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Abstract

The method of fundamental solutions (MFS) is formulated in the frequency domain to model the sound wave propagation in three-

dimensional (3D) enclosed acoustic spaces. In this model the solution is obtained by approximation, using a linear combination of

fundamental solutions for the 3D Helmholtz equation. Those solutions relate to a set of virtual sources placed over a surface placed

outside the domain in order to avoid singularities. The materials coating the enclosed space surfaces can be assumed to be sound

absorbent. This effect is introduced in the model by imposing impedance boundary conditions, with the impedance being defined as a

function of the absorption coefficient. To impose these boundary conditions, a set of collocation points (observation points) needs to be

selected along the boundary.

Time domain responses are obtained by applying an inverse Fourier transform to the former frequency domain results. In order to

avoid ‘‘aliasing’’ phenomena in the time domain results, the computations introduce damping in the imaginary part of the frequency.

This effect is later removed in the time domain by rescaling the response.

After corroborating the present solution against the analytical solution, known in closed form for the case of a parallelepiped room

bounded by rigid walls, the model is used to solve the case of a dome.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The performance of rooms used for speech or music is
highly influenced by the correct choice of a set of
parameters during the design stage. The sound field
produced inside enclosed spaces is dependent on their
volume, geometry, coating materials, sound frequency, and
occupancy. For this reason, the acoustics of rooms has
been researched for many years in order to obtain models
and experimental results that will be helpful to acoustic
design. The modeling of the phenomena involved is not
simple and different numerical methods of varying com-
plexity have been developed.

There are classic statistical models, following the well-
known Sabine and Eyring theories that consider uniform
energy density distribution, and recently some statistical
e front matter r 2007 Elsevier Ltd. All rights reserved.
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models have been improved to include non-uniform
reverberating energy density distribution [1].
Methods based on geometric acoustics are also widely

used in room acoustics prediction. Among these methods is
the image source method [2,3] where the huge number of
virtual sources required can be a limitation, and the ray
tracing technique [4], valid in the high frequency range but
including a degree of uncertainty since it is not sure that all
the rays needed are included in the response. There are also
hybrid methods combining those two [5].
Methods requiring domain discretization such as the

finite element method (FEM), the finite difference method,
and the boundary element method (BEM), have not been
widely used to compute the propagation of sound, because
of the high computation cost entailed. The FEM [6] and
the finite difference method [7] fail because the domain
under consideration has to be fully discretized, and very
fine meshes are needed to solve excitations at high
frequencies. Methods like the BEM [8] are more efficient
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in terms of computer cost as they only require the
discretization of the boundaries, but they involve a
large computational effort, particularly for very high
frequencies.

Recently, several researchers have focused their work on
meshless methods in order to avoid the time-consuming
problem originated in mesh generation for complicated
geometries. These methods have been used to solve some
acoustic problems. The method of fundamental solutions
(MFS) is applicable when a fundamental solution of the
differential equation in question is known. Recent survey
papers describe the method and various applications for it
[9–11]. In Ref. [11], Fairweather et al. described and
reviewed the MFS and related methods for the numerical
solution of scattering and radiation problems in fluids and
solids. Alves and Valtchev compared the plane waves
method and the MFS for acoustic wave scattering [12].
Suleau and Bouillard applied the element-free Galerkin
method to compute harmonic solutions of acoustic
problems, governed by a Helmholtz equation [13]. Chen
et al. employed the boundary collocation method using
radial basis functions for the acoustic eigenanalysis of
three-dimensional (3D) cavities [14]. In this paper, the
MFS method is implemented to model a 3D acoustic
problem. This method suffers from ill-conditioning of the
system’s linear equations, which is common when external
source collocation methods are applied. Several techniques
have been developed to handle the ill-conditioning of
similar meshless collocation methods. Some use compactly
supported radial basis functions [15], while others incor-
porate the least squares approach [16,17], apply a pre-
conditioning technique [18] or use the matrix-free greedy
algorithm [19].

