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Abstract

The alternating iterative algorithm proposed by Kozlov et al. [An iterative method for solving the Cauchy problem for elliptic

equations. USSR Comput Math Math Phys 1991;31:45–52] for obtaining approximate solutions to the Cauchy problem in two-

dimensional anisotropic elasticity is analysed and numerically implemented using the boundary element method (BEM). The ill-

posedness of this inverse boundary value problem is overcome by employing an efficient regularising stopping. The numerical results

confirm that the iterative BEM produces a convergent and stable numerical solution with respect to increasing the number of boundary

elements and decreasing the amount of noise added into the input data.

r 2007 Elsevier Ltd. All rights reserved.

Keywords: Boundary element method (BEM); Anisotropic elasticity; Cauchy problem; Inverse problem; Regularisation
1. Introduction

In solving physical problems in solid mechanics, one
usually deals with the governing system of partial
differential equations, i.e. the equilibrium equations, which
has to be solved provided that the geometry of the domain
of interest, the material properties, the external sources
acting in the solution domain and the boundary and initial
conditions are completely known. These are referred to as
direct problems and their well-posedness has been clearly
established, see for example Knops and Payne [1]. When
one or more of the conditions for solving the direct
problem are partially or entirely unknown then an inverse

problem may be formulated to determine the unknowns
from specified or measured system responses. It is well
known that inverse problems are in general unstable, see
e.g. Hadamard [2], in the sense that small measurement
errors in the input data may amplify significantly the errors
in the solution. Hence a suitable algorithm, which is
e front matter r 2007 Elsevier Ltd. All rights reserved.
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exempted from this ill-posed phenomenon, is required in
order to stably solve the inverse problem.
Over the last two decades, inverse problems have been

extensively treated in several branches of science, such as
heat transfer [3], electrical impedance tomography [4],
acoustic and electromagnetic scattering [5] and solid
mechanics [6], etc. The most common approach is to
determine the optimal estimates of the model parameters
by minimising a measure-to-fit between the responses of
the system and the model. The mathematical mechanism
which shows that Cauchy problems are ill-posed has been
explained by Chen and Chen [7] for the Laplace equation.
Similarly, the Cauchy problem in elasticity, in which both
the displacement and the traction vectors are known on a
part of the boundary and no data are available on the
remaining boundary, is a classical example of an inverse
problem in solid mechanics.
There are important studies in the literature of the

Cauchy problem for isotropic elastic materials. Maniatty
et al. [8] have determined the traction boundary conditions
by using a simple diagonal regularisation in conjunction
with the finite element method (FEM). Spatial regularisa-
tion, together with the boundary element method (BEM),
for the Cauchy problem in anisotropic elasticity. Eng Anal Bound Elem
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has been used by Zabaras et al. [9] and with the FEM by
Schnur and Zabaras [10]. Yeih et al. [11] have analysed the
existence, uniqueness and continuous dependence on the
data of the Cauchy problem in elasticity and have proposed
an alternative regularisation procedure, namely the ficti-
tious boundary indirect method, based on the simple or
double layer potential theory. The numerical implementa-
tion of the aforementioned method has been undertaken by
Koya et al. [12], who have used the BEM and the Nyström
method for discretising the integrals. However, this
formulation has not yet removed the problem of multiple
integrations. Marin et al. [13] have determined the
approximate solutions to the Cauchy problem in linear
elasticity using an alternating iterative BEM which reduced
the problem to solving a sequence of well-posed mixed
boundary value problems and they have later extended this
numerical method to singular Cauchy problems, see Marin
et al. [14]. Huang and Shih [15] and Marin et al. [16] have
both used the conjugate gradient method (CGM) com-
bined with the BEM, in order to solve the same problem.
The Tikhonov regularisation method and the singular
value decomposition (SVD), in conjunction with the BEM,
have been employed by Marin and Lesnic [17,18] to solve
the two-dimensional Cauchy problem in isotropic linear
elasticity. A comparison of the aforementioned BEM
regularisation methods, namely the alternating iterative
algorithm, CGM, SVD and the Tikhonov regularisation
method, used for solving the Cauchy problem for isotropic
linear elastic solids can be found in Marin et al. [19].
Recently, the method of fundamental solutions combined
with the first-order Tikhonov functional and the Land-
weber method in conjunction with the BEM and a
regularising stopping criterion have been proposed by
Marin and Lesnic [20,21], respectively.

