11) with the boundary condition (2) has a
unique solution for all real and positive k [6]. We choose the parameter b as [47,48]

b ¼
2ir; k0 rp

1

2
;

i

k0
; k0 r4

1

2
;

8>><
>>: (12)

where r is the radius of the smallest sphere enclosing the object D. This choice is nearly optimal for a sphere
and it appears to be reasonable for other shapes too.

3.2. Galerkin method

One of the main difficulties in solving Eq. (11) numerically is the numerical calculation of the hypersingular
integral operator N. By moving the derivative with respect to the unprimed coordinate under the integral, we
see that the kernel of N behaves as Oð1=R3Þ, where R ¼ jr� r0j [15], and special regularization techniques are
required to handle this operator [7–11]. These regularization techniques are usually based on the point
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collocation method and on extracting sufficiently many terms from the Green’s function and/or from the
unknown function. In this paper, however, an alternative approach based on the Galerkin method is applied.
Using Galerkin method the derivatives operating on the singular Green’s function can be transferred into non-
singular basis and testing functions and the resulting weak form of the BMIE includes only weakly singular
integral operators [12–15]. This decreases the order of complexity of the method and makes numerical
evaluation of the singular integrals clearly more straightforward and efficient, and no special regularization
techniques are required. Usually Galerkin method is avoided because it requires integration over the surfaces
twice and hence it is computationally more expensive than the point collocation method. On the other hand,
numerical studies have indicated that the (high-order) Galerkin method leads to clearly faster solution
convergence in terms of the number of unknowns than the (constant) point collocation method [21].

3.2.1. Weakly singular weak form of BMIE

Before applying Galerkin method to convert BMIE into a matrix equation, the weak form of Eq. (11)
including only weakly singular integral operators is reviewed. On a closed and smooth surface S, operator N
can be decomposed into two terms as [12,20]

ðNpÞðrÞ ¼ n � r �

Z
S

Gðr; r0Þrot0 pðr0ÞdS0
� �

þ k2
0

Z
S

n � n0Gðr; r0Þpðr0ÞdS0, (13)

where r 2 S and

rot0 p ¼ n0 � r0p. (14)

Vectors n ¼ nðrÞ and n0 ¼ nðr0Þ are the unit normals of S pointing into Dext. Using Eq. (13) BMIE (11) can be
rewritten as

K�
1

2
I

� �
ðpÞ � S

qp

qn

� �
þ b n � r �Sðrot0pÞ þ k2

0Sðn � n
0pÞ

�
� Mþ

1

2
I

� �
qp

qn

� ��
¼ �pinc � b

qpinc

qn
. ð15Þ

The next question is how to consider the curl operator in the third term on the left-hand side of Eq. (15). By
using Galerkin method, i.e. by multiplying Eq. (15) with a (Hölder) continuous testing function v, integrating
over the surface S and then using Stoke’s theorem, the curl term can be written as [12]Z

S

vðrÞn � ðr �Sðrot0pÞÞdS ¼ �

Z
S

rot vðrÞ �Sðrot0pÞdS, (16)

where rot v ¼ n� rv. The right-hand side of Eq. (16) includes only a weakly singular integral operator S.
Thus, by using Galerkin method and Eqs. (13) and (16), the hypersingular operator N can be replaced with
two weakly singular integral operators. Note that the above formula includes only first-order derivatives of the
basis and testing functions, whereas formula (20) in Ref. [20] includes second-order derivatives of the basis
functions. This in turn means that the basis functions must be continuously differentiable in Ref. [20].

Next the boundary condition (2) is applied to BMIE (15). By replacing qp=qn with Zpþ g and by moving all
known quantities to the right-hand side of the equation gives the final form of the integral equation

K�
1

2
I

� �
ðpÞ �SðZpÞ þ b n � r �Sðrot0pÞ þ k2

0Sðn � n
0pÞ � Mþ

1

2
I

� �
ðZpÞ

� �

¼ ðSgÞ � pinc þ b Mþ
1

2
I

� �
ðgÞ �

qpinc

qn

� �
. ð17Þ

For more details and limitations of the above formulation we refer to Refs. [12,49].

