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Isotropic Clamped-Free Thin
Annular Circular Plate Subjected
to a Concentrated Load
The problem of an isotropic annular plate clamped along one edge and free at the other
and subjected to a concentrated load is solved by a series approximation. The continuity
conditions of deflection, slope, shear and radial moments at the radius of load applica-
tion are satisfied. Variations of deflection coefficient, radial moment coefficients and
shear coefficients with radius and angle are presented. �DOI: 10.1115/1.2165235�
1 Introduction
Annular plate problems occur in engineering application, for

example in the design of structures where a load is supported by a
circular overhang. Some of the early attempts to solve the annular
plate problems include the work of Conway �1� who considered
an annular plate with linearly varying thickness subjected to a
uniformly distributed load and a line load uniformly distributed
along the edge of the hole. The nature of the problem solved by
Conway �1� ensures that variations along the circumference var-
nish and that simplifies the governing equations greatly. Sher-
borne and Murthy �2� considered the elastic bending of an aniso-
tropic annular plate of variable thickness. But like the work of
Conway �1�, the solution is only valid for symmetrical loading.
Minguez and Vogwell �3� had solved the problem of an isotropic
clamped-free annular plate subjected to a uniform pressure. Lord
and Yousef �4� had attempted a similar problem by using numeri-
cal methods. Bird and Steele �5� presented an elegant treatment of
a circular plate with arbitrary number of circular holes subjected
to loading along boundaries.

Recently, Sharafutdinov �6� has considered the problem of an
annular plate subjected to concentrated load along its edges, using
the theory of functions of a complex variable. Sharafutdinov �6�
obtained stress distribution along the contour of the circular aper-
ture. Frequently, however, the applied load in neither uniform nor
symmetrical but concentrated. Furthermore, a more common
mode of concentrated load application is not along the edge of an
annular plate but normal to it. A common engineering design is an
annular plate loaded by a load-bearing member, transmitting a
concentrated load.

2 The Annular Plate Subjected to a Concentrated
Load

Consider an isotropic annular circular plate clamped at the
outer edge and free at the inner edge, such as shown in Fig. 1. The
plate is subjected to normal concentrated load, P applied at point
A at distance b from the center O of the plate. Timoshenko �7�
solved a similar problem for the circular plate clamped along its
edge. In this paper, an approximate solution is obtained for the
annular problem. The solutions are obtained by dividing the cir-
cular plate into the inner and outer parts. The separate solutions
are required to satisfy continuity relationship along the radius of
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the load application. The radial moment, shear and deflections
variations with radius and angle are presented. This information
can be used in predicting the failure in this type of structure.

3 Governing Equations
The general theory of plate deformations is well documented

�7,8�. Consider an isotropic annular circular plate that is loaded at
point A at a distance b from the center of the plate �Fig. 1�. The
differential equation describing the deformation of the plate may
be written in polar coordinates as �8�
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Following an approach used by Timoshenko �7�, we may divide
the plate into two parts by the cylindrical section of radius b as
shown in the figure by the dashed line. We then apply a series
solution of the form

w = �
m=0

�

Rm cos�m�� �2�

to the homogeneous equation each of the portions of the plate.
Once an equation for deflection is known, other structural quanti-
ties like shear and moment may be readily obtained for the de-
flection equation. This approach avoids the existence of degener-
ate solutions that may exist when different series representations
are introduced for the different structural quantities, as may be-
come necessary in employing a numerical method �9�. Chen, Wu,
Chen, and Lee �9� showed that by using different series represen-
tations for moment and shear forces, and by examining the result-
ing matrices, degenerate cases may result when the boundary in-
tegral equation and boundary element methods are employed.
Equation �2� is convergent provided that Rm is convergent. Sub-
stituting Eq. �2� into Eq. �1� gives

m2�m2 − 2�Rm�r� + rRm� �r� − r2Rm� �r�

− 2m2�Rm�r� − rRm� �r� + r2Rm� �r�	 + 2r3Rm��r� + r4Rm���r� = 0

�3�
Now substituting

Rm = rn �4�
into Eq. �3� gives

rn��− 2 + n��− 1 + n�2n − 2m2�− 1 + n�2 + �− 2m2 + m4 + 2n − n2�	

= 0 �5�

Solving Eq. �5� for n gives

�n	 = �m,m + 2,− m + 2,− m	 �6�

Hence, in general, the equation describing the inner plate is
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Rm = Amrm + Bmrm+2 + Cmr−m+2 + Dmr−m �7�
Similar expressions to those given in Eq. �6� may be written for
the functions R0�, R1�, and Rm� corresponding to the inner portion of
the plate. In the same sense, we employ the symbols Am� , Bm� and
so on in the place of Am, Bm , . . . for the constants of the outer part
of the plate.

