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The Effect of Internal Support Conditions to the Elastoplastic Transient
Response of Reissner-Mindlin Plates
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Abstract: The method of Domain/Boundary
Element is used to achieve a dynamic analysis of
elastoplastic thick plates resting on internal sup-
ports. All possible boundary conditions on the
edge of the plate with any interior support con-
ditions such as isolated points (column), lines
(walls) or regions (patches) can be treated without
practical difficulties. The formulation presented
includes the effects of shear deformation and ro-
tatory inertia following Reissner-Mindlin’s defor-
mation theory assumptions. The method employs
the elastostatic fundamental solution of the prob-
lem resulting in both boundary and domain inte-
grals due to inertia, plasticity and interior support
effect terms. By discretizing the integral equa-
tions and integrating the resulting matrix equation
of motion by an explicit step-by-step time inte-
gration algorithm, the dynamic inelastic response
of the plate can be obtained. Several complicated
examples for impacted thick plates with different
internal support conditions are presented to illus-
trate the efficiency of the method.

Keyword: Thick Plates, Domain/Boundary El-
ement Method, Dynamic Analysis, Elastoplastic
Plates, Internal Supports.

1 Introduction

It is recognized that in many engineering appli-
cations, particularly in civil engineering struc-
tures, there is a need for the ability to predict
the response of internally supported plates. In-
ternally supported plates such as columns point
and/or load bearing walls with certain combina-
tion of classical boundary conditions are encoun-
tered much more frequently than others. Ana-
lytic solutions to this kind of plate problems are
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limited to simple plate geometries, boundary con-
ditions and loadings. Both approximate (Narita
(1986)) and numerical methods such as the Finite
Difference Method (FDM) or the Finite Element
Method (Hrabock and Hrudey (1983) and Utjes,
Laura, Sanchez Sarmiento and Gelos (1986) have
been used quite extensively to give a solution to
this problem.

The Boundary Element Method (BEM) is being
explored as a possible alternative to the FEM for
solving problems of bending of plates which in
addition to the boundary supports are also sup-
ported on internal supports. This method has been
used by Bezine (1981) and Hartmann and Zote-
mantel (1986) to analyze the effect of internal
supports in plate elastostatics. In these papers
an integral representation for the deflection is ob-
tained inside the domain which after discretiza-
tion for line or surface supports yields additional
collocation equations which are solved simulta-
neously with those involving unknowns defined
on the boundary. Finally the formulation yields a
system of equations involving unknowns defined
inside the plate domain only.

During the last ten years or so, the BEM has
been also successfully employed for the dynamic
analysis of elastic and inelastic plates as it is
evident, e.g. in the review articles of Beskos
(1987, 1991, 1995, 1997), and Providakis and
Beskos(1999). Zhang and Atluri (1986) presented
a boundary/interior element method for the elas-
tic quasi-static and transient response analysis
of shallow shells by employing the elastostatic
fundamental solution of plates. Providakis and
Beskos (1994) and Providakis (1996) by using the
elastostatic fundamental solution of a plate devel-
oped a general domain/boundary element method
(D/BEM) for elastoplastic dynamic analysis of
thin flexural plates. Fotiu (1992, 1993) and Fotiu,
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Irschik and Ziegler (1994) using the elastostatic
or the elastodynamic fundamental Green’s func-
tion in conjunction with modal analysis created
a special BEM for dynamic analysis of certain
thin elastoplastic and damaging plates. Recently,
El —Zafrany (2001) presented a boundary element
stress analysis of thick Reissner plates under gen-
eralized loading. Recently, Rashed (2006), Chen,
Lin, Chen and Lee (2006) and Chen, Shen, Shen
and Yuan (2005) attempted to analytically evalu-
ate the required BEM Kernels for forced and free
plate vibration problems under various mathemat-
ical analysis procedures.

