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In this article we describe a numerical method to solve a nonhomogeneous diffusion equation with arbitrary
geometry by combining the method of fundamental solutions (MFS), the method of particular solutions
(MPS), and the eigenfunction expansion method (EEM). This forms a meshless numerical scheme of the
MFS-MPS-EEM model to solve nonhomogeneous diffusion equations with time-independent source terms
and boundary conditions for any time and any shape. Nonhomogeneous diffusion equation with complex
domain can be separated into a Poisson equation and a homogeneous diffusion equation using this model. The
Poisson equation is solved by the MFS-MPS model, in which the compactly supported radial basis functions
are adopted for the MPS. On the other hand, utilizing the EEM the diffusion equation is first translated
to a Helmholtz equation, which is then solved by the MFS together with the technique of the singular
value decomposition (SVD). Since the present meshless method does not need mesh generation, nodal
connectivity, or numerical integration, the computational effort and memory storage required are minimal as
compared with other numerical schemes. Test results for two 2D diffusion problems show good comparability
with the analytical solutions. The proposed algorithm is then extended to solve a problem with irregular
domain and the results compare very well with solutions of a finite element scheme. Therefore, the present
scheme has been proved to be very promising as a meshfree numerical method to solve nonhomogeneous
diffusion equations with time-independent source terms of any time frame, and for any arbitrary geometry.
© 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 22: 1173–1196, 2006
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1. INTRODUCTION

There are many physical processes governed by the diffusion equation, such as fluid flows,
solute transports, heat transfers, chemical and biologic processes, and others. Although for some
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simplified situations the analytical solutions may be available, the complicated geometry generally
requires employing numerical methods. Classical numerical schemes such as the finite difference
method (FDM), finite element method (FEM), finite volume method (FVM) and boundary ele-
ment method (BEM) have been extensively utilized to solve different kinds of diffusion problems.
For example, Hobson et al. [1] and Chawla and Al-Zanaidi [2] both applied the FDM to solve the
diffusion equation. Moreover, Oden et al. [3] employed the FEM to solve the diffusion process in
an unbounded medium. On the other hand, Jones and Menzies [4] used the FVM for the diffusion
equation. Also, Zhu [5], Zhu et al. [6], Bulgakov et al. [7], Zerroukat [8], Sutradhar et al. [9], and
Bialecki et al. [10] applied the BEM to solve diffusion equation problems. However, by using
these classical domain dominated methods, the mesh generation may require a significant compu-
tational effort and a large amount of memory storage to implement complex geometry, especially
in 3D problems.

Considerable computational effort is necessary to compute the domain integration for the source
term when applying the traditional BEM. Nardini and Brebbia [11] were the first to introduce the
dual reciprocity method (DRM) in BEM to transform the domain integral to a boundary type by
a series of radial basis functions (RBFs). On the other hand, Golberg and Chen [12] extended the
method of fundamental solutions (MFS) with the method of particular solutions (MPS) to deal with
the particular solutions for the partial differential equations. In the meantime they also showed
that the DRM and the MPS are equivalent in the Poisson equation. The combined MFS-MPS
model is free from the singular integral evaluation for solving nonhomogeneous linear operators,
as is generally required by the BEM. Therefore, the MFS-MPS model, as a meshless numerical
algorithm, has been considered to be a successful solver for many diffusion problems explained
in the following.

From the literature review, we found that the solutions of diffusion equations used either the
finite difference scheme [12,13] or Laplace transform [14,15] to deal with the time derivative term
before utilizing the MFS. This is due to the fact that the MFS is well treated in the spatial domain
after the treatment of the transient part. In the work of Chen et al. [15], they used the Laplace
transform to change the diffusion equation to a modified Helmholtz equation with source term and
then used the MFS-DRM to solve the modified Helmholtz equation. The inverse transform, which
sometimes leads to certain difficulties in the solution process, would be needed after the adoption
of the Laplace transform. When the time derivative is discretized by the finite difference scheme,
the same drawback incurred in the Laplace transform is encountered, since it also eventually
results in the modified Helmholtz equation with source term. Moreover, the particular solution of
the modified Helmholtz operator is mathematically more difficult than the particular solution of
the nonhomogeneous diffusion operator, in which only the inverse Laplace operator is required,
if the source terms and boundary conditions are taken time-independent.