Methods of obtaining an approximate solution to ill-
posed boundary value problems have been discussed
extensively in the literature, see e.g. Lavrent’ev [22],
Tikhonov and Arsenin [23], Bakushinsky and Goncharsky
[24], Morozov [25], etc., and at present there are various
approaches to the solution of the Cauchy problem for
elliptic equations, which is a classical example of an ill-
posed problem. On the whole, all such approaches can be
divided into three large groups. The first group consists of
methods based on bringing the problem into the
class of well-posedness in the sense of Tikhonov, see e.g.
Lavrent’ev [22]. The second group comprises methods that
use universal regularising algorithms, which can be
obtained with the aid of the Tikhonov parametric
functional, or related versions of it, see e.g. Tikhonov
and Arsenin [23]. Unfortunately, this last group
requires a parametric selection which may prove to be
difficult in real circumstances. Finally, the most recently
developed group includes iterative direct solution
methods, see e.g. Bakushinsky and Goncharsky [24]. These
have produced the main results and are the most
widely used in practical applications. Of all these groups,
the latter one has two main advantages, namely (i) it allows
Please cite this article as: Comino L, et al. An alternating iterative algorithm

(2007), doi:10.1016/j.enganabound.2006.12.009
any physical constraint, e.g. positivity, monotonicity, etc.,
to be easily taken into account directly in the scheme
of the iterative algorithm, and (ii) it allows simplicity
of the implementation of the computational schemes
to be used iteratively for a sequence of well-posed
problems. One possible disadvantage of using iterative
algorithms is the large number of iterations that may be
required in order to achieve convergence. However,
relaxation procedures can be easily adopted to improve
the rate of convergence.
Based on these reasons, we have decided in this study to

use the BEM in order to implement a convergent algorithm
for anisotropic linear elastic materials based on an
alternating iterative procedure which consists of obtaining
successive solutions to well-posed mixed boundary value
problems. This numerical method was originally proposed
by Kozlov et al. [26] and implemented for isotropic linear
elastic solids by Marin et al. [13,14]. The strength of this
iterative algorithm is that it is convergent if and only if the
solution of the Cauchy problem exists, which overcomes
the previous mathematical redundancy. Whilst Kozlov
et al. [26] proved the mathematical convergence of their
algorithm without actually finding the solution, the aim of
this paper is to show the numerical stability and
convergence of the present algorithm as it determines an
approximation of the solution to the Cauchy problem in
anisotropic elasticity. In order to cease the iterative
procedure before the effects of the accumulation of noise
become dominant and the errors in the numerical solution
start increasing, a regularising stopping criterion is
proposed.

2. Mathematical formulation of the Cauchy problem in

two-dimensional anisotropic linear elasticity

Consider an anisotropic linear elastic homogeneous solid
which occupies an open bounded domain O � R2 and
assume that O is bounded by a smooth surface G in the
sense of Liapunov, such that G ¼ G1 [ G2, where G1;G2a;
and G1 \ G2 ¼ ;. In particular, we consider the case when
the geometry and the loading conditions describe a pure
plane strain state. Therefore, the problem variables, i.e.
displacements, stresses and strains, can be simplified to a
two-dimensional study.
In the presence of body forces b, the equilibrium

equations of the elastic medium are given by, see e.g.
Lekhnitskii [27],

divðrðuÞÞ þ b ¼ 0 in O, (1)

where r is the stress tensor. On assuming small deforma-
tions only, the strain tensor e ¼ ðruþ rTuÞ=2 is
related to the stress tensor r by Hooke’s constitutive law,
namely

r ¼ C : e in O, (2)

where C is the elasticity tensor of order four. The traction
vector t at a point on the boundary G with the outward
for the Cauchy problem in anisotropic elasticity. Eng Anal Bound Elem
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normal n is defined by

t ¼ r � n on G. (3)

The constitutive law (2) for two-dimensional anisotropic
linear elastic solids is usually expressed using a mono-index
notation1

si ¼ cijej ; ei ¼ aijsj ; i; j ¼ 1; . . . ; 6, (4)

where ej is the strain tensor, cij is the elasticity tensor and aij

is the compliance tensor.
If it is possible to measure both the displacement and

traction vectors on a part of the boundary G, say G2 � G,
and there is no information on the remaining boundary
G1 ¼ G=G2 then this leads to the mathematical formulation
of an inverse problem consisting of the equilibrium
equation (1) (for simplicity, in the absence of body forces,
i.e. b ¼ 0) and the given over-specified boundary condi-
tions on G2, namely

divðrðuÞÞ ¼ 0 in O;

u ¼ eu on G2;

t ¼ et on G2:

8><>: (5)

Here eu and et are prescribed vector valued displacements
and tractions, respectively. In the above formulation of
the boundary conditions ð52Þ and ð53Þ, it can be seen that
the boundary G2 is over-specified by prescribing both the
displacement ujG2

¼ eu and the traction tjG2
¼ et vectors,

whilst the boundary G1 is under-specified since both the
displacement ujG1

and the traction tjG1
vectors are

unknown and have to be determined. This problem,
termed the Cauchy problem, is much more difficult to solve
both analytically and numerically than the direct problem,
since the solution does not satisfy the general conditions of
well-posedness. Although the problem may have a unique
solution, it is well known that this solution is unstable with
respect to small perturbations in the
data on G2, see Hadamard [2]. Thus the problem is ill-
posed and we cannot use a direct approach, such as the
Gauss elimination method, in order to solve the system of
linear equations which arises from the discretisation
of the partial differential equation and the boundary
conditions (5).

