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SUMMARY

The subject of this paper is the calculation of charge distribution on the surfaces of thin conducting
microelectromechanical systems beams, of nearly square cross-section, in electrostatic problems, by the
boundary element method (BEM). A line model of a beam is proposed here. This model overcomes the
problem of dealing with nearly singular matrices that occur when the standard BEM is applied to very
thin features (objects or gaps). This new approach is also very efficient. Numerical results are presented
for selected examples. Copyright © 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Microelectromechanical systems (MEMS) have demonstrated important applications in a wide
variety of industries including mechanical and aerospace, medicine, communications, information
technology, etc.

Numerical simulation of electrically actuated MEMS devices has been carried out for nearly
15 years by using the boundary element method (BEM—see e.g. [1-5]) to model the exterior
electric field and the finite element method (FEM—see e.g. [6—8]) to model the deformation of
the structure. The commercial software package MEMCAD [9], for example, uses the commercial
FEM software package ABAQUS for mechanical analysis, together with a BEM code FastCap
[10] for the electric field analysis. Other examples of such work are [11-14], as well as [9, 15, 16]
for dynamic analysis of MEMS.
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Figure 1. Parallel plate resonator: geometry and detail of the parallel plate fingers (from [17]).

Many applications in MEMS require BEM analysis of the electric field exterior to thin conducting
objects. In the context of MEMS with very thin beams or plates (see Figure 1), a convenient way
to model such a problem is to assume plates with vanishing thickness and solve for the sum of the
charges on the upper and lower surfaces of each plate [18]. The standard boundary integral equation
(BIE) with a weak singular kernel is used in [18] and this approach works well for determining,
for example, the capacitance of a parallel plate capacitor. For MEMS calculations, however, one
must obtain the charge densities separately on the upper and lower surfaces of a plate since the
traction at a surface point on a plate depends on the square of the charge density at that point.
The gradient BIE is employed in [19] to obtain these charge densities separately. The formulation
given in [19] is a BEM scheme that is particularly well suited for MEMS analysis of very thin
plates—for &/ L<0.001—in terms of the length L (of a side of a square plate) and its thickness /.
A similar approach has also been developed for MEMS with very thin beams (2-D problems) [20].
Similar work has also been reported recently by Chuyan et al. [21] in the context of determining
fringing fields and levitating forces for 2-D beam-shaped conductors in MEMS combdrives. A
fully coupled BEM/FEM MEMS calculation with very thin plates has been completed recently
[22]. See also [23] for an application of the thin plate idea for modelling damping forces on MEMS
with thin plates.

Turning now to nanoelectromechanical systems (NEMS), two recent studies [24, 25] have con-
sidered the 3-D problem of charge distribution on conducting carbon nanotubes (CNTs). Both the
studies have employed the BEM. The former applies the full 3-D BEM, while the latter takes
advantage of the long thin geometry of a nanotube and proposes a reduced 3-D or line model for
a CNT. This approach effectively produces a 1-D rather than a 3-D model for a CNT. Numerical
results presented in [25] are most encouraging.

Many MEMS applications involve narrow beams of length around hundreds of pm, and with
cross-sections that are square (or nearly so) with side around 1 pm. Batra et al. [26], for example,
consider pull-in of such micro-beams. In this paper, they model the external electric field with the
standard BEM (called the method of moments in [18]), with a 2-D model of a beam cross-section.
In contrast, a line model of a 3-D narrow beam is developed in the present work, in a manner
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analogous to the line model for a CNT in [25]. The primary contribution of the present work,
therefore, is the development of a line model of a narrow beam, of nearly square cross-section,
in a 3-D region (called a reduced 3-D model). As before [19, 20, 25], this model overcomes the
problem of dealing with nearly singular matrices that occur when the standard BEM is applied to
very thin gaps. It also greatly simplifies the BEM calculations and is computationally very efficient.
Finally, the actual charge distribution on the entire surface of a narrow beam can be recovered at
a post-processing step!

The present paper is organized as follows. The notion of an ‘equivalent’ circular cross-section
to replace a rectangular cross-section of a narrow beam is presented first. A BIE is presented
next for an infinite region containing one thin beam of circular cross-section and the (infinite)
ground plane. (This BIE is the same as the one for CNTs presented before in [25].) The ground is
modelled indirectly by adding a suitable image beam in the computational domain. This approach
of modelling the ground plane is quite standard (see e.g. [19, 20, 24]). An alternate ground model
is available in [27].