Katsikadelis, Sapountzakis and Zorba (1988)
were the first who proposed the use of the direct
boundary element method to the dynamic anal-
ysis of thin elastic plates with internal supports.
Their approach was mainly based on the capabil-
ity to establish numerically the Green’s function
for the corresponding static problem of the plate
subjected to the given boundary conditions with-
out supports using the BEM. In earlier works of
the present author (see Providakis (1998, 2000))
a D/BEM solution to the dynamic analysis prob-
lem of thin elastoplastic Kirchoff plates was pre-
sented, which besides, the boundary supports,
takes into account supports within the domain of
the plate. A further extension of this D/BEM so-
lution was presented in Providakis(2000) to solve
dynamic response problems of thick plates rest-
ing on elastic foundation. This work was limited
to the study of the linear elastic interaction be-
tween Reissner plates and supporting soil medium
by introducing the elastic medium in the bound-
ary integral derivations as a uniformly distributed
loading term. An efficient BEM method to ana-
lyze the domain integrals which introduced when
solving nonlinear problems or problems with ini-
tial domain effects was also proposed by Ochiai
and Sladek (2004). In this work, the domain dis-
cretization was completely eliminated by using
arbitrary internal points instead of internal cells
in combination with a conversion procedure of the
domain integrals to boundary ones. More recently
in the works of Moraru (2006), Pavlou (2004) and
Mendonca and Paiva (2003) presented numerical
approaches for the analysis of plates on elastic
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foundations using BEM discontinuous solutions
or combined FEM/BEM modelling of the static
behaviour of elastic plates.

However, deficiencies of the classical thin plate
theory of Kirchoff are well known and in many
cases cannot be accepted. Among the numer-
ous attempts to improve the classical plate the-
ory, the method proposed by Reissner (1945) and
later by Mindlin (1951) has become the standard
compared to all other theories. In the so called
Reissner-Mindlin plate theory, by taking into ac-
count the transverse shear deformation, the in-
fluence of the thickness of the plate can be ana-
lyzed more consistent. Elastic Reissner-Mindlin
plates have been dynamically analyzed by the di-
rect BEM in the frequency domain, the D/BEM in
the frequency domain and by special BEMs such
as the Green’s function BEM and the boundary
collocation method. For a review on the subject
one can consult Antes (1991) and Providakis and
Beskos (1994) or the earlier works of Katsikadelis
et al (1990, 1993).

A direct D/BEM approach based on Reissner
Mindlin theory is presented, for the first time, in
the present paper to treat the dynamic response
of thick elastoplastic plates which are supported
on points, lines or regions (patches) within the
domain of the plate, besides the boundary sup-
ports. It can be considered as an extension of
the work of Providakis and Beskos(1994) in or-
der to include internal supports which may yield
elastically linearly or nonlinearly. Using the sim-
pler form of the elastostatic fundamental solu-
tion of the problem, the computational difficul-
ties of the formulation have been reduced ade-
quately. This approach, even though requires an
internal discretization, in addition to the bound-
ary one, has certain advantages over a possible
pure boundary element method based on a com-
plex fundamental solution. The numerical proce-
dure is then accomplished by an incremental and
iterative algorithm based on the initial plastic mo-
ment procedure of Karam and Telles (1988, 1992)
and in the time-marching scheme of Sori’c, Li,
Jarak and Atluri(2004) and Fedelinski and Gorski
(2006). The Praudl-Reuss stress strain law based
on Von Mises’ yield condition have been imple-
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mented into the developed computer code in or-
der to model the hardening elastoplastic material
behavior. The descritized version of the equation
of motion after using the boundary conditions are
solved by the step-by-step time integration algo-
rithm of the central predictor method. A number
of numerical results are presented to illustrate the
effectiveness and the applicability of the proposed
method.