3. Description of the algorithm

Knowing the exact data eu and et on the boundary G2, we
use a convergent iterative algorithm, originally proposed
by Kozlov et al. [26] and implemented for isotropic linear
elastic media by Marin et al. [13,14], but with a regularising
stopping criterion which is essential when the data eu and/oret become noisy. This algorithm consists of the following
steps:

Step 1.1: Set k ¼ 0. Specify an initial approximation tð0Þ

for the tractions on the under-specified boundary G1.
111! 1, 22! 2, 33! 3, 23! 4, 13! 5, 12! 6.
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Step 1.2: Solve the mixed boundary value problem

divðrðuð1ÞÞÞ ¼ 0 in O;

tð1Þ � rðuð1ÞÞ � n ¼ tð0Þ on G1;

uð1Þ ¼ eu on G2

8><>: (6)

in order to determine the displacements uð1Þ in O and on G1.
Step 2.1: Having constructed the approximation uð2k�1Þ,

k40, the mixed boundary value problem

divðrðuð2kÞÞÞ ¼ 0 in O;

uð2kÞ ¼ uð2k�1Þ on G1;

tð2kÞ � rðuð2kÞÞ � n ¼ et on G2

8><>: (7)

is solved to determine the displacements uð2kÞ in O and the
tractions tð2kÞ � rðuð2kÞÞ � n on G1.

Step 2.2: Having constructed the tractions tð2kÞ, k40, the
mixed boundary value problem

divðrðuð2kþ1ÞÞÞ ¼ 0 in O;

tð2kþ1Þ � rðuð2kþ1ÞÞ � n ¼ tð2kÞ on G1;

uð2kþ1Þ ¼ eu on G2

8><>: (8)

is solved in order to determine the displacements uð2kþ1Þ in
O and on G1.

Step 3: Set k ¼ k þ 1 and repeat steps 2.1 and 2.2 until a
prescribed stopping criterion is satisfied.
Let H1ðOÞ be the Sobolev space and H1=2ðGÞ �H1=2ðGÞ

be the space of traces on G corresponding to
H1ðOÞ �H1ðOÞ, see e.g. Lions and Magenes [28]. We
denote by H1=2ðGiÞ �H1=2ðGiÞ the space of functions from
H1=2ðGÞ �H1=2ðGÞ that are bounded on Gi and by
ðH1=2ðGiÞ �H1=2ðGiÞÞ

� the dual space of H1=2ðGiÞ �

H1=2ðGiÞ for i ¼ 1; 2. Kozlov et al. [26] showed that
if G is smooth, eu 2 H1=2ðG2Þ �H1=2ðG2Þ andet 2 ðH1=2ðG2Þ �H1=2ðG2ÞÞ

�, then the alternating algorithm
based on steps 1–3 produces two sequences of approximate
solutions fuð2kÞðxÞgk40 and fuð2k�1ÞðxÞgk40 which both
converge in H1ðOÞ �H1ðOÞ to the solution uðxÞ of the
Cauchy problem (5) for any initial guess
tð0Þ 2 ðH1=2ðG1Þ �H1=2ðG1ÞÞ

�. Moreover, the alternating
algorithm has a regularising character. Also the same
conclusion is obtained if at the step 1.1 we specify an initial
guess uð0Þ 2 H1=2ðG1Þ �H1=2ðG1Þ, instead of an initial guess
for the traction vector tð0Þ 2 ðH1=2ðG1Þ �H1=2ðG1ÞÞ

�, and
we modify accordingly the steps 1 and 2 of the algorithm.
We note that if the initial guess tð0Þ is in ðH1=2ðG1Þ �

H1=2ðG1ÞÞ
� and the boundary data eu andet are in H1=2ðG2Þ �

H1=2ðG2Þ and ðH1=2ðG2Þ �H1=2ðG2ÞÞ
�, respectively, the

problems (6)–(8) are well-posed and solvable in
H1ðOÞ �H1ðOÞ, see Lions and Magenes [28]. These
intermediate mixed well-posed problems are solved using
the BEM described in the next section. In order to pass
from one iteration to the next, the values of the
displacement and traction vectors are required only on
the boundary G and not in the domain O and, therefore,
the BEM is a very suitable technique for solving the
intermediate mixed boundary value problems (6)–(8).
for the Cauchy problem in anisotropic elasticity. Eng Anal Bound Elem
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Furthermore, the displacements and stresses inside the
solution domain O have to be evaluated only after the
stopping criterion has been satisfied and not at every
iteration, thus saving a substantial amount of computa-
tional time and storage requirements.
4. The boundary element method

The BEM is based on the boundary integral representa-
tion of the displacements. This technique is derived from
Betti’s Reciprocity Theorem applied to the actual elasto-
static state in the domain O and an auxiliary field called the
fundamental solution.
4.1. Fundamental solution