To overcome the drawbacks of the Laplace transform and finite difference time discretization,
the time-dependent MFS with space-time collocation method was recently introduced by Young
et al. [16] to solve multidimensional diffusion equations. Young et al. [17] further extended the
time-dependent diffusion MFS-DRM model to solve multidimensional nonhomogeneous diffu-
sion problems. However there is another way, completely different from the abovementioned
methods, to treat the time derivative, that is, the MFS-EEM model. Yao and Margrave [18] have
already used the eigenfunction transform method to solve the wave equation. As far as time
evolution is concerned, once the geometry is chosen, the EEM is more feasible and robust for
the transient calculation of any time. Furthermore, the diffusion and wave equations are treated
almost identically by using the MFS-EEM model. Therefore, the present model will provide a very
versatile vehicle to generalize the concept of the orthogonal eigenfunction expansion to multiple
dimensions in any shape of geometry.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



NONHOMOGENEOUS DIFFUSION EQUATION 1175

In this article, the MFS-MPS-EEM model with the singular value decomposition (SVD) method
is adopted to solve a nonhomogeneous diffusion equation. The nonhomogeneous diffusion equa-
tion is separated into the Poisson equation and the homogeneous diffusion equation without the
need of Laplace transform or finite difference or space-time collocation methods as in the articles
cited above. The time-dependent solutions are directly solved by the superposition principle of
the eigenvalues and eigenfunctions obtained by the MFS with SVD. Depending on the magnitude
of the diffusivity, only very few eigenfunctions are physically needed to represent the solutions
for diffusion problems. Moreover, initial condition is used to determine the weighting coefficients
of the orthogonal eigenfunctions. As a first attempt, the model is applied to test a set of 2D
diffusion problems with Dirichlet boundary conditions. To compare the accuracy of the present
method, analytical solutions are used. The article is organized as follows. In Section 2 the gov-
erning equation and the initial and boundary conditions considered are described. The numerical
discretization of the MFS, MPS, EEM, and SVD schemes are elaborated in Section 3. In Section 4
we delineate the comparisons of the present results with two analytical solutions and one with
the FEM computation for the three test cases. The final conclusions of this study are given in
Section 5.

2. GOVERNING EQUATION

Consider a nonhomogeneous diffusion equation with a time-independent source term and
boundary conditions (BC) over a computational domain � with boundary �,

∂u(x, t)

∂t
= k∇2u(x, t) + A(x), (1)

in which x is the general spatial coordinate, t is the time, k is the diffusion coefficient (diffusivity),
A(x) is the time-independent source function, and u(x, t) is the scalar variable to be determined.
The initial condition (IC) of the diffusion equation is

u(x, 0) = B(x) in � (2)

with the Dirichlet and/or Neumann BC:

u(x, t) = C(x) on �1

∂u

∂n
(x, t) = D(x) on �2, (3)

where �1 + �2 is equal to the boundary � and n is the outward normal direction. Moreover, the
BC is of Dirichlet type if only �2 = 0, of Neumann type if only �1 = 0, and of Robin type if
both �1 �= 0 and �2 �= 0. For simplicity, the boundary conditions C(x) and D(x) are assumed
to be time-independent functions. The augmented data of the problem are A(x), B(x), C(x), and
D(x), which are all time-independent known functions.

3. NUMERICAL METHOD

Based on the superposition principle of the linear system, nonhomogeneous diffusion problems
with time-independent source terms and BCs can be separated into a Poisson equation and a
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homogeneous diffusion equation. According to the superposition principle, the solution of the
nonhomogeneous diffusion equation will be represented as follows:

u(x, t) = u1(x) + u2(x, t) in �, (4)

where u1(x) satisfies the Poisson equation,

∇2u1(x) = −1

k
A(x)

u1(x) = C(x) on �1

∂

∂n
u1(x) = D(x) on �2 (5)

and u2(x, t) satisfies the homogeneous diffusion equation,

∂u2(x, t)

∂t
= k∇2u2(x, t)

u2(x, 0) = B(x) − u1(x) in �

u2(x, t) = 0 on �1

∂

∂n
u2(x, t) = 0 on �2 (6)

