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Abstract

The model of the ideal linear hysteretic damper has been shown to possess a non-causal impulse response precursor.

However, the relevant characteristics of the impulse response precursor (its extremum, monotonicity, and asymptotic

property) were not well comprehended in the literature. In this paper, an impulse response precursor expression was

derived. It was observed that the impulse response precursor achieves its only extremum, which is negative, at the origin.

The impulse response precursor monotonically increases from this extremum to zero while time retraces to the negative

infinity. The asymptotic rate of impulse response precursor approaching zero is O(1/t). The non-causal size gets stronger as

the loss factor increases. Numerical computation also shows that the non-causal extremum is even deeper than the first

trough of the causal portion of the impulse response when the loss factor is greater than 0.77.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

A linear viscous damping model is theoretically the simplest. This model assumes that the energy loss per
cycle of vibration is proportional to the vibration frequency. A more general damping model assumes that the
energy loss per cycle varies with the vibration frequency [1]. Experiments have shown that its simplest form, a
frequency-independent model, could cover the damping property of many materials. This frequency
independent model, or ‘‘rate-independent’’ damping model, has alternative names such as linear hysteretic
damping, structural damping, material damping, complex stiffness, and internal damping. In addition,
Crandall introduced the concept of the band-limited hysteretic damper, so he called the conventional whole
band rate-independent damper the ideal linear hysteretic damper [2].

While the rate-independent damping model looks simple in the frequency domain, it has an unusual
characteristic in the time domain which has puzzled scientists for a long time. The characteristic in question is
the non-causal response of the model to the impulse, i.e., the system reacts before the impulse is applied to
the system. It is known as the impulse response precursor and has been confirmed [3–9] and stressed over and
over [10–13].
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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A real world physical system must be causal and stable. One philosophy, to avoid the non-causality,
replaces the rate-independent damping model with a revised one. Makris had developed this kind of model
[14], although the new model’s stiffness was no longer a constant.

A second philosophy is to just ignore the impulse response precursor, which is achieved either implicitly or
explicitly. For example, if the impulse response function is used explicitly, the impulse response precursor
simply is designated as zero. Generally, the impulse response function is used implicitly in a frequency domain
analysis, and it was shown that the contribution from non-causality is minor for a lightly damped system and
can be neglected from a practical point of view [15]. In particular, for the lightly damped systems which
frequently occur in engineer structural analysis, the differences in magnification factors between the
rate-independent damping model and the equivalent viscous damping model are shown not to be significant
[16]. Approximating the hysteretic damping matrix with a viscous matrix was studied systematically by
Henwood [12].

Overtly, the hypothesis of the second philosophy is that the impulse response precursor must be small
compared to the causal portion, and the impulse response precursor must attenuate to zero while time
approaches the negative infinity. Crandall [17] showed that for a lightly damped system, via Taylor’s
expansion and elegant integral manipulation, this hypothesis is true in the first-order approximation.
However, to the authors’ knowledge, a systematic analysis was not available in literature.

Interestingly, several numerical simulations are consistent with this hypothesis that impulse response
precursor attenuates to zero with time approaching the negative infinity. Nevertheless, the numerical approach
is not always amenable, for example the results shown by Gaul et al. [3] conflicted with others. In Fig. 4 of
their paper, the computational impulse response precursor with a loss factor 0.05 is not monotonic, and the
minimum is not at the origin either.

In this paper, an impulse response precursor expression is derived, which is achieved by applying the residue
theorem and the contour integration. This expression benefits the impulse response precursor sketch analysis.
It was uncovered that the impulse response precursor does achieve only one extremum at the origin and does
monotonically decrease with negative time. The impulse response precursor is negative and approaches zero at
the rate O(1/t). The non-causal degree aggravates as the loss factor increases. Moreover the numerical
computation shows that the non-causal extremum is deeper than the first trough of the causal portion for a
large loss factor.
2. Retrieving the impulse response precursor

The physical model of an ideal linear hysteretic damper originates from the vibrator damped by a frictional
force (see Ref. [18] and references therein), which is nonlinear. The ideal linear hysteretic damper is a linear
system with the frequency response function as follows:

HðjoÞ ¼ ½mðjoÞ2 þ kð1þ jZ signoÞ��1, (1)

where m, k are system mass and stiffness, respectively, and Z40 is the loss factor.
While Eq (1) looks simple in the frequency domain, its equivalent ordinary differential is not so

straightforward, which has fascinated scientists working on this topic for a long time. The current consensus is
this has been solved by using integro-differential equations [6,8,19–21]. For the ideal linear hysteretic
damping, the integro-differential portion degenerates to the Hilbert transform, which was discovered by
Inaudi and Kelly [6] and Chen and You [8]. This also indicates that the hysteretic damping model does possess
a time-invariant system, but the system order is infinite.