2 Integral formulation of the problem

Consider a homogeneous isotropic elastoplastic
plate of uniform thickness h occupying a two di-
mensional domain S bounded by a boundary I
and undergoing a lateral motion response. The
plate in addition to the boundary supports, is also
supported on point supports p;, lines supports /; or
regions r; (patches) inside the domain of the plate

(Fig. 1).
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Figure 1: Geometry of the plate

The plane x — y is assumed to coincide with the
middle surface of the plate. Following Reissner-
Mindlin’s plate theory, the equations of dynamic
equilibrium of an elastic plate in lateral motion
can be reformulated in incremental form to in-
clude bending plastic strain increments as

déM, N dOM,y
dx dy

06M,, IEM, ph’
dx + dy 00, - 12

260, N 260y
dx dy

Cso. PR s
00 125%—0

§p,=0 (1)

+8G" — ph&iv =0

where p, h and ¢* are the mass density per unit
area, the plate thickness and the transient dynamic
loading per unit area, respectively. In addition,
0y, 6 ¢, and &w indicate increments of the accel-
erations of the two slopes ¢, ¢, and of the lateral
deflection w, respectively, 0M,, M, and OM,,
represent increments of the bending and twisting
moments, 6Q, and §Q, represent increments of
the shear forces and overdots denote time differ-
entiation.

In the case of a plate resting on internal supports,
the lateral load g* is given by:

For a support at a point p;:

6" =—f[ow(&)]+d8q &e€S (2)
For a support on a line /;

6" =—f[éw(§)+dg SekcCsS 3)
For a support on a region (patch) 7; :

6" =—f[6w(S)]+6g EenCS @)

where f = f(w) is, in general, a nonlinear func-
tion, describing the reacting forces at, say, interior
point £ and g is the dynamic lateral load applied
on the plate. Consequently, the equations of dy-
namic equilibrium (1) in theirs incremental form
is given by

DM, IMy

5o PP a6
00 125%—0

ox dy
M, ISM, ph o .
9OMy o pho. 5
P dy 00y =506, =0 )
85Qx+35Qy+5q_p[5w]_ph5w:0
ox dy

The increments of the total bending and shear
strains can be given as
0&, = 0¢g; +6¢l

— € P
o€, = b¢g; + O¢]
0&y = 0, + O€l;

Sy =0y
Sy = dyy (6)

where €, €, and &,, represent bending strains, Y
and y, represent shear strains and the superscripts
e and p indicate the elastic and plastic part of the
strains, respectively. Within the small strain the-
ory the increments of the total bending and shear
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strains can also be expressed in terms of the incre-
ments of the generalized displacements as

_ dog, B déw

0g, = P 5u/x—5<px+—ax
_dog, adw

0g, = % oy, =09, +—— Jy (7
1 (ddp, dbg,

08y = 2 ( ady * dx

Following the initial plastic moment procedure of
Karam and Telles (1988, 1992), the increments of
the bending moments and shear forces can be ex-
pressed as

oM. =D [agfx +vag;py] (1 _vfg)az oMy
0.2 3, 22
My, =D [ag;p” +vagfx] 1 _vff) 5 — oM,
50, = %7& (5 o+ a;;)
o D0 [250, 208y

@®)

where MY, MY and MY, are the increments of
the plastic moments which can be defined in ini-
tial stress form by expressions derived in Provi-
dakis (2000).

In the above, D = Eh*/12(1 — v?) is the plate
flexural rigidity with E and v being the elas-
tic modulus and Poisson’s ratio, respectively and
A% = 10/h? is the shear correction factor of Reiss-
ner’s theory. The shear correction factor k> of
Mindlin’s theory is usually taken as 5 / 6 in or-
der for the two theories to coincide provided that
A% =12x?/h?. Substituting Equations (8) into (5)
one can obtain the following incremental equa-
tions of motion in terms of the increments of the
generalized displacements and plastic moments

g (1=v)V28@,+ (14 V)= J <85¢x+85¢”>]