In Eq. (5), u1(x) is a time-independent function that physically represents a steady state (or quasi-
static) solution [17,19]. Then, from the superposition principle we can solve Poisson equation (5)
by decomposing the solution into homogenous and particular solutions as follows:

u1(x) = uh(x) + up(x), (7)

where uh(x) is the homogenous solution and up(x) is the particular solution. In which the particular
solution, up(x) satisfies

∇2up(x) = −1

k
A(x). (8)

On the other hand, the homogenous solution, uh(x), satisfies the Laplace equation as well as the
modified BC:

∇2uh(x) = 0 in �

uh(x) = C(x) − up(x) on �1

∂

∂n
uh(x) = D(x) − ∂

∂n
up(x) on �2 (9)

The particular solution corresponding to Eq. (8) can be approximated by the MPS for the source
term −(1/k)A(x)

−1

k
A(x) =

N∑
j=1

a
p

j fj (r)

f (r) =



(
1 − r

α

)2
, r ≤ α

0, r > α,
(10)
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where f (r) is the CSRBFs [20], α is the compact radius, r = |x − xj | is the radial distance
between the j th field point xj and the collocation point x, and N is the number of collocation
nodes. In this study the collocation points are typically distributed in the interior domain as well as
on the boundary (Fig. 1). After applying Eq. (10) at N collocation points, the unknown coefficient
a

p

j ’s can be solved [21]. Therefore, the particular solution up(x) is determined by inverting the
Laplace operator of Eq. (8) [22–24]:

up(x) =
N∑

j=1

α
p

j Fj (r)

F (r) =







r4

16α2
− 2r3

9α
+ r2

4
, r ≤ α,

13α2

144
+ α2

12
ln

( r

α

)
, r > α,

for 2D




r4

20α2
− r3

6α
+ r2

6
, r ≤ α,

α2

12
− α3

30r
, r > α,

for 3D,

(11)

where F(r) is the corresponding CSRBFs of f (r) in Eq. (10). With the substitution of Eq. (11)
into the modified boundary conditions of the homogenous Eq. (9), the results will be a well-posed

FIG. 1. Collocation points for the MPS.
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Laplace equation. The MFS is then applied to solve the Laplace equation:

−∇2G1(r) = δ(x), (12)

where G1(r) is the fundamental solution of the Laplace equation, which can be obtained by
the potential theory. Then the solution of Laplace equation is represented by the MFS form as
described by the following:

uh(x) =
M∑

j=1

αh
j G1j (r)

G1(r) =




− 1

2π
ln(r), for 2D,

1

4πr
, for 3D,

(13)

where r = |x − xj | is the distance between the field point x and the j th source point xj , M is
the number of source nodes. So the solution u1(x) of the Poisson equation is then obtained by
MFS-MPS model.

After having applied the MFS-MPS model for the Poisson equation, we ultimately utilize
the MFS-EEM to solve the homogenous diffusion equation. For simplicity, we now omit the
summation of the infinite series of the eigenfunction expansion at this moment. Let u2(x, t) =
us(x)e−λ2kt and substitute into Eq. (6), we obtain:

∇2us(x) + λ2us(x) = 0. (14)

Therefore, the homogeneous diffusion equation in Eq. (6) is transformed to the Helmholtz equation
in Eq. (14) with homogeneous boundary conditions. Since we have to face the homogeneous
boundary conditions, the above eigenvalue problem is solved by the MFS with the SVD method.
The fundamental solution of the Helmholtz equation satisfies the following equation:

−(∇2 + λ2)G2(r) = δ(x), (15)

where G2(r) is the fundamental solution of the Helmholtz equation, which can be obtained by
mathematical analysis. Then the solution of the Helmholtz equation is obtained by the MFS as
described below:

us(x) =
Q∑

j=1

βjG2j (r)

G2(r) =




−i

4
H

(2)

0 (λr), for 2D,

1

4πr
e−iλ|r|, for 3D,

us(x) = 0 on �1

∂

∂n
us(x) = 0 on �2, (16)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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where H
(2)