The fundamental solution is the response of a system at a
point z due to a point load applied at z0 in an infinite
domain with the same material properties as the original
problem. Based on complex potential theory, the aniso-
tropic displacement Uij and stress Tij fundamental solu-
tions are given by, see e.g. Lekhnitskii [27] and Sollero [29],

Uijðz; z
0Þ ¼ 2Re½pj1Ai1 lnðz1 � z01Þ þ pj2Ai2 lnðz2 � z02Þ�, (9)

Tijðz; z
0Þ ¼ 2Re

qj1Ai1

z1 � z01
ðm1n1 � n2Þ þ

qj2Ai2

z2 � z02
ðm2n1 � n2Þ

� �
.

(10)

Here zi ¼ x1 þ mix2, x1 and x2 are the two-dimensional
Cartesian coordinates, ni are the components of the
outward normal to the boundary G and mi are two
conjugate pairs, roots of the characteristic fourth degree
polynomial equation

b11m
4 � 2b16m

3 þ ðb12 þ b66Þm
2 � 2b16mþ b22 ¼ 0, (11)

where bij are the so-called reduced elastic constants whose
values are given by bij ¼ aij for the plane stress state and
bij ¼ aij � ðai3aj3Þ=a33 for the plane strain state. Further-
more, q1i ¼ mi, q2i ¼ �1, pik are given by

p1k ¼ b11m
2
k þ b12 � b16mk,

p2k ¼ b12mk þ
b22
mk

� b26; k ¼ 1; 2, ð12Þ

whilst the complex constants Aij are obtained from the
implementation of the boundary conditions, i.e. they are
computed by solving the following system of equations

1 �1 1 �1

m1 �m̄1 m2 �m̄2
p11 �p̄11 p12 �p̄12

p21 �p̄21 p22 �p̄22

0BBBB@
1CCCCA

Ai1

Āi1

Ai2

Āi2

0BBB@
1CCCA ¼

di2

2pi
di1

2pi
0

0

0BBBBBB@

1CCCCCCA, (13)

where i2 ¼ �1 and dij is the Kronecker delta tensor.
Please cite this article as: Comino L, et al. An alternating iterative algorithm
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4.2. Boundary integral equation (BIE)

Once the auxiliary state is defined, we recall Betti’s
Reciprocity Theorem which is applied to two balanced
systems of boundary and body forces ðt; bÞ and ðt�; b�Þ.
These systems of forces are applied to the same anisotropic
elastic domain characterised by the displacement fields u

and u�, respectively. If the � state is the one given by the
fundamental solution, namely

b�j ¼ dijdðz� z0Þ; t�j ¼ Tijðz; z
0Þ; u�j ¼ Uijðz; z

0Þ, (14)

where z0 is a point inside the solution domain O, on
assuming that no body forces act on the solid, i.e. b ¼ 0 in
(1), then Somigliana identity is obtained as

uiðz
0Þ þ

Z
G

Tijðz; z
0ÞujðzÞdG ¼

Z
G

Uijðz; z
0ÞtjðzÞdG. (15)

By moving z0 to the limit at a boundary point y 2 G, i.e.
z0 ! y, we obtain the BIE which governs the elastic
displacement field and is given by

cijðyÞujðyÞ þ

Z
G

Tijðz; yÞujðzÞdG ¼
Z
G

Uijðz; yÞtjðzÞdG, (16)

where the free term cijðyÞ depends on the location of the
collocation point z0, see e.g. Brebbia and Dominguez [30]
and Parı́s and Cañas [31].

4.3. Discretisation of the BIE (16)

In order to solve numerically the BIE (16), the
boundaries G, G1 and G2 are discretised into Ne, N1

e and
N2

e elements, respectively, such that N1
e þN2

e ¼ Ne. The
geometry, displacements and stresses are interpolated over
each element using their values at the nodes and some
shape functions fm. For every collocation point l with the
coordinates yl the BIE (16) can be written in discretised
form as

cijujðlÞ þ
XNe

k¼1

X3
m¼1

hm
ij ðl; kÞu

k
j ðmÞ ¼

XNe

k¼1

X3
m¼1

gm
ij ðl; kÞt

k
j ðmÞ,

(17)

where the integration constants hm
ij ðl; kÞ and gm

ij ðl; kÞ,
i; j ¼ 1; 2, m ¼ 1; 2; 3, are given by

hm
ij ðl; kÞ ¼

Z
�

1

�1

TijðzðxÞ; ylÞfmðxÞJ
kðxÞdx, (18)

gm
ij ðl; kÞ ¼

Z 1

�1

UijðzðxÞ; ylÞfmðxÞJ
kðxÞdx, (19)

whilst JkðxÞ is the Jacobian of the transformation of the
boundary element Gk into the interval ½�1; 1� in the
parametric space.
In this study, isoparametric quadratic elements have

been used such that if the boundary G is closed and is
discretised into Ne elements then the total number
of boundary nodes is given by N ¼ 2Ne. Consequently,
the number of boundary nodes corresponding to the
for the Cauchy problem in anisotropic elasticity. Eng Anal Bound Elem

dx.doi.org/10.1016/j.enganabound.2006.12.009


ARTICLE IN PRESS
L. Comino et al. / Engineering Analysis with Boundary Elements ] (]]]]) ]]]–]]] 5
under-specified G1 and over-specified G2 boundaries is
given by N1 ¼ 2N1

e and N2 ¼ 2N2
e , respectively, such that

N1 þN2 ¼ N. The values of the integration constants are
detailed in the Appendix.