dx \ dx dy
_ D(lz_ V))Lz <6(px_ %)
_pk’ 50 v 98q oM{ oMp

(1—v)A2 9x  odx  dy
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The static-like form of Equations (??) with the in-
ertial terms being in their right hand sides, sug-
gests using known integral identities as described
in Karam and Telles (1988, 1992) for the elasto-
plasto-static Reissner plate problem. By using the
elastostatic fundamental solution of the problem
and by replacing the reactive forces on the inter-
nal supports by the load applied at each node of
the mesh used to descritize the internal plate do-
main, one can obtain for a point § inside the do-
main S of the plate the integral equations

(ol
r/{u?j <§§) 8p; (X) -y <§§) Su; (;5)}
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AR <1—+m]
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where i, j=1,2,3, o, = 1,2 and X and x repre-
sents the field point at the boundary and in the in-
terior of the plate, respectively. The matrix C;; in
general, depends upon the geometry of the bound-
ary at point é and in the case of corners is de-

(10)

fined indirectly, by using the rigid body motion
concept, as it is elaborated in the following. How-
ever, it should be observed that equation (10) can
be made valid for internal points (with C;; = &i)
and for boundary points with C;; having the value
0;j/2 in the case of smooth boundaries. The ten-
sors uj;, p;; and E g, represent the fundamental
solution at the field point x of an infinite plate
when a unit couple (for i=1 and 2) or a unit force
(for i=3) is applied at the source point é . Thus
the generalized displacements, the corresponding
surface tractions, the expressions for uj, , and the
one for E, p; are given explicitly in Providakis and
Beskos (1994).

3 Matrix formulation and numerical imple-
mentation

The integral equations (10) can be expressed in
discrete form by dividing the boundary I" and
line supports li into a number of three noded
boundary elements. The interior of the plate do-
main Q and the domains of the internal surface
supports (patches) can be divided into a number
eight noded quadrilateral interior elements, re-
spectively. The discretization of boundary inte-
grals and internal support line integrals is accom-
plished by expressing the coordinates, the gen-
eralized displacements, the tractions and inter-
nal support reaction forces of an arbitrary point
within a boundary element I', and internal line
support as

X; =N“(O)X]
=N*(¢)6U7 an
:N“(C)5P
— N“(£)SF¢

R

where N¢({) is a set of polynomial shape func-
tions defined on boundary element element I';, and
line element /; , ¢ is an intrinsic coordinate on
I, which varies between -1 and +1 and the su-
perscript o is summed from 1 to 7z, which is the
number of nodes on I';, while X]“ o Uy, 5P]?‘, and
OF i are vectors containing the nodal values of co-
ordinates, generalized displacement increments,
boundary traction increments and nodal values of
line supports reactions increments, respectively.

For the discretization of the inertial, transverse
loading, plastic moments and internal supports
surface integrals, it is assumed that the coordi-
nates of an arbitrary interior point & within any
interior element can be calculated by the equation

¥ = N"(G1,6)%] (12)

where £; is the vector that contains the Cartesian
coordinates of an arbitrary interior point & within

an element S, and S,;, N°({1, &) is a set of poly-
nomial shape functions and X? is the vector of the
Cartesian coordinates related to the nodal point
of the elements S, and S,; , {; and { are in-
trinsic coordinates on any interior element S,, and
S,; and the superscript b is summed from 1 to 1,
which is the number of nodes on element S, and
Syi. The transverse loading, the inertial, the plastic
moments and the internal surface supports effect
terms at an arbitrary point within the element S,
and §,; can be expressed by using the equations

8g=N"(1,6)80"

8U; =N"(41,5)8U7

SMD s =N (G, &) oM " (13)
8U; =N°(&1,4)8U%

81 =N"(§1,6)8F}

where 0q, 0ii;, 5M§I3 and OF ;’ represent the vec-
tors of the increments of the transverse loading,
the acceleration, the plastic moment and the sur-
face supports reaction forces terms, respectively
at an arbitrary point § inside the interior element
Sn. and S,; Thus, integral equations (10) utilizing
the function expansions (11)-(13) can be written
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in discretized form as