Now we turn to the unitary impulse response function (UIRF) h(t), which is the inverse Fourier transform
of the frequency response function H(jo):

hðtÞ ¼
1

2p

Z þ1
�1

HðjoÞexpðjotÞdo. (2)

The non-causality, i.e., h(t) in Eq (2) is non-zero for tp0, had been proved in literature. In Ref. [3], it is
based on two facts. First, because H(jo)p(jo)�2 as |o|-N, h(t) is continuous. Second, h(0) 6¼0. In light of
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these two facts, and the property of a continuous function [22], there exists a neighboring interval around
t ¼ 0, over which h(t) is not zero. The non-zero portion before t ¼ 0 is the impulse response precursor.

In the ensuing impulse response precursor property study, we use contour integration and residue theory.
First, the frequency response function needs to be extended into a transfer function. This is obtained
via substituting jo in Eq (1) with complex s ¼ jo+s. On the complex plane depicted in Fig. 1, the transfer
function is

HðsÞ ¼ m�1 o2
n þ s2 þ jZo2

nsign½ImðsÞ�
� ��1

, (3)

where on ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
is the circular natural frequency without damping.

Second, we need the transfer function poles, which are given by the roots of the denominator

o2
n þ s2 þ jZonsign½ImðsÞ�on ¼ 0. (4)

Eq. (4) has two and only two roots as follows:

s1 ¼ ðjm� lÞon; s2 ¼ ð�jm� lÞon, (5)

where

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z2

p
þ 1Þ=2

q
; l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z2

p
� 1Þ=2

q
. (6)

It must be stressed that the system has only the above two poles, not four poles as claimed in some
literature. These two poles are symmetrical to the imaginary axis and both are stable. Nonetheless, the stability
of the whole system is equivocal [13].

When we consider the precursor, which is defined over the negative time, the integral contours are chosen on
the upper half complex plane. This is depicted in Fig. 1, Co-CR-Cd and C�o-C�R-C�d. The reason of
choosing Cd and C�d is because H(s) is not analytical along Re(s) ¼ 0.

Now consider the right contour Co-CR-Cd. Since it lies in the analytical domain and does not encircle
any pole, in light of the residue theorem, the following equation holds:Z

Co

HðsÞ expðstÞdsþ

Z
CR

HðsÞ expðstÞdsþ

Z
Cd

HðsÞ expðstÞds ¼ 0. (7)

On the upper half-complex plane, the second term will vanish as the radius R of the arch CR approaches
infinity. This is because the integrand |H(s)exp(st)|p|H(s)| ¼ O(R�2) as R-N.

Now while d-0 and R-N, the first term and third term become asZ
Co

HðsÞ expðstÞds ¼ j

Z 1
0þ

HðjoÞ expðjotÞdo, (8)
2
jz ωnλμ )( −−=

1
jz ωnλμ )( −=

jω

σ

−δ δ

Cω

CR

Cδ

C−δ

C−ω

C−R

Fig. 1. Sketch of integration contour.
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Z
Cd

HðsÞ expðstÞds ¼

Z 0

1

Hðsþ j0þÞ expðstÞds. (9)

Note that the low integral bound in Eq. (8) is 0+, which excludes 0 intentionally, since H(s) is not analytical
at s ¼ 0. In light of above argument, we have

j

Z 1
0þ

HðjoÞ expðjotÞdoþ
Z 0

1

Hðsþ j0þÞ expðstÞds ¼ 0. (10)

For the left contour Co-CR-Cd, in the same vein, we have

j

Z 0�

1

HðjoÞ expðjotÞdoþ
Z 1
0

Hðsþ j0�Þ expðstÞds ¼ 0. (11)