0 ( ) is the Hankel function of the second kind of order zero, r = |x −xj | is the distance
between the field point x and the j th source point xj , Q is the number of source nodes. Since
Eq. (16) has nontrivial solutions only for some discrete eigenvalues, we use the MFS with SVD [25]
to obtain imbedding eigenvalues, λ, and corresponding eigenfunctions, us(x), for Eq. (16). Then
the major advantage of the orthogonal eigenfunction expansion method is beneficial to this study.
The modified initial condition of the homogenous diffusion equation is obtained by the following
eigenfunction expansion formula:

u2(x, 0) = B(x) − u1(x) =
∞∑

j=1

γjusj
(x), (17)

where usj
(x) is the j th eigenfunction with corresponding eigenvalue λj , γj is the weighting coef-

ficient of every eigenfunction which is determined by collocating the modified initial conditions
(17) at some finite interpolating points inside the domain. Depending on the diffusivity magni-
tude, the first few eigenfunctions are physically enough to represent the solutions for the diffusion
problems. In our numerical test, the finite terms are used to replace the infinite series in Eq. (17)
and the results show that the assumption is acceptable:

u2(x, 0) = B(x) − u1(x) =
P∑

j=1

γjusj
(x), (18)

where P is the number of adopted eigenfunctions. Therefore, the EEM is capable of obtaining
time-dependent solutions without using the time-marching or space-time collocation methods.

From Eqs. (4)–(18), the solutions of Eq. (1) are achieved by the linear superposition:

u(x, t) = u1(x) + u2(x, t)

= uh(x) + up(x) + u2(x, t)

=
M∑

j=1

αh
j G1j (r) +

N∑
j=1

α
p

j Fj (r) +
P∑

j=1

γjusj
(r)e

−λ2
j
kt (19)

Thus the solutions of the nonhomogeneous diffusion equations with time-independent source
terms and boundary conditions can be solved by the proposed scheme.

4. RESULTS AND DISCUSSION

Validation for the proposed numerical method, the MFS-MPS-EEM model, is achieved by com-
paring the results with the analytical solutions for diffusion problems with Dirichlet BC. The
effectiveness of the proposed method is verified by solving 2D homogeneous and nonhomoge-
neous diffusion problems. In the following sections we will discuss the results. Figure 1 shows
the collocation points of the 2D MPS for the nonhomogeneous solutions. On the other hand, the
source points and the field points of the MFS based on the fundamental solution of the linear
equation are depicted in Fig. 2 for a 2D problem. In the numerical experiments (Fig. 3), both
regular domains (Example 1: circle; Example 2: rectangle) and an irregular domain (Example 3)
are considered.
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FIG. 2. Schematic diagram of source and field points for the MFS.

FIG. 3. Schematic diagram of (a) circular cavity, (b) rectangular cavity, and (c) an Oval of Cassini.
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Example 1. Consider a unit circular disk [Fig. 3(a)] that is independent of θ , satisfies the
following governing diffusion equation (DE) with IC and BC.

DE k
1

r

∂

∂r

(
r
∂u

∂r

)
= ∂u

∂t

IC u(r , 0) = 1 in �

BC u(1, t) = 0 on �1 (20)

The analytical solution of the problem is given by

u(r , t) =
∞∑

n=1

2J0(λnr)

λnJ1(λn)
e−λ2

nkt , (21)

where J0(λn) = 0 is the solution of the eigenvalues, J0( ) and J1( ) are the Bessel functions of
the first kind of the order zero and one, respectively. The first five calculated eigenvalues λn and
eigenfunctions by MFS-EEM with SVD model are shown in Fig. 4. These numerically obtained
eigenvalues are almost the same as the exact solutions of J0(λn) = 0. Comparison shows that the
differences of eigenvalues between the computed and analytical results are only after five digits.
The comparisons between the solutions of the MFS-EEM with SVD model and the analytical
solutions of the u-distribution along x = 0 for different time levels are depicted in Fig. 5. Though
only five eigenfunctions and 961 points to interpolate eigenfunctions are used in the numerical
modeling, there is not much deviation from the analytical solutions. The full-field distributions
with time evolution are shown in Fig. 6. The results generally exhibit good agreements with the
analytical solutions at different time stages. The variations of the time decay clearly demonstrate
the physics underlying the diffusion process. Moreover, Figs. 7 and 8 show the time evolution
history at (0.5, 0) of the solution and the maximum relative error of the computational domain.
On the other hand, Fig. 9 depicts the maximum relative error histograms when using the present
method for different numbers of points to interpolate eigenfunctions, when, as expected, more
points generally will render better resolution. If the diffusivity is not too small, physically the first
few eigenfunctions are almost qualified to represent the diffusion solution. In Fig. 10, the com-
parison of the time history of the maximum relative error for different numbers of eigenfunctions
is described when 961 points are used to interpolate eigenfunctions. The advantage of the method
is the capability to obtain the solution for any time by the superposition principle of the first few
eigenfunctions, in which their weighting coefficients are dependent on IC.