CljSUj(é) -
mg <rf N(Q)U; (iaX(C))dF(X)> O]

-3 (rf ()P, (é,)?(o)dr(f)) 5U

+§1 Sbe(Cl,Cz)si‘jk(é,f(él,Q))dg(z)) 50"
_é] Sbe(Cl,Cz)ij(é,i(Cl,Cz))dr(g)> i
+§] Sbe(ClaCZ)E;ﬁi(évx(ClaCZ))dQ(f))

b
My

-3 (SJN%,czw;g<é,x<cl,cz>>dsr<x>> 61}

-3 fN“(C)Uié(i’f(C))sz(fO OFf

=1 \r,
K
_kg'l U} (&, k) OF
(14)

where M is the number of boundary elements, N
is the number of interior elements, M; is the num-
ber of the interior line support elements, K is the
number of interior point supports, N, is the num-
ber of interior support surface elements, I, is the
mth boundary element (I'=3Y"_,T,), S, is the
nth surface element (S =YY | S,)) and Ui P
Sii M, Ky and E 5 are the corresponding ten-
sors of the boundary integrals of equations (14).
By applying a boundary nodal point collocation
procedure to equation (14) one can obtain for any
point é on the boundary the following system of

equations in matrix form

[C16{U}y=[P1]6{U}p+[U"]6{P}»+[S"]6{Q}:
+[M18{U}i+[E"]8{M"}i+[F"]6{f(8U3):}
15)

where 0{U}p, 6{P}p, are vectors of the in-
crements of the nodal boundary values of the
generalized displacements and tractions, 6{Q};,
8{{U};, 6{M}?, and 6{f(8(U3))}; are vectors

of the increments of the interior domain nodal
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values, respectively. [P*] and [U*] are bound-
ary element integral matrices, while [S*], [M*],
[E*] and [F*] are domain element integral matri-
ces related to the transverse loading, inertial, plas-
tic moment and internal support conditions ef-
fect terms. By using the boundary conditions and
eliminating and rearranging one can obtain from
(15) the matrix equation

[A*]8{Y }5+[B*]6{J}p = [S]6{0Q}i+ [M"]6{U};
+ETS{M?}i+ [F716{f(8Us)}:  (16)

where 8{Y'}, and §{J}; are vectors of the known
and unknown increments of the nodal boundary
values, respectively, and [A*] and [B*] are bound-
ary element integral matrices. For the interior
of the domain S the matrix form of the integral
equations (14) after discretization and using the
boundary conditions reads

3{0i} = WIs 0+ 816U+ a6

+(8710{0}i+ [ET]6{M"}i+ [E7]6{(8(Us))
A7

where the subscripts s and i indicate supports and
inertia nodes, 6{U} is the vector of unknown in-
crements of nodal generalized interior displace-
ments and the matrices [A*], [B*], [M"], [S"], [E*]
and [F*] are the same as in equation (17) but they
are evaluated at a point £ inside the domain S of
the plate. N

In case of rigid supports equation (17) yields to

6 {3} = WISV} E151 )+ LIS{UY:

+[816{Q}i+ [ET]6{M"}; + [ET]6{F} (18)

where {F;} is the vector of the unknown reaction
forces at the support nodes.