The gradient BIE is presented next. This equation is useful for determining the charge distribution
around a beam cross-section as a post-processing step. This section is followed by numerical results
for the charge density, per unit length on a narrow beam, from this reduced 3-D model. These
numerical results are compared with the analytical solution for charge distribution along a thin
tube (of circular cross-section) of infinite length [28, p. 159], and also with numerical results for
a 2-D cross-section BEM model. Numerical results for the charge distribution, per unit area on a
beam surface, obtained from the gradient BIE, follow. A Concluding Remarks section completes
the paper.

2. BIEs IN SEMI-INFINITE 3-D REGION CONTAINING A NARROW CONDUCTING
BEAM AND THE GROUND

2.1. The problem

Consider the situation shown in Figure 2 with two parallel narrow beams (the physical beam and
a parallel image beam). Of interest is the solution of the following Dirichlet problem for Laplace’s
equation:

Vzd)(x) =0, xeB, ¢(x) prescribed for x € 0B )
3 a8,
S1 \ y axis of beam 1
o | L, — _Xa ﬂ S A//
T =0
2 ground plane
l axis of beam image
A I By

Figure 2. Narrow beam with image.
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Figure 3. Calculation of radius of equivalent circular cross-section beam.

where ¢ is the potential and B is the region exterior to the two beams, each of length L and nearly
square cross-section a x b. The total surface of the two beams is 0B and the unit normal n to 0B
is defined to point away from B (i.e. into a beam).

2.2. Equivalent circular cross-section

An equivalent circular cross-section replacement beam is necessary in order to apply the simplified
methods presented in [25]. The distance between the centre of a beam and the ground is kept the
same when the actual beam cross-section is replaced by a circular one.

There are, of course, many ways to choose the radius p of this replacement circular cross-
section. Examples are equal cross-section area, equal cross-section perimeter, etc. In view of the
1/r behaviour of the 3-D Laplace equation kernel, the following choice has been made:

1/p=E/r) 2

where E denotes the expected (average) value of the Euclidean distance between the centre and a
point on the boundary of the rectangular cross-section of a beam. This choice is made because it
is elegant and is justified a posteriori.

Referring to Figure 3, with r(0) =a/(2cos(0)), r(¥/) =b/(2 cos(y)) one gets:

Op v
1.2 / 2eos® 494 2 / P 2cosW) g, 3)
p TJo a 7 Jo b
With tan(0p) =b/a, tan(yp) =a/b, one gets:
nab
p=— b @)

4+v/a? + b?

For a square cross-section with side a, p =0.555a. Square cross-sections are depicted in Fig-
ure 4, but nearly square rectangular cross-sections can also be handled by the methods proposed
in this paper. Please note that g. + p=g + a/2 in Figure 4. Here, 2g is the physical gap be-
tween the square cross-sections of the real beams and 2g. is the gap between the replacement
circles.
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Figure 4. Beam cross-section with image. A dotted circle of radius p represents the
replacement of a square by a circle for the calculation of the charge density per unit
length, ¢, along a beam. Note that g. + p=g + a/2.

2.3. Regular BIE—source point approaching the beam axis s

Narrow beams with equivalent circular cross-sections are considered in this section.
For a source point & € B — x € §1 C 51 (see Figures 2 and 4), one has

_ q(y) q(y) R
P(x) = /M Iner(x.y) dﬁ(y)Jr/E1 Irer(x.y) dé(y), xes51Cs Q)
with
2n
4 = /0 o(y3. p. O)pdl,  ysesi or 5 ©)

Here, o is the charge density, per unit surface area, on the beam surface and ¢ is the charge
density, per unit length, on the beam axis s1. The axial coordinate for a straight beam is y3. For
a bent beam, y3 must be replaced by the arc length coordinate £ along the (bent) axis of the tube
and the integration in (6) must be carried out on a planar cross-section of the tube that is normal
to the local arc length direction.

It is first noted that the source point X in (5) lies inside rather than on the surface of a beam.
The potential at any such point x, however, is known (it is the same as on the beam surface) and
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can be used as a ‘boundary’ condition. Also, both beams are assumed to be very thin and a line
model is used for each of them.
The starting point for the first integral on the right-hand side of (5) is the double integral

7 a(y)pdo
/ 0B dey )/ drmer (X, y) @

where 0B is a line on the beam surface dB; which is parallel to the beam axis s1. In view of (7),
and the fact that r(x, y) in this case is, in fact, independent of y (and therefore of 0), the first term
on the right-hand side of (5) is exact. The second integral on the right-hand side of (5) follows
from the assumption that g>>p (where g is the gap between the nanotube and the ground and p
in the radius of an equivalent beam of circular cross-section (see Figures 2 and 4). Therefore, one
has r(x, y)>>p and it is assumed that r is independent of 0 with the field point y moving on the
boundary of a cross-section of the image beam. Next, r(x, y) is approximated to be the distance
from x € 51 and y € §1. Exactly how large g has to be compared to p is discussed in [25].

