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Abstract

Based on the analytical solution to the problem of a constant discontinuity in displacement over a finite line segment

in the x, y plane of an infinite elastic solid and the note of the crack tip element by Crouch, in the present paper, the

special crack tip displacement discontinuity element is developed. Further the analytical formulas for the stress intensity

factors of crack problems in general plane elasticity are given. In the boundary element implementation the special

crack tip displacement discontinuity element is placed locally at each crack tip on top of the non-singular constant

displacement discontinuity elements that cover the entire crack surface. Numerical results show that the displacement

discontinuity modeling technique of a crack presented in this paper is very effective.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Among several elastic two-dimensional crack modeling strategies by the boundary element method,

there exist the multi-domain formulation (Blandford et al., 1981), the stress formulation with regularization

(Balas et al., 1989), and the dual boundary element method (Hong and Chen, 1988; Portela and Aliabadi,
1992). For each formulation, options are available such as building in the crack tip stress singularity

(Tanaka and Itoh, 1987), using the quarter-point boundary element (Blandford et al., 1981), and strate-

gically refining the near-crack-tip non-singular element. Further details on elastic crack analysis by the

boundary element method are given in (Cruse, 1989; Aliabadi and Rooke, 1991).

Even though much achievement has been made in crack modeling techniques, both simple and practical

crack modeling technique is still needed, in particular for complex multiple crack growth problems

(Cotterel and Rice, 1980; Khan and Paul, 1988). The displacement discontinuity method (Scouch et al.,

1983), as a boundary element method, is very well used to analyze the crack problems in plane elasticity
because, physically, one may imagine a displacement discontinuity as a line crack whose opposing surfaces

have been displaced relative to one another. Based on the analytical solution (Scouch, 1976; Scouch et al.,

1983) to the problem of a constant discontinuity in displacement over a finite line segment in the x, y plane
of an infinite elastic solid and the note of the crack tip element, in the present paper, the special crack tip

displacement discontinuity elements are developed to compute the stress intensity factors of crack problems

in general plane elasticity. In the boundary element implementation the special crack tip displacement
0093-6413/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
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discontinuity element is placed locally at each crack tip on top of the ordinary non-singular displacement

discontinuity elements that cover the entire crack surface. Numerical results show that the displace-

ment discontinuity modeling technique of a crack presented in this paper is very effective.
2. Theoretical foundation of constant displacement discontinuity method

The problem of a constant displacement discontinuity over a finite line segment in the x, y plane of an

infinite elastic solid is specified by the condition that the displacements be continuous everywhere except

over the line segment in question. The line segment may be chosen to occupy a certain portion of the x axis,
say the portion jxj < a, y ¼ 0. If we consider this segment to be a line crack, we can distinguish its two

surfaces by saying that one surface is on the positive side of y ¼ 0, denoted y ¼ 0þ, and the other is on the
negative side, denoted y ¼ 0�. In crossing from one side of the line segment to the other, the displacements

undergo a constant specified change in value Di ¼ ðDx;DyÞ.
The displacement discontinuity Di is defined as the difference in displacement between the two sides of

the segment:
Dx ¼ uxðx; 0�Þ � uxðx; 0þÞ

Dy ¼ uyðx; 0�Þ � uyðx; 0þÞ
ð1Þ
Because ux and uy are positive in the positive x and y coordinate directions, it follows that Dx and Dy are

positive as illustrated in Fig. 1.

The solution to the subject problem is given by Scouch (1976). The displacements and stresses can be

written as
ux ¼ Dx½2ð1� mÞf;y � yf;xx� þ Dy ½�ð1� 2mÞf;x � yf;xy �

uy ¼ Dx½ð1� 2mÞf;x � yf;xy � þ Dy ½2ð1� mÞf;y � yf;yy �
ð2Þ
and
rxx ¼ 2GDx½2f;xy þ yf;xyy � þ 2GDy ½f;yy þ yf;yyy �

ryy ¼ 2GDx½�yf;xyy � þ 2GDy ½f;yy � yf;yyy �

rxy ¼ 2GDx½f;yy þ yf;yyy � þ 2GDy ½�yf;xyy �

ð3Þ
Fig. 1. Schematic of constant displacement discontinuity components Dx and Dy .
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Function f ðx; yÞ in these equations are
f ðx; yÞ ¼ �1

4pð1� mÞ y arctan
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and its derivatives are given as follows:
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ð5Þ
G and v in these equations are shear modulus and the Poisson’s ratio, respectively.