After elimination of the vector §{F;} between
equations (18) one can obtain the matrix equation

8{U;} = [A116{Y}p+[B"16{/},+[S*]6{Q}
+[M8{U};+ [E*)6{M"}; (19)
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where

[A7] = [A"] + [E][F*]1AY]
7] = (M) + [E*][F) (M)
5] =[S ]+ [EFT[S]
7] = [E"]+[E"[F]VE)

(20)

The elimination of the matrix {J} between (19)
and (20) leads to the final matrix equation

(A 8{y}+[M*]'8{U}
= [5*]6{Q} +[E*)8{MP} (21)

where
[A*]' = [A*] + [B*][B*] ' [A"]
(M) = [M*] + [B*][B*) ' [M"] (22)

S =[5+ BB ~'[5"]

The evaluation of the coefficients of the matrices
in equations (14)-(21) needs a number of com-
plicated integration procedures. Since analytical
integration of the integrals in these equations is
not possible, in general, the Gaussian quadrature
technique was used. For the singular cases, which
occur when the field and the source point are sit-
uated over the same element, special approaches
were employed.

In the case of the displacement kernel matrix [U*]
the singularity is of O(/nr) which is a weak sin-
gularity. This logarithmic singularity is removed
by using a quadratic coordinate transformation
which produces a Jacobian that eliminates this
kind of singularity at the considered point. The
traction kernel matrix [P*] presents O(r~!) and
O(Inr) singularities in its components. The strong
O(r~1) singularity, together with the correspond-
ing C;; coefficient in equation (14) can be com-
puted indirectly by considering three rigid body
movements of the type (Van der Weeen (1982)).

(i) Lt]:l; u2:0; u3:x1(§)—x1(x)
(i) m1=0;, wp=1;, wz=x(&)—x(x)
(iii) uy = 0; Uy = 0; usz = 1
(23)
This allows the diagonal (singular) block to be

written in terms of the off-diagonal (non-singular)
blocks.

For the case of influence matrices associated with
interior elements, the integrals are also evalu-
ated numerically. The singular surface integrals
for matrices [S*]" and [E*]" exhibit O(Inr) and
O(r~') singularities, while those for matrices
[M*]" exhibit O(Inr) singularity. These singular-
ities are removed by the use of 8 noded quadri-
lateral interior elements which have a Jacobian
which smooths out the singular behaviour of the
kernel-shape function products. For improved ac-
curacy the singular elements are divided into tri-
angular subelements. The common apex of all
subelements is the field point § . Each triangular
subelement is then mapped on to a flat right trian-
gle and numerical integration is performed using a
polar coordinate system (r, 6) centered at the sin-
gular apex as presented in Providakis and Beskos
(1994) and Providakis (1996).

Finally, to derive the quasi-singular boundary in-
tegrals which exist in the evaluation of the mo-
ments and shear forces at internal points, in
cases when these points are located very near the
boundary, the same quadratic coordinate transfor-
mation mentioned above is used.

4 Elastic-plastic stress-strain relations

The Prandtl-Reuss stress-strain relations based on
the Von Mises’s yield condition are used to model
elastoplastic material behavior. The generalized
Hooke’s law can be written in matrix form as

§{e}=[D|* §{c}=58{e}—5&{e}’, (29

where [D]¢ is the elasticity matrix and {e} and
{o} are strain and stress vectors with the super-
scripts e and p denoting elastic and plastic parts,
respectively. The plastic strain increment 6{&}”
can be given in matrix form by the relation

6{e}’ = [D]"d{e} (25)

where [D]* = [I] — [D]¢ ' [D]*” with [I] being the
identity matrix and [D]°” the elastoplastic matrix
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having the form

=y - o1 {57 H 5 } D)

(REAE S

In the above, F is the yield surface and H is
the plastic modulus, which is zero or nonzero for
ideal or hardening plasticity, respectively. Matrix
[D]P connects the plastic stress increments with
the total strain increments through the relation

6{c}" = [D]"5{e} 27

The Von Mises’ yield surface for the present
case of a Reissner-Mindlin plate is given by F' =

o2+ 6),2 — 0,0y + 31:%, — 0, where G is the uni-
axial effective stress.