Specifically, the equation describing the outer plate becomes

Rm� = Am� rm + Bm� rm+2 + Cm� r−m+2 + Dm� r−m �8�
In this way, the basis for the inner and outer sections emerges
naturally from the solution of the governing equations. This
method of arriving at the basis has numerously been applied by
Timoshenko �7�, Gupta �10�, and Carrier �11,12� in the solution of
this type of problems. Recently, Chen, Wu, and Lee �13� have
shown how different bases may be selected for the inner and outer
sections of the plate of a circular plate. Using different bases for
the inner and outer regions of a circular plate, as done for example
by Chen et al. �13�, averts the existence of singularity at the center
of the plate, as r tends to zero. Such a situation does not arise in
an annular plate.

4 Boundary Conditions
For each of the terms in Eqs. �7� and �8�, we have to determine

four constants for the outer portion of the plate and four for the
inner portion. Hence, a total of eight unknowns are involved in the
solution, requiring eight independent equations. Four of these
equations are obtained from the inner and outer boundary condi-
tions at the edges of the plate. Four additional equations are ob-
tained from the continuity conditions along the circle of radius b.
The applied concentrated load is readily expanded as Fourier
series,

P 
 P� 1

2
+ �

m=1

�
2 sin�m�/2�

m�
cos�m���, m = 1,3,5, . . . , 0 � �

� �/2. �9�
Thus, the boundary conditions involved are obtained as follows.
Since the plate is clamped at the outer radius r=a, deflection and
slope are zero on this boundary. Hence

Fig. 1 Annular circular plate subjected to a concentrated load
Rm�r = a� = 0 �10�
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�Rm

�r
�r = a� = 0 �11�

Since the inner boundary of the plate is free, the requirements that
the shear and moment be zero on this boundary lead, respectively,
to
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Along the circle r=b where the concentrated load is placed, the
following continuity equations are imposed �7�,

Rm�r = b� = Rm� �r = b� �14�
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4�b
�17�

Nr�Rm��r=b − Nr�Rm� ��r=b =
P sin�m�/2�

�2mb
m = 1,3,5. . . �18�

where

Nr�R� = − D� �3R

�r3 +
1

r

�2R

�r2 −
1

r2

�R

�r
−

m2

r2

�R

�r
� �19�

Also, from Eq. �9�,

Rm = 0,m = 2,4,8, . . . �20�

and Rm converges as the coefficients of the Fourier series �9�.

5 The Solution
Using the boundary conditions in the governing equations gives

the desired solutions. The solution of the eight simultaneous equa-
tions is both tedious and prone to algebraic errors. For simplicity,
the external radius of the annular circular plate is taken to be
unity, since this does not affect the generalization of the results.
Other dimensions are normalized with respect to the outer radius.
Furthermore, a symbolic tool, Mathematica �14�, has been used to
carry out the necessary algebraic simplifications. Depending on
the value of m, different solutions are obtained. For example, for
m=0, Eqs. �6� yield the solutions,

R0 = A0r2 + B0r2 ln r + C0 + D0 ln r �21�

R0� = A0�r
2 + B0�r

2 ln r + C0� + D0� ln r �22�

Similarly, for m=1, Eq. �6� yields the solutions

R1 = A1/r + B1r + C1r ln r + D1r3 �23�

R1� = A1�/r + B1�r + C1�r ln r + D1�r
3 �24�

For m�1, the solution are written consistently as

Rm = Amrm+2 + Bmr−m+2 + Cmr−m + Dmrm �25�

Rm� = Am� rm+2 + Bm� r−m+2 + Cm� r−m + Dm� rm �26�
Using the boundary conditions expressed in Eqs. �10�–�19�, the
constants An, Bn, Cn, Dn, An�, Bn�, Cn�, Dn�, for �n=0,1 ,m	 are
obtained. The expressions for the coefficients are given in the
Appendix . Using Mathematica, the coefficients for m=0 and m

=1 are found to reduce to the coefficients of the isotropic circular
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plate in the limit as the inner radius becomes vanishingly small.