3.2.2. Matrix equations

Next we write out the matrix equations of the weakly singular weak form of the BMIE (17). Let the surface
S be divided into flat triangular elements and let the unknown pressure p be expressed by a linear combination
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of continuous basis functions uðqÞn ; n ¼ 1; . . . ;N ðqÞ, [50], defined on these elements as

p ¼
XN ðqÞ
n¼1

anuðqÞn . (18)

Here q ¼ 1; 2 or 3 is the order of a basis function un. In the sequel index q is omitted. The basis functions are
introduced in the appendix. The main reason for using flat elements instead of curved ones, is that for flat
triangular elements the singular parts of the integrals can be calculated in closed form [42]. The formulation of
this paper is general (excluding the singularity extraction technique) and applies on curved elements, too.

A substitution of Eq. (18) into Eq. (17), using Galerkin testing procedure, i.e. using functions um; m ¼

1; . . . ;N; as testing functions, integrating over the surface S, and applying Eq. (16) on the third term on the
left-hand side of Eq. (17) (the term including the curl), gives the following matrix equation:

½Aþ bB�a ¼ bð1Þ þ bbð2Þ, (19)

where a ¼ ½a1; . . . ; aN �
T is the unknown coefficient vector. The elements of the matrices A and B are

Amn ¼

Z
S

umðrÞ

Z
S

qG

qn0
ðr; r0Þunðr

0ÞdS0 dS �
1

2

Z
S

umðrÞunðrÞdS

�

Z
S

umðrÞ

Z
S

Gðr; r0ÞZðr0Þunðr
0ÞdS0 dS, ð20Þ

Bmn ¼ �

Z
S

rot umðrÞ

Z
S

Gðr; r0Þrot0 unðr
0ÞdS0 dS þ k2

0

Z
S

umðrÞ

Z
S

ðn � n0ÞGðr; r0Þunðr
0ÞdS0 dS

�

Z
S

umðrÞ

Z
S

qG

qn
ðr; r0ÞZðr0Þunðr

0ÞdS0 dS �
1

2

Z
S

umðrÞZðrÞunðrÞdS ð21Þ

for all m; n ¼ 1; . . . ;N, and the elements of the vectors bð1Þ and bð2Þ are

bð1Þm ¼

Z
S

umðrÞ

Z
S

Gðr; r0Þgðr0ÞdS0 � pincðrÞdS

� �
, (22)

bð2Þm ¼

Z
S

umðrÞ

Z
S

qG

qn
ðr; r0Þgðr0ÞdS0 þ

1

2
gðrÞ �

qpinc

qn
ðrÞ

� �
dS (23)

for all m ¼ 1; . . . ;N.

3.3. Evaluation of singular integrals

In this section the singularity extraction technique [18,19] is introduced for the numerical evaluation of the
surface integral operators with singular kernels arising from the Galerkin-type discretization of the weakly
singular BMIE. It has been demonstrated, e.g., in Refs. [51,43] that this method clearly improves the accuracy
of the self-interaction terms of the system matrix, and thus, leads to a more stable algorithm than pure
numerical integration, e.g. polar coordinate transform [17] or Duffy’s method [16]. It should be pointed out
that the method also improves the accuracy of the near-singular terms, not only the singular ones. In
particular, the polar coordinate transform and Duffy’s method are not accurate in the near-singular case, i.e.
when the field point is close to the source point, but they do not coincide. In that case usually special
techniques are required to improve the accuracy of the numerical method [52,53].

The idea of the singularity extraction technique is to subtract one or more singular terms from the integral
kernel and integrate them in closed form. This method is originally introduced in Refs. [18,19], where
analytical formulas for singular integrals of order 1=R and 1=R2 times a linear shape function over plane
polygons were presented. In Ref. [54] the method was extended for more general integrals of order
Rn; nX� 2, times a linear vector basis functions in the context of electromagnetic applications so that more
terms can be extracted from the kernel and integrated analytically. In Ref. [42] the method was further
generalized for the high-order polynomial basis functions of arbitrary order.
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Next we briefly consider the singularity extraction technique to evaluate the singular and near-singular
integrals of the present BMIE formulation. For more details we refer to Ref. [42]. We note that the method
presented here differs from the one applied earlier in acoustic problems, since, e.g. in Ref. [55] only the leading
singularity times a constant function is integrated analytically.

The matrix elements in Eqs. (20)–(21) include the following singular integrals:Z
S

Gðr; r0Þwðr0ÞdS0;

Z
S

qG

qn0
ðr; r0Þwðr0ÞdS0 (24)

and Z
S

qG

qn
ðr; r0Þwðr0ÞdS0. (25)

Here the integration domain can be restricted to the support of the function w and w can be a scalar or a vector
function, i.e. w ¼ f un or w ¼ rot un, respectively. Here f ¼ 1; f ¼ n � n0 or f ¼ Z. The kernels of the above
integrals become singular as R ¼ jr� r0j ! 0. On the smooth surface they are weakly singular and behave as
Oð1=RÞ and on the non-smooth surfaces in the vicinity of edges and corners, the kernels of the integrals
including derivatives of G become strongly singular and behave as Oð1=R2Þ.