Eqs. (2)–(5) are used by Scouch et al. (1983) to set up a constant displacement discontinuity boundary

element method.
3. Basic formulas required to set up higher displacement discontinuity element

Now, consider arbitrary displacement discontinuity distributions along element length 2a, as shown in

Fig. 2:
Di ¼ DiðnÞ ði ¼ 1; 2Þ ð6aÞ

or
Dx ¼ DxðnÞ
Dy ¼ DyðnÞ

ð6bÞ
Based on the solution of constant discontinuity in displacement given by Scouch (1976), i.e., formulas (2)–

(5), the displacements and stresses at domain point ðx; yÞ due to a differential element (with length 2dn and

the center (source point)) displacement discontinuity can be obtained from the differential viewpoint:
dux ¼ DxðnÞ½2ð1� mÞT3ðx; y; n; dnÞ � yT5ðx; y; n; dnÞ� þ DyðnÞ½�ð1� 2mÞT2ðx; y; n; dnÞ � yT4ðx; y; n; dnÞ�
duy ¼ DxðnÞ½ð1� 2mÞT2ðx; y; n;dnÞ � yT4ðx; y; n; dnÞ� þ DyðnÞ½2ð1� mÞT3ðx; y; n; dnÞ � yT5ðx; y; n; dnÞ�

ð7Þ



Fig. 2. Schematic of an arbitrary displacement discontinuity function and its differential element.
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and
drxx ¼ 2GDxðnÞ½2T4ðx; y; n; dnÞ þ yT6ðx; y; n; dnÞ� þ 2GDyðnÞ½�T5ðx; y; n; dnÞ þ yT7ðx; y; n; dnÞ�
dryy ¼ 2GDxðnÞ½�yT6ðx; y; n; dnÞ� þ 2GDyðnÞ½�T5ðx; y; n; dnÞ � yT7ðx; y; n; dnÞ�
drxy ¼ 2GDxðnÞ½�T5ðx; y; n; dnÞ þ yT7ðx; y; n;dnÞ� þ 2GDyðnÞ½�yT6ðx; y; n; dnÞ�

ð8Þ
Functions T2, T3, T4, T5, T6, T7 in these equations are given by
T2ðx; y; n; dnÞ=dn ¼ V2ðx; y; nÞ ¼ � 1
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ð9Þ
Obviously, if the following integrals are obtained
Uijðx; yÞ ¼
Z a

�a
DjðnÞViðx; y; nÞdn ði ¼ 2; 3; . . . ; 7; j ¼ 1; 2Þ ð10Þ
then the displacements and stresses at domain point ðx; yÞ due to the whole element displacement dis-

continuity can be written as
ux ¼ ½2ð1� mÞU3xðx; yÞ � yU5xðx; yÞ� þ ½�ð1� 2mÞU2yðx; yÞ � yU4yðx; yÞ�
u ¼ ½ð1� 2mÞU ðx; yÞ � yU ðx; yÞ� þ ½2ð1� mÞU ðx; yÞ � yU ðx; yÞ�

ð11Þ

y 2x 4x 3y 5y
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and
rxx ¼ 2G½2U4xðx; yÞ þ yU6xðx; yÞ� þ 2G½�U5yðx; yÞ þ yU7yðx; yÞ�
ryy ¼ 2G½�yU6xðx; yÞ� þ 2G½�U5yðx; yÞ � yU7yðx; yÞ�
rxy ¼ 2G½�U5xðx; yÞ þ yU7xðx; yÞ� þ 2G½�yU6yðx; yÞ�

ð12Þ
The formulas (9)–(12) are the basic formulas required to set up higher displacement discontinuity element.
4. Special crack tip displacement discontinuity element