The first integral in (5) is nearly strongly singular and the second is regular. An evaluation
procedure for the first integral is discussed in [25].

Given ¢, Equation (5) can be solved for ¢(y) on s;.

2.4. Gradient BIE—source point approaching the surface 0B of a beam of square cross-section

Let £ — x e 0B; (see Figure 4). Now, one uses (5) and (8) for the charge density on a beam
surface:

0
o(x) = ﬁg(x) =en(x) - [Ved(8)]e=x ®)

The resulting gradient BIE (see Figure 4) is

6(®) = / ~ rxY) nX9W) o) geoBy, )
s1Usy

4nr3(X,y)

Please note that the one now reverts back to the actual square cross-section narrow beams.
Square cross-section beams are considered in this section for illustrating the present approach.
Rectangular cross-section beams can also be included by a simple extension of the present idea.

With g (y) known, (9) can be used, as a post-processing step, to find the charge density distri-
bution ¢(x) on the outer surface of the beam with axis s.

Again, a line model is assumed for each of the beams, i.e. the integrals on their surfaces are
replaced by those on their axes.

The integral on s1 in (9) is nearly hypersingular. Its evaluation is discussed in Section 2.4.1.
The integral on § is regular.

2.4.1. Evaluation of integral on s1 in (9). This procedure, for the square cross-sections shown in
Figure 4, closely follows the derivation for circular cross-sections in [25].
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Figure 5. Evaluation of the third integral in (10).

This nearly hypersingular integral is first written as

de(y)

/ rx,y) -nX)q(y)
51 47”’3(729 y)

_ / rX,y) - nXq(y)

4nr3(X,y) de)

rx,y) - n(x)
4nr3(X,y)

n / rx,y) n®[gy) —q9& —¢' Xy — )]

4nr3(X,y) dew)

de(y) +q(x) /
S1

51
' = r(X,y) -nX)(y — X)
® |

S

de(y), XedB,CoB 10
43 &y) (¥), X€0dB1COB; (10)

+4q

where X €§; is closest to X € dB; (see Figure 5). Also, X is at the mid-point of the segment 9B,
of 0Bj. This is sufficient since (9) is a post-processing step.

Referring to Figure 5, for a piecewise quadratic approximation for ¢ (y), the second integral on
the right-hand side of (10) (using the Taylor series for g(y) about X) becomes:

q//()—() E/Z aZ2 dZ

—_— 11
16m J_jjp (22 4 c2)3/2 (b
This integral can be evaluated analytically.
Again referring to Figure 5, the third integral on the right-hand side of (10) becomes:
_ [ T&y) n® g® [ adg
§ A4mr’(x,y) 8 J_iy2 (27 +¢%)

This integral can be evaluated analytically. The last integral on the right-hand side of (10) is:

[ TRy @)y - %) g® [ azdz
q’(x)/ 32 dé(y) = N RGN Yo (13)
3 4nr- (X, y) 81 J_p2 (27 + %)
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Finally, (10) has the simple form:

r&,y) - n®q(y) aq(y) g'® [ adz
f Tz dZ(y):/ e oy + N BRIV
s 4mri(X,y) s1—5 ST (X,y) lor J_j2 (27 +¢%)
g® 1?2 adz

81 _E/ZW’ )A(E@Bl C@B] (14)

where ¢ =r(X, X). .
For the numerical calculations, £ in Figure 5 is taken to be the length of a boundary element.

3. RESULTS

3.1. Analytical solutions for sample problems

Analytical solutions for ¢ and o, for two infinite conductive parallel (cylindrical) tubes with
potentials ¢ and —¢, are given first. (See Figures 6 and 2 that show two parallel finite narrow
beams.)

For a circular cross-section tube of radius p, separated by gap 2g, one has [24, 28] (see also
Figure 10 in [25]):

27ep

== 15)
1 cosh™' (14 g/p)

The next problem concerns charge densities around beams of square cross-section.

Referring to Figures 7(a) and 6, analytical solutions can be obtained for the charge densities
o(A),a(B) and ¢(C) =a(D).