First the exponential function is expanded as a Taylor series with respect to R, and by using this, we write
the Green’s function as

GðRÞ ¼
1

4p

X1
l¼0

ðikÞl

l!
Rl�1. (26)

Next the Green’s function is decomposed in two terms

GðRÞ ¼ GðRÞ �
1

4p

XL

l¼0;2;...

ðikÞl

l!
Rl�1

 !
þ

1

4p

XL

l¼0;2;...

ðikÞl

l!
Rl�1. (27)

Since the odd terms with respect to l are smooth they can be omitted. The idea is to take L large enough so that
the first term on the right-hand side inside the brackets is sufficiently regular and can be integrated efficiently
with standard numerical methods, e.g. with Gaussian quadrature. The extracted terms, i.e. the components of
the second term on the right-hand side, are such that they can be integrated in closed form over plane
triangles. Usually it is sufficient to extract the first two or three even terms. With L ¼ 4, for example, the
Green’s function is written as

GðRÞ ¼ GðRÞ �
1

4pR
þ

k2 R

8p
�

k4R3

96p

� �
þ

1

4pR
�

k2 R

8p
þ

k4R3

96p
. (28)

As an example, consider calculation of the third term of the matrix A, see Eq. (20). Suppose that the basis
functions are of order q. Since Z is assumed to be constant in each element and the basis functions can be
expressed in terms of the nodal shape functions of the corresponding order, see Eq. (38), we can writeZ

S

Gðr; r0ÞZðr0ÞuðqÞn ðr
0ÞdS0 ¼

XJ

j¼1

Zj

Z
Tj

Gðr; r0ÞN ðqÞnj ðr
0ÞdS0, (29)

where Tj ; j ¼ 1; . . . ; J, are the elements in which the basis function uðqÞn has non-zero values, Zj is the value of Z
in Tj and N

ðqÞ
nj is the qth-order nodal shape function of triangle Tj associated to a nodal point pn. Next writing

the Green’s function as in Eq. (28), the right-hand side of Eq. (29) becomes

XJ

j¼1

Zj

Z
Tj

GðRÞ �
1

4pR
þ

k2R

8p
�

k4R3

96p

� �
N
ðqÞ
nj ðr

0ÞdS0 þ
XJ

j¼1

Zj

Z
Tj

1

4pR
�

k2R

8p
þ

k4R3

96p

� �
N
ðqÞ
nj ðr

0ÞdS0. (30)

Here the first integral is calculated numerically and the second one is calculated analytically with the formulas
given in Ref. [42]. The same procedure applies to the second term of the matrix B in Eq. (21), too, since n � n0 is
constant in Tj .
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Terms including gradient of the Green’s function are considered similarly, by replacing each term in Eq. (28)
with its gradient. Thereafter, the normal derivatives required in Eqs. (24) and (25) are obtained by taking
normal components. Terms including rot un are considered by differentiating the nodal shape functions. Since
the derivatives of the polynomial nodal shape functions are also polynomial, these terms can be integrated as
terms including un.

After the integrals with respect to r0 are evaluated, the integrals with respect to r are usually sufficiently
regular and can be evaluated with standard numerical quadratures. More integration points are required for
small R. Note that if l ¼ �2, r is not allowed to be in the integration domain. These terms appear in
computing the gradient of the Green’s function. Fortunately, the kernel n � rG vanishes for planar elements
when both r and r0 are on the same element. When the field and source points are on the adjacent elements,
which are not in the same plane, this kernel becomes strongly singular as R! 0. In that case the singularity
extraction technique clearly improves numerical efficiency and more accurate results with a lower
computational cost can be obtained, than with pure numerical methods.

Finally, we note that the singularity extraction technique should be applied only when R is small, e.g.
smaller than l=5, where l is the wavelength. For large R the integrands are smooth and can be evaluated with
standard numerical methods. Note also that the method is independent on the location of the points r and r0

and it works similarly in the singular and near-singular cases.