Adding Eqs. (11) and (12), we have

j

Z 1
0þ

HðjoÞ expðjotÞdoþ
Z 0�

1

HðjoÞ expðjotÞdo
� �

�

Z 1
0

½Hðsþ j0þÞ �Hðsþ j0�Þ� expðstÞds ¼ 0. ð12Þ

The integral contour of Eq. (2) is along the imaginary axis from negative infinity to positive infinity. Since
H(jo) owns the first class discontinuity at o ¼ 0, we have

R 0þ
0� HðjoÞ expðjotÞdo ¼ 0. This means that the

result of the first square bracket is nothing but 2ph(t). Thus

hðtÞ ¼
1

2pj

Z 1
0

½Hðsþ j0þÞ �Hðsþ j0�Þ� expðstÞds. (13)

Substituting Eq. (3) into Eq. (13) yields

hðtÞ ¼ �
Z

pmon

IðtÞ, (14)

where

IðtÞ ¼ o3
n

Z 1
0

exp ðstÞ

ðo2
n þ s2Þ2 þ Z2o4

n

ds ¼
Z 1
0

exp ðsontÞ

ð1þ s2Þ2 þ Z2
ds. (15)

The above discussion is for to0. The causal part for tX0 has been obtained in Ref. [3]. Combining these
together yields

monhðtÞ ¼

�
Z
p

IðtÞ; to0;

expð�lontÞ

m2 þ l2
½m sinðmontÞ � l cosðmontÞ� þ

Z
p

Ið�tÞ; tX0;

8>><
>>: (16)

Bonisoli and Mottershead [23] had given similar argument in lieu of complex-damped system.

2.1. Remarks

Generally, the causality of a model with complex forms of damping is not always easy to decide. The above
argument infers a corollary for determining the causality of a stable system. That is, if a stable system satisfies
that: (1) its transfer function is analytical on the upper half-complex plane; (2) H(s)’s attenuating rate is greater
than |s|�1 while |s|-N, then this system is causal.

In addition, if the transfer function of a stable system is not analytical in the upper half-plane, the non-
analytic nature is very likely a first class discontinuity, since a stable system cannot have any poles on the
upper half-plane. If the contour integral is employed to study the causality, the contour segments had better be
allocated parallel to the two sides of the discontinuity.
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3. Impulse response precursor properties

In light of Eq. (14), we can immediately conclude that the impulse response precursor achieves the minimum
at t ¼ 0, which is also the only one impulse response precursor extremum. Naturally, this extremum indicates
the non-causal size. Its exact value had been given as follows [3,17]:

monhð0Þ ¼ �
l

2ðl2 þ m2Þ
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z2

p
� 1

8ð1þ Z2Þ

s
. (17)

In Fig. 2 it is shown that the size of this impulse response precursor extremum monotonically increases with
Z. For a large Z, h(0) is significantly different from zero, for example, monh(0)E�0.1609 for Z ¼ 1. The dash
line depicts �Z/4, which is a good approximation when Z2 is small [3].

For a specified Z, Eq. (14) also shows that the impulse response precursor monotonically decreases as time
develops, and is always negative. Towards the negative time direction, the impulse response precursor
approaches zero at the rate O(t�1). This can be argued as follows:

IðtÞ ¼

Z 1
0

expðsontÞ

ð1þ s2Þ2 þ Z2
dsp

Z 1
0

expðsontÞds ¼
1

ont
. (18)

Both the non-causal portion and causal portion use I(t), but it is difficult to work out a closed-form I(t), if
not impossible. Therefore, we have to make use of a numerical approach. The upper integral bound of I(t) is
infinite, but both exp(sont) and [(1+s2)2+Z2]�1 attenuates to zero as s approaches infinity. Hence, the infinite
bound can be truncated to be a finite bound provided that the finite bound is large enough. For a given finite
bound b, I(t) is more infectious at a time close to the origin.

To inhibit the error due to truncating the infinite bound, the contribution outside the interval [0,b]
can be approximately modeled by some tricks. For a large b, [(1+s2)2+Z2]�1over [b,N] can be approximated
as s�4, so Z 1

b

exp ðsontÞ

ð1þ s2Þ2 þ Z2
ds �

Z 1
b

exp ðsontÞ

s4
ds ¼

1

b3
E4ð�bontÞ. (19)

Here Ek(x) is the exponential integral as

EkðxÞ ¼

Z 1
1

exp ð�xsÞ
sk

ds. (20)

In brief, I(t) can be approximated as

IðtÞ �

Z b

0

expðsontÞ

ð1þ s2Þ2 þ 4Z2
dsþ

1

b3
E4ð�bontÞ. (21)
0 0.2 0.4 0.6 0.8 1
-0.25

-0.2

-0.15

-0.1

-0.05

0

η

Fig. 2. Non-causal degree depending on the loss factor. Here the solid line stands for monhð0Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z2

p
� 1Þ

.
8ð1þ Z2Þ

r
, and the

dash line stands for �Z/4.