Although the single value decomposition method
(SVD) has traditionally been employed to solve ill-posed
problems, in the case of the MFS, Chen et al. [20]
demonstrated that the SVD is no more reliable than
Gaussian elimination for non-noise boundary conditions.
However, for noise boundary data, the truncated singular
value decomposition method (TSVD) has been found to be
more efficient than Gaussian elimination.

In this work, the sound field generated by a 3D sound
source inside a 3D enclosure is modeled using the MFS.
The model developed allows the boundaries to be rigid or
absorbent and the final system of equations is solved using
Gaussian elimination.

The problem is first formulated, the results are then
validated using the image source method, and finally an
application is presented.

2. Problem formulation

The pressure amplitude generated by a 3D source inside
an air-filled 3D enclosed space is calculated by the MFS in
the frequency domain (o). The response inside the domain
is found as a linear combination of fundamental solutions
for the governing equation. Thus, the scattered pressure (p)
Please cite this article as: António J, et al. A three-dimensional acoustics mo
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wave field is written as

p ¼
XN

s¼1

½asGðx;xs;oÞ�. (1)

These solutions represent the sound field generated by a
set of N virtual sources with amplitude as, placed outside
the domain on a fictitious boundary in order to avoid
singularities. G(x, xs,o) is the 3D Green’s function for
pressure, for a receiver placed at x with co-ordinates
(x, y, z), generated by pressure sources located at xs with
co-ordinates (xs, ys, zs).
The 3D Green’s function for pressure is well known

Gðx; xs;oÞ ¼
e�iðo=cÞr

r
, (2)

where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xsÞ

2
þ ðy� ysÞ

2
þ ðz� zsÞ

2
q

, c is the sound
wave velocity and i ¼

ffiffiffiffiffiffiffi
�1
p

. The coefficients as are
obtained by imposing the required boundary conditions
at M collocation points (xk, yk, zk) along the boundary. A
system of M equations by N unknowns is then obtained.
In this work, an equal number of collocation points
and sources was considered, leading to a system M�M.
The resulting linear system was solved by Gaussian
elimination [20].
For rigid enclosures, null velocities (incident velocity

plus reflected velocity) are ascribed to the boundary. The
Green’s function for velocities is then given by

Hðxs;xk;o; nÞ ¼ �
1

iro
qGðx;xs;oÞ

qr

qr

qn
, (3)

where r is the air density and n is the unit outward normal
at the collocation point (xk, yk, zk). When the room’s
coating material is absorbent the governing equation is
given by

Gðxs;xk;oÞ þ
_

ZHðxs; xk;o; nÞ ¼ 0, (4)

where
_

Z is the material impedance given by the ratio
between the pressure and velocity.
The material impedance can be expressed using the

absorption coefficient a considering that pr ¼ Rpinc, nr ¼

�Rninc, R ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� a
p

, where R is the reflection coefficient, pr

the reflected pressure, pinc the incident pressure, nr the
reflected velocity, and ninc is the incident velocity. In fact,

_

Z

can be expressed as

_

Z ¼
pinc þ Rpinc

vinc þ Rvinc

¼
pinc

vinc

1þ
ffiffiffiffiffiffiffiffiffiffiffi
1� a
p

1�
ffiffiffiffiffiffiffiffiffiffiffi
1� a
p

 !
, (5)

where pinc ¼ (e�i(o/c)r/r) and ninc ¼ �([�i(o/c)r�1]e
�i(o/c)r)/

iror2)(qr/qn).
In the case of an enclosure of arbitrary geometry built

over a horizontal rigid base, the placement of collocation
points at this surface can be avoided if an appropriate
Green’s function for a half-space is used:

Gðx; xk;oÞ ¼
e�iðo=cÞr

r
þ

e�iðo=cÞr0

r0
(6)
del using the method of fundamental solutions. Eng Anal Bound Elem
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Fig. 2. Pressure amplitude obtained using the image source method.
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with r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xsÞ

2
þ ðy� ysÞ

2
þ ðzþ zsÞ

2
q

. The absorp-
tion may be ascribed, in a simplified way, to the base by
assigning a reflection coefficient Rh to it

Gðx;xk;oÞ ¼
e�iðo=cÞr

r
þ Rh

e�iðo=cÞr0

r0
. (7)