5 Solution strategy

The values of the nodal generalized displacements
{U} at every time station are obtained by integrat-
ing forward in time equation (21) through an ex-
plicit central difference predictor algorithm. The
initial distribution of generalized displacements,
velocities and accelerations are prescribed and set
to zero. The generalized displacements can then
be determined at the end of the first time step.
These are now used to evaluate the partial deriva-
tives of the displacements increments, following
the FEM-type procedure described in Providakis
and Beskos (1994). From these computed partial
derivatives the incremental strain can be obtained
along the lateral axis through the well known
strain-displacement relation of the plate deforma-
tion. The increments of the stresses are obtained
from the strain increments and the incremental
plastic moments calculations follow in terms of
the plastic strain increments after an appropriate
checking at yielding. Thus the total and incre-
mental generalized displacements are then found
at time At and so on, and the time histories of all
the variables are obtained.

6 Numerical examples

To illustrate the accuracy of the proposed method
a computer program based on the analysis pre-

CMES, vol.18, no.3, pp.247-258, 2007

sented in the previous sections has been writ-
ten. Three numerical examples of elastoplastic
plates with different boundary and interior condi-
tions subjected to impulsive load have been stud-
ied (Fig. 2-4).

|—6.OTS|— 6.0—
- — X
Bearing
s.s. wall
A B Co || s-s (=simply supported)
12.0
s.s.
Y

1)
Figure 2: Geometry of example 1

S.S. f. s.s. (=simply supported)
"" X
S.S|
Wall Point
3.15 —— ®’Supports
T 0 / —q—
®
3.15 f (=free)
Jf.s
S.S. f. S.s.
210 —mm8M8

2)

Figure 3: Geometry of example 2

Example 1

Consider a square simply supported plate resting
on a line support along the mid-span and sub-
jected to a uniformly distributed suddenly applied
load (Fig. 2). Figure 5 shows the dynamic elasto-
plastic response of the points A, B and C of the
plate. Figure 6 depicts the bending moment con-
tours as computed by the present computer pro-
gram for two different time steps.
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3)
Figure 4: Geometry of example 3
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Figure 5: Dynamic elastoplastic response of the
plate
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Figure 6: M, contours for time step t=0.0006 secs

Example 2

As for the second example, a rectangular plate
with mixed boundary conditions and complicated
internal supports is considered which is subjected
to a suddenly applied uniform load(Fig. 3). In
Figure 7 elastoplastic time variation of the deflec-
tion at the points D, E and F of the plate is shown.
Figure 8 show the bending moment contours, re-
spectively, of the half of the plate.
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0.010 |- ; | oo Point E
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0.006
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Figure 7: Dynamic elastoplastic response of the
plate
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Figure 8: M, contours for time step t=0.0012 secs

Example 3

In this example, a square plate with mixed bound-
ary conditions and supported on four symmetri-
cally located interior square regions (patches) has
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been considered. The patches deform elastically
with a rigidity equals to 0.1. The sides of the in-
terior regions has been taken equal to the 7th part
of the whole plate side (Fig. 4). The computed
responses of the points G, H and I are depicted in
Figure 9. The time dependent bending moment
contours for the quarter of the plate has also been
given in Figure 10.
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Figure 9: Dynamic elastoplastic response of the
plate
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Figure 10: Mx contours for time step t=0.002 secs

7 Conclusions

In this paper a domain/boundary element method
has been presented for solving dynamic elasto-
plastic Reissner-Mindlin plate problems which, in
addition to, the boundary supports are also sup-
ported, inside the domain on points (columns),

CMES, vol.18, no.3, pp.247-258, 2007

lines (walls) and regions (patches). On the ba-
sis of the preceding developments the following
conclusions can be deduced

a) The BEM solution is very well suited for the
solution of the dynamic elastoplastic prob-
lem of Reissner-Mindlin plates resting on in-
ternal supports.

b) Plates having an arbitrary shape, supported
on all kinds of boundary conditions and sub-
jected to any loading can be effectivelly ana-
lyzed.
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