Example 2. After simulating the circular domain, the proposed method is utilized to study the
second example in a rectangular slab of size [0, a] × [0, b] [Fig. 3(b)], a 2D diffusion problem
with nonhomogeneous boundary conditions and nonhomogeneous sources:

DE

(
∂2u

∂x2
+ ∂2u

∂y2

)
− 6x + 2 sin x sin y = 1

k

∂u

∂t

IC u(x, y, 0) = xy + x3 + sin x sin y in �

BC u(x, y, t) = x3 + sin x sin y on ∂�1. (22)
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FIG. 4. The first 5 eigenvalues and eigenfunctions for circular problem for Example 1.
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FIG. 5. Comparison of u-distribution along x = 0 by the MFS-EEM model for Example 1. (a) t = 0.05,
(b) t = 0.1, (c) t = 0.2, (d) t = 0.3 (961 points, 5 eigenfunctions).

The analytical solution of the problem is given by

u(x, y, t) = 4ab

π 2

∞∑
m=1

∞∑
n=1

(−1)m+n

mn
sin

(mπx

a

)
sin

(nπy

b

)
e−λ2

mnkt + (x3 + sin x sin y)

λ2
mn =

[(mπ

a

)2 +
(nπ

b

)2
]

. (23)

We set a = 1.1, b = 0.9, k = 1 and use the MFS-EEM with SVD to get the first 24
eigenvalues and eigenfunctions, using 120 nodes in MFS, 961 nodes in MPS and 961 points
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FIG. 6. The full-field distribution for Example 1. (a) t = 0.05, (b) t = 0.1, (c) t = 0.2, (d) t = 0.3 (961
points, 5 eigenfunctions). ——, analytical solution; – – –, numerical solution.

to interpolate eigenfunctions as displayed in Fig. 11. Again the calculated eigenvalues and the
analytical solutions are very close, which demonstrates the capability of the present model to apply
to different shapes of geometry. The comparisons between the present method and the analytical
solution of the u-distribution along x = 0.5 are depicted in Fig. 12, when 10 eigenfunctions and
961 points to interpolate each eigenfunction are used. Almost identical results are obtained for the
two solutions. And the time evolution of the full field distribution is described in Fig. 13. Except
at the very beginning, the computed numerical results also show generally good agreement with
the analytical solution at different time stages. The fast decay of field variation also demonstrates
the physics underlying the diffusion process clearly. Figures 14 and 15 in similar fashion portray,
respectively, the time evolution history of the solution at (0.5, 0.5), and the maximum relative
error in the computational domain. On the other hand, Fig. 16 depicts the maximum relative
error histogram for different numbers of points to interpolate each eigenfunction, in which more
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FIG. 7. Comparison of time evolution of u at x = 0.5, y = 0 for Example 1 (961 points, 5 eigenfunctions).

FIG. 8. Comparison of maximum relative error in the computational domain with time evolution for
Example 1 (961 points, 5 eigenfunctions).
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FIG. 9. Time history of maximum relative error by different points for Example 1 (5 eigenfunctions).

FIG. 10. Time history of maximum relative error by different eigenfunctions for Example 1 (961 points).

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 11. The first 24 eigenvalues and eigenfunctions for rectangular problem for Example 2.
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FIG. 12. Comparison of u-distribution along x = 0 by the MFS-MPS-EEM model for Example 2. (a)
t = 0.05, (b) t = 0.1, (c) t = 0.2, (d) t = 0.3 (96l points, 10 eigenfunctions).

points generally as expected give better results. Figure 17 shows the physical results of the
diffusion problems with different numbers of eigenfunctions using 961 points to interpolate each
eigenfunction, and reveals that the solution is generally acceptable.