4. Iterative solution and preconditioning

In this section we consider solution of matrix equation (19). Since discretization of an integral equation
leads to a dense linear system, for problems with fairly high number of unknowns, direct methods such as
Gaussian elimination become very expensive with respect to both computing time and memory requirements.
Hence, large systems should be solved with iterative methods, e.g. with Krylov subspace methods [56,22,23].
However, in many cases the convergence of an iterative solver may be rather poor leading to a long computing
time. The convergence rate can be increased by preconditioning.

In this section we present a simple and efficient incomplete LU (ILU) preconditioner for the linear system
arising from the high-order Galerkin discretization of the BMIE formulation. Similar preconditioner has been
applied previously in Ref. [27] with discontinuous basis functions and point collocation.

Let us denote the matrix equation (19) shortly as follows:

Ma ¼ b. (31)

Since the system matrixM is complex and non-symmetric, the generalized minimal residual method (GMRES)
[23] is applied to solve the system iteratively. The GMRES method has been also found to be the most robust
iterative solvers in many exterior acoustic problems [26]. We seek such a preconditioner matrix P that the
system

MP�1 w ¼ b (32)

with a ¼ P�1w leads to a faster convergence with an iterative solver than the original system (31) and P�1 is
cheap to compute and store. The ILU preconditioner is built using the diagonal and nearby terms of M as
follows: First we pick the nearby terms of the matrix M that correspond to topologically close nodes. More
precisely, if nodes i and j belong to the same element then the matrix element Mij is chosen. Let ~M denote the
matrix composed by these elements. This matrix is structurally symmetric and sparse. Next permutation
matrix Q is applied to minimize the fill-in of the LU decomposition. The incomplete LU decomposition
(sparse approximation for the LU decomposition) with the ILUT-algorithm [44] is generated for ~M

QT ~MQ � LU. (33)

The ILUT threshold t is set to value 10�3. The permutation matrix Q is obtained with the Sloan algorithm
[57,58]. Other possibilities are, e.g. reverse Cuthill–McKee and nested dissection algorithms [44]. System (32) is
then solved iteratively with the GMRES method by first solving w from

QTMQ ðLUÞ�1w ¼ QTb (34)
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and then computing a from

a ¼ QðLUÞ�1w. (35)

For N unknowns and for dense matrix equations, both the memory and CPU time requirements of an iterative
solver are still OðN2Þ, making it rather impractical for large problems. In order to further reduce the
computational cost, an iterative solver should be combined with a fast solution procedure, such as the fast
multipole method (FMM).

5. Numerical examples

In this section the developed method is verified by numerical examples. First, acoustic scattering by a sphere
with the impedance boundary condition is considered and the results are validated by making comparisons
with analytical series expansion solutions. Then the convergence of GMRES(25) method (restart after 25
iterations) with and without the ILU preconditioner is studied. In all examples we have set g ¼ 0 in Eq. (2) and
the source of an incident sound wave is generated by a point source at point r0:

pincðrÞ ¼
C

4p
eik0jr�r0j

jr� r0j
, (36)

where C is a constant. The stopping criterion for the GMRES method is

kM̂an � b̂k2

kb̂k2
otol, (37)

where tol is a given error tolerance, M̂ and b̂ are the system matrix and excitation vector of the preconditioned
system (34) (or of the original system (31) if preconditioner is not used) and an is the solution at the nth
iteration step.

5.1. Verification

Consider first acoustic scattering by a sphere with the radius a ¼ p=k0. This radius corresponds to the first
interior resonance of the sphere. The frequency is 1700Hz. The incident wave is generated by a point source at
point ð10 a; 0; 0Þ with C ¼ 1. On the surface of the sphere we apply the Neumann boundary condition
(qp=qn ¼ 0) and the impedance boundary conditions qp=qn ¼ Zp with Z ¼ 10; 10� 10i and Z ¼ 10 000,
respectively. The last case approximates the Dirichlet boundary condition (p ¼ 0).

Fig. 1 shows the angular dependence of the scattered pressure along a circle of radius r ¼ 5a on the ðx; yÞ-
plane. The analytic spherical wave series expansion solutions are included in the figure. In the case Z ¼ 10 000
the analytical solution is obtained with the Dirichlet boundary condition. The figures show that the BMIE
formulation is free of the interior resonances and that the solutions agree well with the analytical ones. The
solutions of Fig. 1 are obtained with 1442 first-order basis functions and the surface of the sphere is divided
into 2880 planar triangles. In all cases the GMRES method with the stopping criterion tol ¼ 10�6 and ILU
preconditioner converged in 10–15 iterations.