On collocating Eq. (17) at all the boundary nodes, we
obtain the following system of linear algebraic equations:

HU ¼ GT, (20)

where U and T are vectors containing the nodal values of
the displacements and tractions, respectively. The discre-
tisation of the boundary conditions ð52Þ and ð53Þ provides
the values of 4N2 of the unknowns and the problem
reduces to solving a system of 2N equations with 4N1

unknowns which can be generically written as

CX ¼ F, (21)

where the matrix C 2 R2N�4N1 depends solely on the
geometry of the boundary and the material properties,
the vector X 2 R4N1 contains the unknown values of the
displacements and the tractions on the boundary G1 and
the vector F 2 R2N is computed using the Cauchy
boundary conditions ð52Þ and ð53Þ.

5. Numerical results

In this section we illustrate the numerical results
obtained using the iterative algorithm presented in Section
3, in conjunction with the BEM described in Section 4. In
addition, we investigate the convergence with respect to the
mesh size discretisation and the number of iterations when
the data are exact, and the stability when the data are
perturbed by noise.

5.1. Examples

In order to present the performance of the numerical
method proposed, we solve the Cauchy problem for three
examples associated with an orthotropic linear elastic
medium (birch plywood), whose material orthotropy axes
coincide with the axes of the Cartesian reference system.
The orthotropic solid considered in this study is char-
acterised by the engineering elastic constants E1 ¼ 11:76
GN=m2, E2 ¼ 5:88GN=m2, G12 ¼ 0:686GN=m2 and n12 ¼
0:071 and hence the compliance elastic constants are given
by a11 ¼ 0:08503m2=GN, a12 ¼ �0:006037m2=GN, a22 ¼

0:1701m2=GN, a66 ¼ 1:4577m2=GN and a16 ¼ a26 ¼

0:0m2=GN.

Example 1. We consider a stress state corresponding to
constant internal and external pressures si ¼ 1:0GN=m2

and se ¼ 2:0GN=m2, respectively, in the annular domain
O ¼ fx ¼ ðx1; x2Þjr

2
i ox2

1 þ x2
2or2og, ri ¼ 1, ro ¼ 4, see Fig.

1(a). The under- and over-specified boundaries are given by
G1 ¼ Gi � fx 2 Gjx2

1 þ x2
2 ¼ r2i g and G2 ¼ Go � fx 2 Gjx2

1þ

x2
2 ¼ r20g, respectively.

Example 2. We consider a uniform hydrostatic stress state
given by se ¼ si ¼ 1:5GN=m2 in the annular domain
Please cite this article as: Comino L, et al. An alternating iterative algorithm
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O ¼ fx ¼ ðx1;x2Þjr
2
i ox2

1 þ x2
2or20g, ri ¼ 1, r0 ¼ 4, see

Fig. 1(b). Here the under- and over-specified boundaries
are given by G1 ¼ fx 2 Gija1pYðxÞpa2g and G2 ¼ G0 [

fx 2 Gij0pYðxÞoa1g [ fx 2 Gija2oYðxÞp2pg, respectively,
where YðxÞ is the angular polar coordinate of x and
ai; i ¼ 1; 2, are specified angles in the interval ð0; 2pÞ. In
order to illustrate the typical numerical results, we have taken
a1 ¼ p=4 and a2 ¼ 3p=4.
Example 3. We consider the unit square plate with an
elliptical traction-free cavity, whose half-axes are given by
a ¼ 0:2 and b ¼ 0:1, subject to a plane stress state
corresponding to the loading conditions shown in Fig.
1(c). Here the under- and over-specified boundaries are
given by the inner (cavity) and the outer boundaries of the
plate, respectively.
Although analytical expressions for the stresses rðanÞ can
be obtained and hence analytical expressions for the
traction vector tðanÞ, it should be noted that the correspond-
ing analytical displacements uðanÞ are not available in this
case, but they can be obtained numerically by solving the
direct problem

divðrðanÞðuðanÞÞÞ ¼ 0 in O;

rðanÞðuðanÞÞ � n ¼ tðanÞ on G;

(
(22)

where the rigid body displacements are eliminated by usingZ
O
uðanÞ dO ¼ 0 and

Z
O
uðanÞ � xdO ¼ 0. (23)