The time domain responses are obtained applying an
inverse Fourier transform to the frequency results. A finer
sampling in the time domain is obtained by padding the
frequency spectrum with zeros before applying the inverse
discrete Fast Fourier Transform. The source amplitude
follows a Ricker pulse shape. To prevent ‘‘aliasing’’
phenomena in the time domain, the calculations in the
frequency domain are performed introducing a small
amount of damping, oc ¼ o�iZ. Z ¼ 0.7Do (with Do
being the frequency increment) was chosen as the
imaginary part of the angular frequency, to attenuate the
wraparound by a factor of e0.7DoT

¼ 81, i.e., 38 dB (with
T ¼ 1/Do being the time window). This value of Z is
commonly used in wave propagation analysis. This effect is
later removed in the time domain by applying an
exponential function eZt [21].

The numerical implementation of this method is very
simple since there is no need to solve integral equations,
avoiding the integration of singularities that arise in other
numerical methods. However, in this method, the number
of virtual sources and their distance in relation to the
boundaries are factors that influence the accuracy of the
results.

A 3D model may require a large number of sources, and
this number increases with the size of the space to be
modeled and with the excitation frequency, as is usual with
the traditional numerical methods (e.g., FEM and BEM).
A huge number of virtual sources implies the generation of
matrices of large dimensions, leading to a high computa-
tional cost or even making the application of the method of
no practical use.

The application of the method will be limited to the
modeling of small enclosures and to the calculation of not
Fig. 1. Geometry of the problem and receiver’s position: (a) re
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very high frequencies. Symmetry in the room’s geometry
should be used when possible to reduce the computational
effort involved in solving the problem.
3. Verification

The MFS model developed for a 3D space is verified
against the image source method [2], applied to a 3D
rectangular rigid room 3m wide, 3m high and 4m long,
filled with air (r ¼ 1.22 kg/m3 and c ¼ 340m/s). In this
corroboration, the boundaries are assumed to be rigid
(condition of null velocities).
The sound source is placed at (0.5, 0.5, and 0.5m) and

the pressure is registered at a receiver placed at (1.5, 2.0,
and 1.5m) (Fig. 1a).
In the MFS model, the response is calculated for

different fixed distances between the fictitious and the real
boundary. The number of sources and their positions in
relation to the fictitious boundary influence the accuracy of
the problem [22,23]. A boundary value problem converges
as the sources are moved away from the boundary. Round-
off errors arise for large distances, however. The number of
sources needs to be enough to represent the boundary
ceiver placed at (1.5, 2.0, and 1.5m); (b) grid of receivers.

del using the method of fundamental solutions. Eng Anal Bound Elem
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Fig. 4. Verification model: (a) collocation points and (b) virtual sources.
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Fig. 3. Error obtained when the distances between the fictitious sources and the boundary, in the MFS model, are: (a) 0.1m; (b) 0.2m; (c) 0.3m; (d) 0.4m;

(e) 0.5m; and (f) 0.6m.
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Fig. 5. Pressure amplitude registered at a grid of receivers using the image source method for frequencies (a) 25Hz and (b) 600Hz; error obtained using

the MFS with 1996 sources (c) 25Hz and (d) 600Hz; error obtained using the MFS with 2960 sources (e) 25Hz and (f) 600Hz.

Fig. 6. Geometry of the problem.
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conditions. Although extra sources lead to more accurate
results, the ill-conditioning effects increase with more
sources. In this example, different tests were carried out,
revealing that the uniform distribution of sources over a
fictitious spherical boundary would lead to high numerical
errors. Better results have been achieved when the sources
were distributed evenly at a fixed distance from the
boundary. Accuracy depends, however, on the distance
and on the number of sources. To illustrate this behavior,
results obtained for two numbers of sources and for
different positions of the fictitious boundary are now
presented.

Six distances have been chosen for display: 0.1, 0.2, 0.3, 0.4,
0.5, and 0.6m. The reference responses are those obtained
with the image source model. In the MFS model, the number
of virtual sources used for this verification is 1996.