5.2. Convergence results

Next we study the convergence of GMRES method with and without the ILU preconditioner more
systematically. The number of iterations depends on many factors such as (see also Ref. [26]):
(1)
 geometry of the object and boundary condition,

(2)
 frequency,

(3)
 excitation,

(4)
 integral equation formulation,

(5)
 basis and testing functions,

(6)
 discretization,
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Fig. 1. Angular dependence of the scattered pressure at a circle of radius 5a for a sphere of radius a ¼ p=k0 with the Neumann boundary

condition ðZ ¼ 0Þ and three impedance boundary conditions. Analytical solutions are denoted by solid lines and numerical solutions are

denoted by circles.
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(7)
 iterative solver and initial guess,

(8)
 preconditioning.
In this section we focus on the effect of items (1), (2), (5) and (8) on the convergence of the GMRES method.
In all cases the initial guess for the GMRES method is a zero vector. In addition, we study the effect of the
coupling parameter b of the BMIE formulation on the convergence rate, too.

Let us begin by considering scattering by a rigid sphere. Radius of the sphere a is varied from 0:01p=k0 to
5p=k0. Table 1 shows the relative L2 error of the numerical solution calculated at 100 points on a circle of
radius r ¼ 5a on the ðx; yÞ-plane when a unit point source ðC ¼ 1Þ is at point ð10a; 0; 0Þ. The discretization is
the same as in the previous section. In addition, Table 1 shows the number of iterations of the GMRES
method required to obtain relative residual error of 10�6 with and without the ILU preconditioner, and the
approximate number of elements per wavelength. For low size parameters k0ao1, i.e. for low frequencies
when the size of the sphere is fixed, the error in the solution is mostly due to the error made in approximating a
sphere with planar triangles. The results show that the preconditioner has a higher effect on the convergence
rate on the high frequencies. However, the differences on the results are rather small and the number of
iterations is almost constant in all considered cases. We may conclude that the BMIE formulation leads to
rapidly converging iterative solutions on a wide frequency range.

Next we study the effect of the coupling parameter b on the convergence rate. Again we consider a rigid
sphere. Table 2 lists the number of iterations with tol ¼ 10�6 and the ILU preconditioner as a function of the
coupling parameter b and the size parameter k0 a. The mesh and basis functions are the same as in the previous
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Table 1

The relative error of the numerical solution, the number of iterations of the GMRES with and without the ILU preconditioner, N iter (ILU)

and N iter, respectively, and the approximate number of elements per wavelength l for a rigid sphere of radius a with 1442 first-order basis

functions

k a=p Error (%) N iter (ILU) N iter Elements=l

1=100 0.38 13 16 2130

1=50 0.38 13 16 1065

1=10 0.37 14 17 213

1=5 0.34 14 17 107

1 0.46 14 18 22

2 0.68 13 19 11

3 0.95 12 18 7

4 1.32 11 19 5.5

5 1.90 11 19 4

Table 2

The number of iterations of the GMRES with the ILU preconditioner as a function of the coupling parameter b ¼ ð0; . . . ; iÞ and size

parameter k0a for a rigid sphere of radius a with 1442 first-order basis functions

ka=p 0 0.002i 0.004i 0.02i 0.04i 0.2i 0.4i 0.6i 0.8i i

1=100 4 13 14 16 18 19 19 20 20 20

1=50 4 12 13 15 16 18 19 19 19 19

1=10 4 9 11 14 15 16 17 17 17 17

1=5 5 8 9 13 15 16 16 16 16 16

1 10 10 11 12 15 19 20 20 20 20

2 18 15 15 12 14 26 31 33 35 35

3 33 24 22 12 13 32 42 45 47 50

4 44 31 26 13 12 32 46 56 60 64

5 57 42 32 13 11 31 49 62 71 78

Table 3

Optimal coupling parameter b suggested by Eq. (12) for various size parameters k0a in the case of a sphere with radius a

k0a=p b

1=100 0.002i

1=50 0.004i

1=10 0.02i

41=10 0.038i
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examples. The (non-zero) values of b are chosen so that they satisfy b ¼ 2ia for radii a ¼ 0:01p=k0; . . . ; 5p=k0.
The results show that at low frequencies, k0 a=po1, the fastest convergence is obtained with b ¼ 0. At higher
frequencies b ¼ 0, however, it is not a proper choice, since it results in the integral equation formulation which
does not have unique solution for all frequencies. For k0a=pX1 the choices b ¼ 0:02i and 0:04i seem to give
the fastest convergence rates. It is also interesting to see that for k0a=pX1 increasing b results in slower
convergence. The values suggested by Eq. (12) and used on the other calculations of this paper are given in
Table 3. The iteration counts corresponding to these values are indicated in Table 2 with boldface.