Hence the Cauchy problem considered in this paper is
described by Eq. (5), in which the Cauchy data are givenet ¼ tðanÞ and eu ¼ uðanÞ, where the displacement vector uðanÞ is
obtained by solving numerically the Neumann problem
(22), together with the rigid body conditions (23), with a
very fine BEM mesh in order to obtain its best numerical
approximation. In the sequel, the analytical traction vector
tðanÞ and the corresponding displacement vector uðanÞ will be
referred to as ‘‘exact’’ traction and displacement vectors,
respectively.
The Cauchy problems given by Eq. (5) for the examples

considered in this study have been solved iteratively
using the BEM to provide simultaneously the unspecified
boundary displacement and traction vectors on the
boundary G2. The number of isoparametric quadratic
boundary elements used for discretising the boundary G in
Examples 1 and 2 was taken to be Ne 2 f32; 48; 96g
such that both the under- and over-specified boundaries
G1 and G2, respectively, were discretised into the same
number of isoparametric quadratic boundary elements,
namely Ne=2 2 f16; 24; 48g. In the case of Example 3, the
boundaries G1 and G2 were discretised into 20 and 24
isoparametric quadratic elements, respectively, such that
Ne ¼ 44.
for the Cauchy problem in anisotropic elasticity. Eng Anal Bound Elem
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5.2. Initial guess

An arbitrary vector valued function tð0Þ 2 ðH1=2ðG1Þ �

H1=2ðG1ÞÞ
� may be specified as an initial guess for the

traction vector on G1, but in order to improve the rate of
convergence of the iterative procedure we have chosen a
vector valued function which ensures the continuity of the
traction vector at the endpoints of G1 and which is also
linear with respect to the angular polar coordinate Y. For
Example 2, this initial guess is given by

tð0ÞðxÞ ¼
a2 �YðxÞ
a2 � a1

tð0Þðx1Þ þ
YðxÞ � a1
a2 � a1

tð0Þðx2Þ, (24)

where ai ¼ YðxiÞ for i ¼ 1; 2, x1 and x2 are the endpoints of
G1, and the choice of a1 ¼ p=4 and a2 ¼ 3p=4 also ensures
Please cite this article as: Comino L, et al. An alternating iterative algorithm
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that the initial guess is not too close to the exact values
tðanÞðxÞ.
In the case of the other examples investigated, we cannot

use the procedure described above and, therefore, the
initial guess has been chosen as

tð0ÞðxÞ ¼ 0 (25)

for Example 1 and

t
ð0Þ
1 ðxÞ ¼ 2:0; t

ð0Þ
2 ðxÞ ¼ �3:0 (26)

for Example 3.

5.3. Convergence of the algorithm

In order to investigate the convergence of the algorithm,
at every iteration we evaluate the accuracy errors
for the Cauchy problem in anisotropic elasticity. Eng Anal Bound Elem
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defined by

Eu ¼ ku
ðkÞ � uðanÞkL2ðG1Þ�L2ðG1Þ

,

Et ¼ kt
ðkÞ � tðanÞkL2ðG1Þ�L2ðG1Þ

, ð27Þ

where uðkÞ and tðkÞ are the displacement and the traction
vectors on the boundary G1 retrieved after k iterations,
respectively, and each iteration consists of solving the two
mixed well-posed problems (7) and (8).

When starting with the initial guess tð0Þ given by Eqs. (25)
and (24) for Examples 1 and 2, respectively, a sequence
fuðkÞgk40 of approximation functions for ujG1

is obtained
and, according to Kozlov et al. [26], this sequence
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Ne ¼ 96 ð� ��Þ isoparametric quadratic boundary elements and exact Cauch

Example 1.
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converges to the exact solution. If we evaluate the errors
Eu and Et at every iteration, in the case of Example 1, then
we note that both these errors keep decreasing with respect
to increasing the number of iterations performed only for
the finest BEM mesh, i.e. Ne ¼ 96, see Fig. 2. On the
contrary, if the coarser BEM discretisations are used, i.e.
Ne ¼ 32; 48, then the accuracy errors given by expression
(27) attain a minimum value after a certain iteration
number, k, after which they start increasing. However, the
errors Eu and Et corresponding to the Cauchy problem
given by Example 2 have a decreasing tendency as k

increases for all the BEM discretisations used, see Fig. 3. A
possible explanation for the different behaviours of the
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r of iterations k
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r of iterations k
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Ne = 96

of iterations, k, obtained using Ne ¼ 32 ð� 	 �Þ, Ne ¼ 48 ð� � �Þ and

y input data on the boundary G2, for the Cauchy problem considered in

for the Cauchy problem in anisotropic elasticity. Eng Anal Bound Elem
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accuracy errors Eu and Et for Examples 1 and 2 is
represented by the type of initial guess used for each of the
Cauchy problems analysed. More precisely, the initial
guess corresponding to Example 2 ensures the continuity of
the traction vector at the endpoints of the under-specified
boundary G1, whereas the initial guess for the Example 1 is
the constant vector zero which contains no information
about the unknowns on G1, see Eqs. (24) and (25),
respectively.