ARTICLE IN PRESS

-2 -1.5 -1 -0.5 0
-0.18

-0.12

m
�

nh
(t

)

�nt/(2�)

-0.06

0

Fig. 3. Impulse response precursors for five loss factors. Here, symbols stand for (– � – � –) Z ¼ 0.01; (——) Z ¼ 0.05; (– – –) Z ¼ 0.1; (yy)

Z ¼ 0.5; and (– � � –) Z ¼ 1. The computational parameters are b ¼ 10 and Db ¼ 0.01.

hp h2

h1

1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

η

h(t)

R
el

at
iv

e 
D

ep
th

 o
f 

th
e

Pr
ec

ur
so

r 
an

d 
th

e 
Fi

rs
t T

ro
ug

h

Fig. 4. Size comparison among the impulse response precursor, the first causal peak, and the first trough. Here, the solid line and dash line

stand for h2/h1 and hp/h1, respectively.

K.-F. Chen, S.-W. Zhang / Journal of Sound and Vibration 312 (2008) 576–583 581
The first term can be obtained by a normal numerical integration. Computing the second term, the
exponential integral, is discussed in detail in Ref. [24].

Shown in Fig. 3 are computational results for five typical cases of Z. The numerical integration for the first
term is the Simpson’s rule with the computational parameters listed in the figure. For the employed parameter,
b ¼ 10, the contribution of the second term of Eq. (21) is very small.

The computed impulse response precursors are consistent with the aforementioned qualitative properties:
being negative, achieving the extremum at time zero, and monotonically approaching zero as time progresses
towards minus infinity.

To delineate the non-causal degree, the ratio of the non-causal extremum to the highest peak of the causal
portion is plotted in Fig. 4. The causal portion is computed from Eq (17), and the computational parameter
and algorithm are the same as those used to generate data (Fig. 3).

As the loss factor Z increases, the precursor size hp increases monotonically (also see Fig. 4), and the first
peak h1 decreases monotonically. These two trends lead that the ratio hp/h1 increases almost linearly, and hp/h1
can be as high as around 1/3 for Z ¼ 1. Also shown is h2/h1, the ratio of the first trough depth to the first peak
h1. h2/h1 decreases monotonically as Z. When ZE0.77, h2/h1 is about the same as hp/h1. When Z is transgresses
over this point, the non-causal precursor is even deeper than the first trough.

These features demonstrate that for a larger loss factor, the non-causal portion is significant, and cannot be
ignored. A viscous substitution is not defendable for this case.

It was argued that _hð0þÞ ¼ ð3pþ 2 tan Z�1Þ=ð4mpÞ, but for a causal system _hð0þÞ ¼ m�1, which infers that
the unitary pulse is transferred to the system, and the system obtains velocity as m�1. However, for the ideal
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hysteretic damper, it is easy to verify that _hð0þÞ � _hð0�Þ ¼ m�1, which implies that the unitary pulse changes
the system velocity by m�1.

4. Summary

The ideal linear hysteretic damper possesses a non-causal impulse response precursor, which was proved
theoretically and confirmed numerically. For most numerical simulations, impulse response precursor achieves
minimum at time zero, and approaches zero monotonically when time approaches negative infinity.
A hypothesis for ignoring the non-causal portion necessitates that these properties had to be proved
theoretically.

In this paper, an impulse response precursor expression was derived in light of the residue theorem. Based
on this expression, it can be argued theoretically that the impulse response precursor achieves the extremum at
time zero, and its size monotonically decreases towards zero and the negative time direction. The impulse
response precursor is negative and approaches zero by the rate O(1/t). The non-causal size becomes larger as
the loss factor increases. Numerical computation was used to show that the non-causal extremum is deeper
than the first trough of the causal portion when the loss factor is greater than 0.77.
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