Then we study convergence of the GMRES method when the number of unknowns is varied. Table 4 lists
the number of iterations as a function of the size parameter k0a and the number of unknowns with
preconditioning. Again we consider a rigid sphere with the first-order basis functions. For comparison Table 5
shows the same results without the preconditioner. These results, together with the results of Table 1, show an
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Table 4

The number of iterations of the GMRES with the preconditioner as a function of k0a=pð¼ 1=100; 1=50; . . . ; 5Þ and number of unknowns

for a rigid sphere of radius a with the first-order basis functions

Unknowns 1=100 1=50 1=10 1=5 1 2 3 4 5

1002 12 12 12 13 13 12 11 11 10

1442 13 13 14 14 14 13 12 11 11

1962 14 14 15 15 15 14 13 12 12

2562 15 15 16 17 16 15 13 12 12

3242 16 16 17 18 17 16 14 13 12

4002 17 17 18 19 18 16 15 13 13

Table 5

The number of iterations of the GMRES without the preconditioner as a function of k0a=pð¼ 1=100; 1=50; . . . ; 5Þ and number of

unknowns for a rigid sphere of radius a with the first-order basis functions

Unknowns 1=100 1=50 1=10 1=5 1 2 3 4 5

1002 14 14 15 16 17 18 18 19 19

1442 16 16 17 17 18 19 18 19 19

1962 17 17 18 19 19 20 19 19 19

2562 18 18 19 20 20 20 19 19 19

3242 19 20 21 21 21 21 20 19 19

4002 21 21 22 22 22 22 20 20 20

Table 6

The number of iterations of the GMRES with the preconditioner as a function of k0l=pð¼ 1=100; 1=50; . . . ; 5Þ and the number of

unknowns for a rigid cube of side length l with the first-order basis functions

Unknowns 1=100 1=50 1=10 1=5 1 2 3 4 5

866 14 15 16 16 15 13 12 12 12

1178 16 16 18 17 16 14 13 13 12

1946 18 18 20 19 18 15 15 14 13

2906 20 20 22 21 20 17 16 15 14

4058 21 22 24 23 21 18 17 16 15

5402 23 24 25 24 23 20 18 17 16

Table 7

The number of iterations of the GMRES with the preconditioner as a function of k0l=pð¼ 1=100; 1=50; . . . ; 5Þ and the number of

unknowns for a rigid cube of side length l with the second-order basis functions

Unknowns 1=100 1=50 1=10 1=5 1 2 3 4 5

866 14 15 16 15 15 13 12 12 12

1538 17 17 18 17 17 15 14 13 13

2402 19 19 20 20 19 16 15 14 14

3458 21 21 22 21 20 18 17 16 15

4706 22 23 24 23 21 19 18 17 16
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important feature of the BMIE formulation: the number of iterations increases very slowly as the number of
unknowns (per wavelength) is increased.

Next we study the effect of increasing the order of the basis functions on the convergence rate of the
GMRES method with preconditioning. We consider a rigid, cube with the side length l and faces parallel to
the coordinate axis. Center of the cube is at the origin and a unit point source is at point ð10l; 0; 0Þ. Tables 6–8
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Table 8

The number of iterations of the GMRES with the preconditioner as a function of k0l=pð¼ 1=100; 1=50; . . . ; 5Þ and the number of

unknowns for a rigid cube of side length l with the third-order basis functions

Unknowns 1=100 1=50 1=10 1=5 1 2 3 4 5

866 14 15 16 15 14 13 12 12 12

1946 17 18 19 19 17 15 14 13 13

3458 20 20 22 21 19 17 16 15 14

5402 22 23 24 23 21 19 18 17 16
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Fig. 2. The back-scattered secondary pressure at point ð5l; 0; 0Þ for various size parameters k0 l with the first-(solid line), second-(dashed

line) and third-(solid line with circles) order basis functions as a function of number of unknowns for a rigid cube of size length l.
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show the number of iterations required to obtain relative residual error of 10�6 as a function of number of
unknowns and the size parameter k0l. The results indicate that the number of iterations is almost the same for
the applied first-, second- and third-order basis functions with the same number of unknowns.