In this section, the basic formulas (9)–(12) required to set up higher displacement discontinuity element

will be used to set up a special crack tip displacement discontinuity element to deal with crack problems in

general plane elasticity. Referred to the crack tip element suggested by Scouch et al. (1983), the special

crack tip displacement discontinuity element is developed here in order to analyze crack problems in

general plane elasticity. The schematic of the special displacement discontinuity element at the left tip of
crack is shown in Fig. 3. Its displacement discontinuity functions are chosen as
Dx ¼ H s
aþn
a

� 	1
2

Dy ¼ Hn
aþn
a

� 	1
2

ð13Þ
where Hs and Hn are the tangential and normal displacement discontinuity quantities at the center of the

special element, respectively. Here, it is noted that the special element has the same unknowns as the two-

dimensional constant displacement discontinuity element It can be seen that the displacement discontinuity

functions defined according to (13) can model the displacement fields around the crack tip. Therefore, The
stress field determined by the displacement discontinuity functions (13) possesses r�1=2 singularity around

the crack tip.

After substituting (13) into (10), one has
Uijðx; yÞ ¼ Hj

Z a

�a

aþ n
a

� �1=2

Viðx; y; nÞdn ¼ HjBiðx; yÞ ði ¼ 2; 3; . . . ; 7; j ¼ 1; 2Þ ð14Þ
Fig. 3. Schematic of the special displacement discontinuity at left crack tip.
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where
Biðx; yÞ ¼
Z a

�a

aþ n
a

� �1=2

Viðx; y; nÞdn ði ¼ 2; 3; . . . ; 7Þ ð15Þ
After substituting (14) into (11) and (12), one can obtain
ux ¼ Hs½2ð1� mÞB3ðx; yÞ � yB5ðx; yÞ� þ Hn½�ð1� 2mÞB2ðx; yÞ � yB4ðx; yÞ�
uy ¼ Hs½ð1� 2mÞB2ðx; yÞ � yB4ðx; yÞ� þ Hn½2ð1� mÞB3ðx; yÞ � yB5ðx; yÞ�

ð16Þ
and
rxx ¼ 2GHs½2B4ðx; yÞ þ yB6ðx; yÞ� þ 2GHn½�B5ðx; yÞ þ yB7ðx; yÞ�
ryy ¼ 2GHs½�yB6ðx; yÞ� þ 2GHn½�B5ðx; yÞ � yB7ðx; yÞ�
rxy ¼ 2GHs½�B5ðx; yÞ þ yB7ðx; yÞ� þ 2GHn½�yB6ðx; yÞ�

ð17Þ
It can be seen by comparing (16) and (17) with (2) and (3) that the displacements and stresses due to the

special crack tip element possess the same forms as those due to a constant displacement discontinuity

element, with Fiðx; yÞ ði ¼ 2; 3; . . . ; 7Þ in (2) and (3) being replaced by Biðx; yÞ ði ¼ 2; 3; . . . ; 7Þ, Dx and Dy by

Hs and Hn, respectively. This is very importance to the boundary element implementation. It enables the

boundary element implementation to be easy.

The computation of Bi ði ¼ 2; 3; . . . ; 7Þ will be taken into account in the following from four respects.

(1) For an arbitrary domain point P ðx; yÞ ðy 6¼ 0Þ, generally, the integrals (15) are difficultly solved analyt-

ically. In this paper, the Gauss numerical integration is used to calculate them. The following transfor-

mation is made:
n ¼ at ð18Þ
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Biðx; yÞ ¼
Z a

�a

aþ n
a

� �1=2

Viðx; y; nÞdn ¼ a
Z 1

�1

Viðx; y; atÞð1þ tÞ1=2dt ði ¼ 2; 3; . . . ; 7Þ ð19Þ
Therefore, Biðx; yÞ can be given by
Biðx; yÞ ¼ a
X
j

Viðx; y; afjÞð1þ fjÞ1=2wj ði ¼ 2; 3; . . . ; 7Þ ð20Þ
where fi and wi are the Gauss point coordinates and corresponding weighed factors, respectively.