A

a/2 In(A) q S

a/2 TH(B) y '
B

2g

al2 ¥ o-q =

Sl
a/2

Figure 6. Two parallel narrow beams of infinite length. The points A, B, C and
D are clearly shown in Figure 7(a).
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Figure 7. Charge density ¢ per unit area around the central cross-section of the top beam.
(a) Geometry and coordinate axes. (b)—(d) Charge density along top, left and bottom
boundaries, respectively, of square cross-section of top beam. £ = 1000 pm, g = 10 um,

a =1 ym. Two-beam model with ¢, =1V, ¢; =—1V and ¢ =8.854 x 10~'2F/m, and
401 quadratic elements along each beam.

Applying Equation (9), one gets:

_ [ TAy) -nA)g(y) _ [ TAy) -nA)q(y)
o(A) = / D any / D 4y (16)

With ¢ constant on an infinite tube (its value is given by (15)), using Figure 6, one has:

qg [* adz qg [ (2g +3(a/2))dz
o(A) = — S S
81 J oo (224 (a/2)?)3?  4m | o[22+ (28 +3(a/2))*1/?
_4 a1 |_4f 28Fa (17
T na 2n|2¢+3@/2)|  ma|2g+3(a/2)
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Using a similar procedure, and noting that r(B, y) - n(B) = —(2¢g + a/2) for y € 51, one obtains

. Z_q 2¢+a
o(B) = na [4g +a] (18)

Also

2 2 _
q [a +4Q2g +a) 1:| (19)

=D = | " 4 + a)?

3.2. Numerical results for q for two parallel beams in Figure 2

Numerical results, for the charge density g per unit length, are presented in this section for two
parallel beams of finite length (i.e. a narrow beam with its image in order to model the ground
plane.) The physical problem has narrow beams of nearly square cross-section, but these are
replaced, for the computations, by beams of equivalent circular cross-section with the radius p
of each beam obtained from (4). Also, for these calculations, g. + p =g + a/2. for square and
gc + p=g + b/2 for rectangular cross-section beams. These results are then compared with the
analytical solutions for infinite tubes (15) and also with numerical results from a standard 2-D
BEM with two square or rectangular cross-sections (see Figure 4).

3.2.1. Material and geometrical parameters. The fixed values of the geometrical parameters are
£=1000 pm and b =1 um (for rectangular cross-sections). Other parameters are allowed to vary.

Also, e=8.854 x 10"'>F/m and ¢; =1V and ¢, = —1V, respectively.

3.2.2. Numerical results for square cross-section beams. One-dimensional quadratic boundary
elements are used to discretize each beam. The first and last boundary elements on a beam are
nonconforming ones (with #; =—-0.5,%, =0, n3=1.0; and 1, =—1.0,%, =0, n3 =0.5, respec-
tively), to allow for singularities in ¢ at the two ends of the beam. (Here, #, with —1<5n<1, is
the intrinsic coordinate on a quadratic boundary element and #;, k=1, 2, 3, are its nodal values.)
The rest of the elements are the usual quadratic conforming ones. Numerical results for gg (at the
centre of the top beam), for different values of g and a, respectively, are shown in Tables I and II.
It is seen that the 3-D line model numerical results agree very well with the analytical solution
(15). This serves to verify the computer code. More importantly, results from the 3-D line model
are seen to agree quite well with the 2-D BEM results for a cross-section model—thus providing
credibility to the line model for square cross-section beams proposed in this paper.

3.2.3. Numerical results for rectangular cross-section beams. Similar results for beams of rect-
angular cross-section appear in Table III. This time, »=1 pum and a is varied (see Figure 3). The
radius p of an equivalent circular cross-section beam is calculated from (4). The 3-D results agree
very well with the analytical solution (15). (These analytical results are not reported in Table III.)
The 2-D and 3-D results are seen to agree quite well for nearly square cross-section beams, but
begin to diverge as the quantity |a/b — 1| increases. This is expected since an equivalent circle is
not able to adequately model aspect ratios far from unity, but is needed for the simplified BIE (5)

to apply.
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Table I. Charge density go at the centre of the upper narrow beam as a function of g with
£=1000pm and a =1 pm (p =0.555 um).

q0 (pC/m)—3-D ¢qg (pC/m)—analytical ¢gg (pC/m)—2-D Difference between
g (um) code computed  solution for £y — o0  code computed 2-D and 3-D codes (%)

10 15.32 15.32 15.65 2.1
20 12.94 12.93 13.17 1.75
50 10.71 10.69 10.85 1.3
100 9.50 9.44 9.57 0.73

Note: Two-beam model with ¢; =1V, ¢; =—1V and £=8.854 x 10~!2 F/m. Note that for the
3-D calculations, gc + p=g + a/2 (see Figure 4), and 201 quadratic elements are used along
each beam.