Next we study the effect of increasing the order of the basis functions on the solution accuracy. Fig. 2 shows
the back-scattered pressure at point ð5l; 0; 0Þ as a function of number of unknowns with the first-, second- and
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third-order basis functions for the same rigid cube as in the previous example. The results show that using
high-order basis functions the solution converges more rapidly with respect to the number of unknowns than
when the first-order basis functions are applied. In particular, this is true at high frequencies k0l=p41.

Finally we consider two more irregular objects. The first one consists of two circular cylinders with radii
9.25mm (top), 5mm (bottom) and heights 25mm (top), 15mm (bottom), respectively. The cylinders are
connected by a thin cylindrical tube of radius 0.7mm and height 4mm. The triangularization of the object
(8819 planar triangles) is displayed in Fig. 3 and the number of unknowns with the first-order basis functions
is 4461. A unit point source is at point ð0; 0; 10Þmm. The first three columns of Table 9 list the number of
iterations with and without the preconditioner, for the Neumann boundary condition and for the impedance
boundary conditions Z ¼ 10;�10i; 10� 10i and 10 000, respectively, when the frequency is 20 kHz. At that
frequency the height of the object (44mm) is roughly 2.5 wavelengths. Here tol ¼ 10�6. The last four columns
of Table 9 show the results with the Neumann boundary condition at various frequencies.

Second irregular object is the ‘‘cat’s eye’’ considered earlier, e.g. in Refs. [59,26]. The object is a sphere with
one octant cut out. Radius of the sphere a ¼ 1m and a unit point source is at point ð10a;�10a; 10aÞ.
Triangularization of the object with 4036 planar triangles is displayed in Fig. 4. Tables 10 and 11 show the
number of GMRES iterations with and without ILU preconditioner as a function of boundary condition and
frequency with 2405 (4806 triangles) and 4269 (8534 triangles) first-order basis functions, respectively.
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Table 9

The number of iterations of the GMRES with and without the preconditioner N iter ðILUÞ and N iter, respectively, for the object of Fig. 3

with 4461 first-order basis functions

Z N iter ðILUÞ N iter f (Hz) N iter ðILUÞ N iter Height=l

0 21 31 100 31 60 0.013

10 20 30 500 31 62 0.065

-10i 21 31 1000 32 64 0.13

10-10i 20 30 5000 28 41 0.65

10 000 17 32 10 000 25 37 1.3

Columns 1–3 give the results for various boundary conditions at 20 kHz. Columns 4–6 give the results with the Neumann boundary

condition for various frequencies. The last column shows the height of the object in terms of the wavelength l for various frequencies.
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The last two examples further verify the impression that the BMIE formulation has very good properties
when the matrix equation is solved iteratively with the GMRES method and high convergence rates can be
obtained for various boundary conditions on a broad frequency range, although the results are not as good as
they are in the case of regular objects like a sphere or a cube. The good convergence rates even at (very) low
frequencies imply that the BMIE formulation is not plagued with the problem which is known as the low-
frequency breakdown and which is a serious problem in the surface integral equation methods in
electromagnetics [60]. It is worth noticing that this problem may occur at higher frequencies too if the
discretization of the object includes elements which are very small compared to the wavelength. Very small
elements are required, e.g. if the object under consideration includes tiny details which are important for the
performance of the device and thus, require accurate modelling.

In all considered examples the number of unknowns has been rather low (less than 5500) for a realistic
application of iterative methods, (in all cases we can solve the system with a direct solver in a standard PC),
and the CPU time required to solve the system, as well as time and memory required in building the ILU
preconditioner, are rather small compared to the time required to compute the matrix elements. With the
higher number of unknowns, the number of iterations will play a more crucial role in the total computation
time. In particular, this is the case when iterative methods are combined with fast solution procedures, like the
multilevel fast multipole algorithm (MLFMA), where only the near field terms of the system matrix are



ARTICLE IN PRESS

Table 10

The number of iterations of the GMRES with and without the preconditioner, N iter ðILUÞ and N iter, respectively, for the cat’s eye with

2405 first-order basis functions

Z N iter ðILUÞ N iter f (Hz) N iter ðILUÞ N iter k0a

0 21 28 100 21 27 1.85

10 17 21 250 21 28 4.62

-10i 20 27 500 21 27 9.24

10-10i 16 22 750 20 27 13.86

10 000 13 31 1000 20 28 18.48

Columns 1–3 give the results for various boundary conditions with k0a ¼ p and columns 4–6 give the results with the Neumann boundary

condition for various frequencies. The last column shows the size parameter k0a for various frequencies, where a is the radius of the sphere.