(2) For an arbitrary domain point P ðx; yÞ ðy ¼ 0Þ, the integrals B2, B4, B5, B6, B7 in (14) can be solved
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While for x < �a, if one lets r denote the distance from the crack tip along the crack extension line, i.e.,
r ¼ jxj � a ð22Þ

one has
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(3) For an arbitrary domain point P ðx; yÞ ðy ¼ 0Þ, the integral B3 in (14) is
B3ðx; 0Þ ¼
0 jxj � a
þ 1

4ð1�mÞ y ¼ 0þ jxj � a
� 1

4ð1�mÞ y ¼ 0� jxj � a

8<
: ð24Þ
(4) From (21) and (24), one can easily obtain the element-self effects
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For the special crack tip displacement discontinuity element at the right tip of crack, the similar formulas

can be obtained.
5. Computation formulas for stress intensity factors

Based on the displacement field around the crack tip and the definition of the displacement discontinuity

functions (13), we can obtain the calculation formulas of stress intensity factors KI and KII:
KI ¼ �
ffiffiffiffiffiffi
2p

p
GHn

4ð1� mÞ ffiffiffi
a
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KII ¼ �
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p
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a
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6. Examples

An infinite plate with a through crack of length 2a which is subjected to uniform stress normal to the

crack plane at distances sufficiently far away from the crack is taken for example to compute the stress

intensity factor KI. Owing to its symmetry, only half is taken for the analysis. Table 1 gives that the ratio of

the numerical solution to the analytical one for stress intensity factor KI is varied with the number of
elements. In this calculation, the special element and constant elements are taken to possess the equal size.

Table 2 gives that the ratio of the numerical solution to the analytical one for stress intensity factor KI is

varied with the ratio of the size of the special element to the one of constant elements. Here, the sizes of

constant elements are taken to be equal and the number of total elements is 11. It can be seen from Table 1

that a good result for the stress intensity factor KI can be obtained using the special crack element placed at

the crack tip. It can be seen from Table 2 that the ratio of the size of the special element to that of constant

elements is necessarily taken to be from 0.9 to 1.3 to obtain a good result. This can be regarded as the

limitation to the approach presented in the present paper.
As another example, an inclined crack plate with a through crack of length 2a which is subjected to

uniform stress at distances sufficiently far away from the crack is used to compute the stress intensity factors

KI and KII. Some numerical results are given in Table 3. In this calculation, the special elements and

constant elements are taken to possess the equal size and the number of total elements is taken to be 20, i.e.,

two special elements and 18 constant elements. It can be seen that from Table 3 that no matter how large or
1

ion of the ratio of the numerical solution to the analytical one for stress intensity factor KI for an infinite center crack plate with

mber of elements

ber of elements 3 5 7 10 15 25

IðanalyticalÞ 0.9621 0.9775 0.9838 0.9885 0.9921 0.995

2

ion of the ratio of the numerical solution to the analytical one for stress intensity factor KI for an infinite center crack plate with

io of the size of special element to the one of constant elements

ial=aconstant 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

IðanalyticalÞ 1.2048 1.1690 1.1394 1.1143 1.0928 1.0742 1.0578 1.0433 1.0303

ial=aconstant 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45

IðanalyticalÞ 1.0186 1.0080 0.9984 0.9896 0.9815 0.9741 0.9671 0.9607 0.9547

3

ion of the ratio of the numerical solution to the analytical one for stress intensity factors KI and KII for an infinite inclined center

plate with the angle b between crack plane and load

le b 5 10 20 30 40 45 50 60 70 80 85

IðanalyticalÞ 0.9895 0.9898 0.9896 0.9898 0.9898 0.9885 0.9897 0.9897 0.9898 0.9897 0.9896

KIIðanalyticalÞ 0.9896 0.9897 0.9897 0.9897 0.9897 0.9885 0.9897 0.9897 0.9897 0.9897 0.9896
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small is the angle b between the load and the crack plane, the numerical solutions of the stress intensity

factors KI and KII are in good agreement with the analytical ones.
7. Conclusions

Based on the analytical solution to the problem of a constant discontinuity in displacement over a finite

line segment in the x, y plane of an infinite elastic solid and the note of the crack tip element by Crouch, in

the present paper, the special crack tip displacement discontinuity element is developed. Further the
analytical formulas for the stress intensity factors of crack problems in general plane elasticity are given.

Numerical results show that the displacement discontinuity modeling technique of a crack presented in this

paper is very effective for computing stress intensity factors.
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