Example 3. For the last problem, the proposed numerical method is extended to study an
irregular domain, the Oval of Cassini [Fig. 3(c)], a 2D diffusion problem with nonhomogeneous
boundary conditions.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 13. The full-field distribution for Example 2. (a) t = 0.05, (b) t = 0.1, (c) t = 0.2, (d) t = 0.3 (961
points, 10 eigenfunctions). ——, Analytical solution; – – –, numerical solution.

The Oval of Cassini problem can be considered as follows:

� : x, y ∈ [
(x − 1)2 + y2

] [
(x + 1)2 + y2

] = 1.1

DE

(
∂2u

∂x2
+ ∂2u

∂y2

)
= 1

k

∂u

∂t

IC u(x, y, 0) = x + y in �

BC u(x, y, t) = x + y on ∂�1. (24)

For this irregular domain, it is more difficult to get an analytical solution, so we choose FEM
with unstructured grids to obtain the numerical results for comparison. The distributions of 924
unstructured FEM meshes and 80 meshless MFS nodes are described in Fig. 18. We also set k = 1.
The first 10 eigenvalues and eigenfunctions are obtained by the MFS-EEM with SVD using 160
points to interpolate eigenfunctions as displayed in Fig. 19. In similar fashion Fig. 20 portrays
the time evolution history of the solutions at (0.926, 0.237) and (−0.927, −0.243), respectively.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 14. Comparison of time evolution of u at x = 0.5, y = 0.5 for Example 2 (961 points, 10
eigenfunctions).

FIG. 15. Comparison of maximum relative error in the computational domain with time evolution for
Example 2 (961 nodes, 10 eigenfunctions).
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FIG. 16. Time history of maximum relative error by different points for Example 2 (10 eigenfunctions).

FIG. 17. Time history of maximum relative error by different eigenfunctions for Example 2 (961 points).
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FIG. 18. (a) The unstructured meshes for the FEM (924 elements). (b) The field points for the MFS (80
nodes) for the Oval of Cassini problem for Example 3.

The results of the MFS-MPS-EEM model with the SVD method utilizing 80 nodes in MFS,
10 eigenfunctions and 160 points to interpolate eigenfunctions also match very well with the
FEM solutions using 924 linear triangular elements. The present numerical method can be used
appropriately even for irregular domains.

5. CONCLUSIONS

Transient diffusion problems with time-independent source terms and boundary conditions in mul-
tiple dimensions are solved using the MFS-MPS-EEM model together with the SVD technique.
The nonhomogeneous diffusion problems with time-independent source terms and boundary con-
ditions are separated into a Poisson equation and homogeneous diffusion equation. As far as the
solution of the Poisson equation is concerned, the MFS is adopted to obtain the homogeneous
solution to the Laplace equation. And the MPS is utilized to solve the particular solution due
to source term of the Poisson equation. In this study the CSRBFs are adopted for the MPS. The
homogeneous diffusion equation is first translated, by the EEM, into a Helmholtz equation, which
is then solved by the MFS together with SVD scheme to obtain the corresponding eigenvalues
and eigenfunctions.

The generally adopted Laplace transform, finite difference, and space-time collocation schemes
for the time derivative term are no longer required in the proposed numerical procedure. This new
algorithm has avoided time evolution methods, by properly using the superposition principle
of orthogonal eigenfunctions to obtain the solutions for any time and for any given geometry.
The numerical scheme developed in the present work was validated by comparison with the
analytical solutions for two 2D diffusion problems under Dirichlet boundary conditions. Excel-
lent agreements with the analytical results indicate the effectiveness of the present method to
solve diffusion equations with time-independent source terms and boundary conditions with-
out the requirement of any time transformation, discretization, or unification. The validated
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NONHOMOGENEOUS DIFFUSION EQUATION 1193

FIG. 19. The first 10 eigenvalues and eigenfunctions for the Oval of Cassini problem for Example 3.

algorithm is finally extended to an irregular domain. The results match very well with the solu-
tions obtained by using the unstructured FEM. It is concluded that the proposed method is capable
to obtain reasonable results for multidimensional nonhomogeneous diffusion equations in arbi-
trary domains in any time frame if time-independent source terms and boundary conditions are
assumed.
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FIG. 20. Comparison of time evolution of u at (a) x = 0.926, y = 0.237, (b) x = −0.927, y = −0.243
for Example 3.
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