6 Results and Discussions
It is convenient to express the deflection, the radial moment,

and shear, respectively, as

w =
kwP

Drr
�27�

Mr =
kmrP

Drr
�28�

Ms =
ksP

Drr
�29�

Using a Poisson ratio of 0.3, the following results are obtained.
Figure 2 shows the variation of deflection coefficient with radius
for different annular radii, c, for a load placed at the center of the
plate. The smaller the inner radius is, the less the deflection for the
range of c, considered. Figure 3 shows the variation of radial
moment with radius. Between the inner radius and the point of
load application, moment is vanishingly small but increases sud-
denly from the point of load application to a maximum at the
clamped outer radius. Figure 4 shows the variation of shear with
radius. Shear is zero at the inner free boundary. From the point of
load application, shear is suddenly finite and decreases in magni-
tude towards the outer clamped end. Figure 5 shows the variation
of deflection with the circumferential angle. As expected, deflec-
tion is maximum along the meridian of load application and di-
minishes at the angle increases.

7 Conclusion
The problem of the point-loaded annular plate problem with

one edge clamped and the other free has been solved using a
series approximation. The approach had divided the plate into the
inner and outer regions, based on the radius at which the concen-
trated load is located. The continuity of deflection, slope, shear,
and radial moments at the radius of load application are satisfied.
Variations of deflection coefficient, radial moment coefficients,

Fig. 2 Variation of deflection co
and shear coefficients with radius and angle have been presented.
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Nomenclature
a � outer radius of the annular plate
c � inner radius of the annular plate
b � distance of point load from the plate’s center

r ,� � Cartesian coordinates axes
w � deflection

Mr � moment radial component
Drr � uniform flexural rigidity of plate

� � Poisson’s ratio
P � concentrated load

Kw � deflection coefficient
Kmr � radial moment coefficient

Ks � shear coefficient
m � series index

Appendix

A0 = �1 + b2 − �1 + b2 − 2c2�v + 2c2�1 + v2 log b��/�0

B0 = 1/�8��0�

C0 = �v1 + b2v1 − 2c2v2�1 + log b��/�0

D0 = 2�b2v1 − c2v2 − 2c2v2 log b�/�0

A0� = �v1 − b2v1 + 2v1 log b�/�0

B0� = 0

C0� = ��b2 − 1��v1 − 2c2v2� + 2�− c2v2 + b2�v1 − c2v2��log b�/�0

D0� = 2c2v2�− 1 + b2 − 2 log b�/�0

A1 = �− b4�1 − 2v� − 3c4�2 + v� + b2c2�− b2�− 3 + v�

+ c2�9 + 5v� + v2� + 2b2c2�− c2�3 + v� + v2�log b − �− �− 1
2 4 4

cient versus r†�=0,b= „a+c… /2‡
effi
+ 2b �c �3 + v� + b v1�log c�/�1
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B1 = �− 2b2�− 1 + c2��c2�3 + v� − v1�log b

+ �− 1 + b2��− 9c4 − 5c4v + b2�− 1 + c2�− 3 + v� + 3v�

+ X5 − 2�c4�3 + v� − b2v1�log c�/�1

C1 = 2�− �b2 + 3c2��1 + b2 + �− 1 + 3b2�c2�

+ �1 + c2��b4 + c2 + b2�3 − 5c2��v + 2b2�− c4�3 + v�

+ v1�log�c/b��/�1

D1 = �b4v + c4�3 + 2v� + b2�1 − 3v + c2v2� − X5

+ 2b2�v1 − c2v2�log b + �c4�3 + v� + b2�− 2 + b2�v1�log�c��/�1

Fig. 3 Variation of radial moment
Fig. 4 Variation of shear moment co

Journal of Applied Mechanics
A1� = �c2�2b2�c2�3 + v� − v2�log b + �− 1 + b2��c2 + �− 3�2 + v�

+ b2�3 + 2v�� + b2v2 + �− 1 + b2�c2�3 + v�log c	��/�1

B1� = �− �2b2 log b�1 − 3v + c4�9 + 5v� − 2a2X5 + 2�c4�3 + v�

− v1�log c� + �− 1 + b2��− 9c4 − 5c4v + b2�− 1 + c2�− 3 + v�

+ 3v� + X5 − 2�c4�3 + v� − b2v1�log c���/�1

C1� = 2��− 1 + b2��− c4�3 + v� + b2�c2�− 3 + v� + v1� − X5�

+ 2b2�c4�3 + v� − v1�log b�/�1

efficient versus r†�=0,b= „a+c… /2‡
co
efficient versus r†�=0,b= „a+c… /2‡
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D1� = �2b2�v1 − c2v2�log b + �− 1 + b2��1 − 2v + b2v + c2�1 + v� + �

− 1 + b2�v1 log c��/�1

Am = �b−m�c2+4m�− mn2 + �− 2 + m2�v� − b2mc2�b2m − n1��− 2v

+ mX4� + c2m�− b2m�b2m − n1�v1 − c4�m2�1 + 3v� − 4v2�

+ c2n1�m1X3 + �b2m − b2m�X4����/�2

Bm = �b−m�c2+4m�b2m − m1��− mn2 + �− 2 + m2�v� − b2mc2�2v

− mX4� + c2m�b2mv1 + c2m1X3 + b2m�− c4�− 4�1 + v� + m2�1

+ 3v�� + b2mm1v1 + c2�b2m�2 − mn1 + �− 1 + m�mv�		��/�2

Cm = �b−m�c2+4mm�m − b2n1��− mn2 + �− 2 + m2�v� − c4+2m�− 1

+ b2mn1� + �− 4�1 + v� + m2�1 + 3v�� − b2+2mc2mm3v1

− b2+2mc2m�− 2v + mX4� + c2+2mmn1�− b2X4 + b2m�b2�− 2

+ m�n1 + v − mv�� + mX4����/�3

Dm = �b−m�− b2c2+4mm + �− mn2 + �− 2 + m2�v� − b2mc2m�m

− b2m1��− 2v + mX4� + c2m�− b2+2mc2m�2 + m2v − m�n1 + v��

+ c4m1�m2 + 3m2v − 4v2� + b2mc4�m2�1 + 3v� − 4v2�

− c2m2m1X3 + b2�− m3v1 + c2mm1n1�	��/�3

Am� = �b−m�− b2c2+4mm + �− mn2 + �− 2 + m2�v� − b2mc2m�m

− b2m1��− 2v + mX4� + c2m�− b2+2mc2m�2 + m2v − m�n1 + v��

+ c4m1�m2 + 3m2v − 4v2� + b2mc4�m2�1 + 3v� − 4v2�

− c2m2m1X3 + b2�− m3v1 + c2mm1n1�	��/�3

Bm� = �b−mc2m�− c2+2m�b2m − b2m + m1��− mn2 + �− 2 + m2�v�

+ m�b2 + b2m�− m + b2m1��v1 + c2�2 + m2v − m�n1 + v�
2m 2

Fig. 5 Variation of deflection coeffi
+ b m1�b m − n1�X3���/�2
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Cm� = �b−mc2+2m�c2mm�b2+2m + m − b2n1��− mn2 + �− 2 + m2�v�

+ c2�4�1 + v� − m2�1 + 3v� + b2m�n1�− 4 + m2 − 4v + 3m2v�

− b2�m3 + 3m3v − 4mv2�		 − m�b2 + b2m�− m + b2m1����/�3

Dm� = �b−mc2�b2m�c2+2m�− 4 + m2 − 4v + 3m2v� + m2�2v + m�m2

− mv��� + c2mm1�c2�− 4 + m2 − 4v + 3m2v� − m2X3�

+ b2+2mmm1�− 2v − c2mX3 + mX4� + b2m�− 2v + c2m�− c2�m2

+ 3m2v − 4v2� + m1n1X3� + mX4���/�3

�0 = 32��a2v1 − c2v2�Drr/P

�1 = 16b��1 + 4c2 − 2v + c4�3 + 2v� − �− c4�3 + v� + v1�ln c�Drr/P

�2 = 8m2�2m1�c2+4m�− mn2 + �− 2 + m2�v� + c2m�− 4c2�− 1 + m2�

+ m2v1 − c4�m2�1 + 3v� − 4v2�� + c2�− 2v + mX4��Drr/P

�3 = m�1n1/m1m1 = m − 1,m2 = m − 2,n1 = m + 1,n2 = m + 2,v1

= v − 1,v2 = v + 1,X1 = 2m − v − 1

X2 = 2m + v + 1,X3 = m�v − 1� − 2,X4 = 2 + m�v − 1�,X5 = c2�v

− 3�
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