Fig. 2 shows the pressure amplitude obtained using the
image source method and Fig. 3 presents the error found
Please cite this article as: António J, et al. A three-dimensional acoustics mo

(2007), doi:10.1016/j.enganabound.2007.10.008
with the MFS method. The error exhibits a significant
variation with the distance between boundaries. It can be
observed that the error is greater at high frequencies, which
may signify that the number of sources and collocation
del using the method of fundamental solutions. Eng Anal Bound Elem
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points is insufficient at those frequencies. The best results
are obtained when the distance between the fictitious and
the real boundaries is set at 0.20m.

Calculations have also been performed for a grid
of receivers (59� 79 spaced 0.05m), located at z ¼ 1m
(Fig. 1b), for two distinct frequencies, 25 and 600Hz,
and for the different fixed distances specified above.
As before, the best results are achieved when the distance
is set to 0.20m. Fig. 5 presents the absolute amplitude
of the response obtained with the image source model and
Fig. 7. Time displacements for a characteristic frequency of 350Hz, at a grid o

absorption (right): (a) t ¼ 23.34ms; (b) t ¼ 31.15ms; (c) t ¼ 66.31ms; (d) t ¼
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the error generated by the MFS when the fixed distance
is 0.20m. Fig. 5a and b show the pressure amplitude
for frequencies of 25 and 600Hz, respectively, while Fig. 5c
and d present the absolute error when using 1996 virtual
sources and collocation points. Using the same distance
to the boundary, the calculation is repeated increasing
the number of virtual sources and collocation points to
2960, as in Fig. 4. As Fig. 5e and f show, the error
diminishes for a higher number of virtual sources and
collocation points.
f receivers when the boundaries are rigid (left) and when the dome exhibits

117.19ms.

del using the method of fundamental solutions. Eng Anal Bound Elem
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4. Applications

The algorithm described above is used to simulate the
3D wave field, generated inside a dome (with an oblate
semi-ellipsoid shape) where the lengths of the three semi-
axes are 10, 10, and 8m in the x, y, and z directions,
respectively, as in Fig. 6. The air filling the 3D space has
density 1.22 kg/m3, allowing the propagation of sound
waves whose velocity is 340m/s. A 3D pressure source
located at (0.0, 0.0, and 4.0m) disturbs the medium, whose
the pressure fluctuation is registered at a vertical grid of
receivers placed at x ¼ 0.0m. The receivers are 0.05m
apart in both directions (y and z).

Computations have been performed in the frequency
domain from 2.5 to 1280Hz, with an increment of 2.5Hz.
Pressure amplitudes in the frequency domain are submitted
to an inverse Fourier transform in order to obtain
responses in the time domain. The source is modeled as a
Ricker pulse with a characteristic frequency of 350Hz. The
number of sources and collocation points used is 16,141.
The fictitious sources were placed at 0.2m from the
boundary. Two situations are selected to illustrate the
applicability of the model: case A—all the boundaries are
rigid; case B—the pavement is rigid and the dome is
absorbent.

A sequence of snapshots that displays the pressure wave
field along the grid of receivers at different instants is
presented. The pressure amplitude is displayed in a gray
scale which ranges from black to white as the amplitude
increases. Fig. 7 compares case A (left column) with case B
(right column), where the absorption coefficient ascribed to
the dome is a ¼ 0.7. Both examples reveal a similar wave
field pattern. However, when the dome is absorbent the
wave amplitude suffers consecutive attenuations each time
the waves reach the dome (Fig. 7).
5. Conclusions

An MFS algorithm using fundamental solutions for an
acoustic half-space has been implemented in order to
model wave propagation inside a room with a dome
configuration. This model permits absorption to be
prescribed at the boundaries. The accuracy of the results
depends on the distance between the fictitious sources and
boundaries and on the number of nodal points and sources.
The appropriate choice of these two parameters yields
reliable results.

In a 3D problem, the dimensions of the room and the
computation frequency range are limited by the number of
nodal points and sources required since they define the
dimension of the system to be solved. It is expected that
problems involving larger dimensions can be tackled using
appropriate conditioning techniques of the resulting system
matrix.
Please cite this article as: António J, et al. A three-dimensional acoustics mo
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