Table II. Charge density go at the centre of the upper narrow beam as a function of a
with £=1000 pm and g =100 pm.

qo (PC/m)—3-D ¢qg (pC/m)—analytical ¢gg (pC/m)—2-D Difference between
a (um) code computed  solution for £y — oo code computed 2-D and 3-D codes (%)

1 9.5 9.44 9.57 0.73
5 13.03 12.93 12.97 0.46
10 15.46 15.32 15.20 1.71
20 18.85 18.65 18.16 3.8

Note: Two-beam model with ¢p; =1V, ¢y =—1V and £¢=8.854 x 10~ 2 F/m. Note that for the
3-D calculations, gc + p=g + a/2 (see Figure 4), and 201 quadratic elements are used along
each beam.

Table III. Charge density g at the centre of the upper narrow beam of rectangular cross-section, as a
function of a with b=1pm, £ =1000 um and g =10 pm.

qo (pC/m)—3-D code qo (pC/m)—2-D code Difference between 2-D and

a (pm) p (um) computed computed 3-D codes (%)
0.8 0.49 14.81 14.50 2.14

0.9 0.525 15.09 15.09 0

1.0 0.56 15.32 15.65 2.11

1.1 0.58 15.51 16.19 4.20

1.2 0.60 15.67 16.71 6.22

Note: Two-beam model with ¢y =1V, (2)1 =—1V and £=8.854 x 1012 F/m. Note that for the 3-D calcula-
tions, gc + p=g + b/2 (see Figure 4), and 201 quadratic elements are used along each beam.

3.3. Calculation of charge density o on the surface of a narrow beam of square cross-section

Two narrow beams with square cross-sections (Figure 4) are considered in this section. Again, the
reader is reminded that square cross-section beams are considered here for illustrative purposes
only. Analysis of rectangular cross-section beams requires only a simple extension of the ideas
presented in this paper.
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Table IV. Charge density ¢ at various points on the cross-section of the
upper beam (see Figures 4 and 7).

Point o (uC/mz) computed o (uC/mz) analytical Difference (%)

A 4.775 4.763 0.252
B 5.007 4.995 0.240
C, D 4.886 4.874 0.246

Note: £=1000pm, g=10pum, a=1pm. Two-beam model with ¢; =1V,

551 =—1V and £¢=8.854 x 10"12F/m, and 401 quadratic elements are used
along each beam.

32

G(A) = 3.064
3L i

2.8+ J
261 1

241 1

G (UC/m?)

2.2+ J

2l i

1.8} J

1.6} 4

1.4 . . . . . . . . .
=500 —400 -300 -200 -100 0 100 200 300 400 500

Coordinate along top line of cross-section of top beam (nm)

Figure 8. Charge density ¢ per unit area along the top line of the central cross-section of top
beam. £ =1000 pm, g =100 um, a = 1 pm. Two-beam model with ¢; =1V, ¢; =—1V and
£=28.854 x 1072 F/m, and 401 quadratic elements along each beam.

Figure 7 shows plots for ¢ on various segments of the boundary of the central cross-section of
the upper beam. These numerical results are obtained from the gradient BIE (9) (see also (14)).

Comparisons of numerical solutions for ¢ at the points A, B, C and D, with analytical results
from (17) to (19), appear in Table IV. The numerical results are seen to be very accurate.

Finally, similar results for a gap g =100 pum are shown in Figure 8. This time, the analytical
solution from (17) is 2.997 pC/m?.

4. A CONCLUDING REMARK

A line model for a nanotube of circular cross-section [25] is extended in this paper to narrow MEMS
beams of rectangular (nearly square) cross-section. This proposed model is very much simpler
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than a full BIE model (see, e.g. [24]). Numerical results presented in this paper are encouraging
for beams with rectangular cross-sections whose aspect ratios are not far from unity. Based on the
results presented in this paper, it is suggested that this approach is useful for rectangular beams
with aspect ratios 0.8<a/b<1.2.

This paper complements earlier work on thin plates [19,22] and beams [20]. The 2-D model
in [20] is valid for beams of rectangular cross-section with large aspect ratios, while the present
work applies to narrow beams of nearly square cross-section.
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