We note that the algorithm proposed by Kozlov et al.
[26] is convergent as we increase the number of boundary
Please cite this article as: Comino L, et al. An alternating iterative algorithm
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elements, as can be seen in Figs. 4 and 5 which represent
the evolution of the numerical solutions for the
x1-component of the displacement and the x2-component
of the traction for the Cauchy problems associated with
Examples 1 and 2, respectively, for Ne 2 f32; 48; 96g. From
Figs. 4 and 5 it can be seen that the numerical solutions for
the displacement u1jG1

and the traction t2jG1
are more

accurate for the Cauchy problem given by Example 1 than
for the Cauchy problem corresponding to Example 2. The
reason for this is that G1 \ G2 ¼ ; in the case of Example 1,
whilst G1 \ G2a; in the case of Example 2, i.e. there exist
for the Cauchy problem in anisotropic elasticity. Eng Anal Bound Elem
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two points where the isoparametric quadratic BEM
changes to mixed boundary conditions. It is well known,
see e.g. Fichera [32] and Schiavone [33], that the gradient of
the displacement u possesses singularities at the points
where the data changes from displacement boundary
conditions to traction boundary conditions, even if the
displacement and the traction data are of class C1.
Consequently, the classical solution for the displacement
u cannot be smooth, although its smoothness can be
improved if the displacement and the traction data are
required to satisfy an increasing number (increasing with
Please cite this article as: Comino L, et al. An alternating iterative algorithm

(2007), doi:10.1016/j.enganabound.2006.12.009
smoothness) of additional conditions, see also Wendland
et al. [34]. Nevertheless, in the numerical implementation
one may use weighted functions at each iteration of the
algorithm in order to cancel the singularity, see Johansson
[35], but this is deferred to future work.

5.4. Stopping criterion

Once the convergence with respect to increasing the
number of boundary elements Ne of the numerical solution
has been established, we investigate the stability of the
for the Cauchy problem in anisotropic elasticity. Eng Anal Bound Elem
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numerical solution for Example 3. To do so, we perturb the
initial boundary displacements euijG2

, i ¼ 1; 2, and/or trac-
tions etijG2

, i ¼ 1; 2, according to the following equations,eu�i jG2
¼ euijG2

þ deui, i ¼ 1; 2, and et�i jG2
¼ etijG2

þ deti, i ¼ 1; 2,
respectively. Here deui, i ¼ 1; 2, and deti, i ¼ 1; 2, are Gaussian
random variables with mean zero and standard deviation
si ¼ maxG2

jeuij � ðp=100Þ, i ¼ 1; 2, and si ¼ maxG2
jetij�

ðp=100Þ, i ¼ 1; 2, respectively, and p is the percentage of
noise added into the input data euijG2

, i ¼ 1; 2, or etijG2
,

i ¼ 1; 2. In Figs. 6(a) and (b) we present the accuracy error
Eu corresponding to Example 3 for various levels of noise,
Please cite this article as: Comino L, et al. An alternating iterative algorithm
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namely p 2 f1; 3; 5g, added into the Cauchy displacement
and traction data, respectively. It can be seen from these
figures that the error Eu decreases up to a certain number of
iterations, after which it starts increasing. If the process is
continued beyond this point then the numerical solutions
lose their smoothness and become highly oscillatory and
unbounded. Therefore, a regularising stopping criterion must
be used in order to cease the iterative process at the point
where the errors in the numerical solutions start increasing.
Although not presented herein, it is reported that the
accuracy error Et has a similar behaviour.
for the Cauchy problem in anisotropic elasticity. Eng Anal Bound Elem
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If we evaluate the Euclidean norm of the vector CX� F,
then this should tend to zero as X tends to the exact
solution. Hence after each iteration we evaluate the error

E ¼ kCXðkÞ � Fk2, (28)

where XðkÞ is the vector obtained from the values of the
displacement and the traction vectors on the boundary G1

retrieved after k iterations. The error E includes informa-
tion on both the displacement and the traction vectors
and it is expected to provide an appropriate stopping
criterion. If we investigate the error E obtained at every
iteration for the example considered for various levels of
Please cite this article as: Comino L, et al. An alternating iterative algorithm
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noise added into the input data eujG2
andetjG2