Table 11

The number of iterations of the GMRES with and without the preconditioner, N iter ðILUÞ and N iter, respectively, for the cat’s eye with

4269 first-order basis functions, similarly as in Table 10

Z N iter ðILUÞ N iter f (Hz) N iter ðILUÞ N iter k0a

0 24 35 100 24 31 1.85

10 19 24 250 25 32 4.62

-10i 23 32 500 24 35 9.24

10-10i 19 25 750 24 34 13.86

10 000 14 31 1000 24 35 18.48
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computed with numerical integration and the far field terms are calculated by an approximative scheme. As
the numerical examples clearly show (Tables 4–8), the number of iterations increases very slowly as the
number of unknowns is increased. Our preliminary results with tens of thousands of unknowns (and
MLFMA) have verified this argument.
6. Conclusions

In this paper a high-order boundary element method for solving time harmonic acoustic scattering problems
with the impedance boundary condition is presented. The method is based on the Galerkin-type formulation
of the Burton Miller integral equation (BMIE) with continuous high-order basis and testing functions. With
the Galerkin method the hypersingular operator of the traditional BMIE formulation can be avoided, thus
making the numerical implementations more efficient and straightforward than with the point collocation
method. The singular and near-singular integrals of the BMIE formulation are evaluated with the singularity
extraction technique. By this method the near interaction terms of the system matrix are evaluated with a high
accuracy, thus leading to a more stable and robust method than by using pure numerical integration
quadratures (e.g. polar coordinate transform).

The resulting matrix equation is solved iteratively with the restarted version of the GMRES algorithm. A
simple ILU preconditioner is developed to speed up the convergence and to reduce the number of
required iterations. Several numerical examples demonstrate the good properties of the BMIE formulation
with iterative solvers and the efficiency of the preconditioner. The BMIE with the Galerkin method and
high-order basis functions leads to rapidly converging iterative solvers for various boundary conditions
and geometries on a broad frequency range. Hence, the BMIE formulation is well suited for an efficient
application of fast methods, like the MLFMA. Also the developed ILU preconditioner would be directly
available in the MLFMA implementations since it is built using only the nearby terms of the system
matrix.
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Appendix Basis functions

In this appendix we introduce the applied high-order basis functions. We use node-based basis functions.
The first-, second- and third-order basis functions are defined so that they are polynomials of the
corresponding order and they have value one at one node point of the mesh and zero on the other points. In
addition, the basis functions are defined so that they are continuous over the element boundaries. The basis
functions of order q associated to a node point pn can be represented at a point r on the surface as follows:

uðqÞn ðrÞ ¼
XJ

j¼1

N
ðqÞ
nj ðrÞ, (38)

where N
ðqÞ
nj is the nodal shape function of order q associated to the node point pn and defined on an element Tj.

Here J is the number of elements in which the basis function uðqÞn is non-zero. Note that the nodal shape
functions are non-zero only on one single element and, thus, the basis functions on each element are defined by
the nodal shape functions of that element only.

The node points for the first-, second- and third-order shape functions N ð1Þ;N ð2Þ and N ð3Þ are displayed in
Figs. 5–7, respectively. In addition, the second- and third-order nodal shape functions can be defined,
respectively, on a plane triangle in terms of the first-order shape functions N

ð1Þ
1 ;N

ð1Þ
2 and N

ð1Þ
3 by [50, p. 2.125]

N
ð2Þ
2n�1 ¼ 2N ð1Þn ðN

ð1Þ
n �

1
2
Þ,

N
ð2Þ
2n ¼ 4N ð1Þn N

ð1Þ
nþ1 ð39Þ
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3

Fig. 5. An element with linear shape functions.
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Fig. 6. An element with second-order shape functions.
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and

N
ð3Þ
3n�2 ¼

1
2
ð3N ð1Þn � 1Þð3N ð1Þn � 2ÞN ð1Þn ,

N
ð3Þ
3n�1 ¼

9
2
N ð1Þn N

ð1Þ
nþ1ð3N ð1Þn � 1Þ,

N
ð3Þ
3n ¼

9
2
NnN

ð1Þ
nþ1ð3N

ð1Þ
nþ1 � 1Þ,

N
ð3Þ
10 ¼ 27N

ð1Þ
1 N

ð1Þ
2 N

ð1Þ
3 ð40Þ

for n ¼ 1; 2; 3. Here we have omitted the element numbers and N
ð1Þ
4 ¼ N

ð1Þ
1 .
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