, we obtain the
curves graphically represented in Figs. 7(a) and (b),
respectively.
Regularisation is necessary when solving ill-posed

inverse problems such as the Cauchy problem in aniso-
tropic linear elasticity. By adding regularisation, we are
able to damp out the contributions from data and
rounding errors, and maintain the solution norm to be of
reasonable size. It should be mentioned that in the case of
the alternating iterative algorithm described in Section 3,
the regularisation parameter is given by the number of
iterations performed, k. If too much regularisation, i.e. the
for the Cauchy problem in anisotropic elasticity. Eng Anal Bound Elem
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number of iterations performed, k, is too small, is imposed
on the solution, it will not fit the data F and the residual
norm kCXðkÞ � Fk2 will be too large. If too little
regularisation is imposed on the solution, i.e. the number
of iterations performed, k, is too large, then the fit will be
good, but the solution will be dominated by the contribu-
tions from the data errors and, consequently, the solution
norm kXðkÞk2 will be too large. Therefore, the iterative
process is stopped at the iteration number, kopt, corre-
sponding to the corner of the curves represented in
Figs. 7(a) and (b), where the error E starts to become
constant. Indeed, from Figs. 6 and 7 it can be seen that the
proposed stopping criterion is very efficient in locating the
point where the errors in the numerical solution increase
and the iterative process should be terminated, although
more rigorous stopping criteria, such as the discrepancy
principle [36] or the generalised cross-validation [37], could
have been used.
Please cite this article as: Comino L, et al. An alternating iterative algorithm
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5.5. Stability of the algorithm

Based on the stopping criterion described in the previous
section, the numerical results for the displacement u2 and
the traction t1 on the under-specified boundary G1,
obtained using various levels of noise added into ujG2

and
tjG2

, for Example 3 are presented in Figs. 8 and 9,
respectively. From these figures it can be seen that the
numerical solution is a stable approximation to the exact
solution, free of unbounded and rapid oscillations.
Furthermore, by comparing Figs. 6, 8 and 9, it can be
noticed that the numerical results are more sensitive to
noise added into the displacement Cauchy data than to
noise added into the traction Cauchy data. Although not
presented, it is reported that similar results have been
obtained for the displacement and traction vectors on the
under-specified boundary G1 when applying the stopping
criterion described in the previous section to Examples 1
for the Cauchy problem in anisotropic elasticity. Eng Anal Bound Elem
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and 2. From the numerical results presented in this section
it can be concluded that the stopping criterion developed in
Section 5.4 has a regularising effect and the numerical
solution obtained by the iterative BEM described in this
study is convergent and stable with respect to increasing
the mesh size discretisation and decreasing the level of
noise, respectively.

6. Conclusions

In this paper the Cauchy problem in two-dimensional
anisotropic linear elasticity was investigated as an exten-
Please cite this article as: Comino L, et al. An alternating iterative algorithm
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sion of a previous analysis of the Cauchy problem
associated with two-dimensional isotropic linear elastic
materials, see e.g. Marin et al. [13]. In order to deal with the
instabilities of the solution of this ill-posed problem, an
iterative BEM was employed which reduced the Cauchy
problem to a sequence of well-posed mixed boundary value
problems. A regularising stopping criterion, necessary for
ceasing the iterations at the point where the accumulation
of noise becomes dominant and the errors in predicting the
exact solution increase, has also been presented. The
numerical results obtained for various numbers of bound-
ary elements and various levels of noise added into the
for the Cauchy problem in anisotropic elasticity. Eng Anal Bound Elem
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input data were found to be in very good agreement with
the exact solution. From the examples investigated in this
study it can be concluded that the alternating iterative
BEM produces a convergent, stable and consistent
numerical solution with respect to refining the mesh size
and decreasing the amount of noise.

Appendix A. Evaluation of the integration constants

When evaluating the integrals given by relations (18) and
(19), we must take into account two distinct situations
depending on whether the collocation point l belongs or
does not to the element over which the integration is
Please cite this article as: Comino L, et al. An alternating iterative algorithm
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performed. The first situation, also called the ordinary case,
presents no difficulty and can be evaluated numerically
using a Gaussian quadrature. The Cauchy principal value
(CPV) has meaning only in the later case which is known as
the singular case. However, this situation needs some more
attention.
On developing expression (18) for the integration

constants hm
ij ðl; kÞ, we obtain the following integral:

hm
ij ðl; kÞ ¼ 2Re

Z
�

1

�1

X2
s¼1

qjsAis

zsðxÞ � yl
s

ðmsn1 � n2ÞfmJk dx

" #
,

(A.1)
for the Cauchy problem in anisotropic elasticity. Eng Anal Bound Elem
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which requires the evaluation of the complex integral

Is ¼

Z
�

1

�1

msn1 � n2

zsðxÞ � yl
s

fmJk dx. (A.2)

In the singular case, the integral I s can be split into a
regular integral Ī s and an integral in the CPV sense as
follows:

Is ¼ Ī s þ

Z
�

1

�1

fm

x� xl

dx, (A.3)

where xl is the natural coordinate of the collocation point.
The CPV integral is solved taking into account the fact that
the two infinite terms occurring for xl ¼ 1 and �1 cancel
out when the evaluation is performed over two adjacent
elementsZ
�

1

�1

fm

x� xl

dx ¼
Z
�

1

�1

ax2 þ bxþ c

x� xl

dx

¼ axl þ 2bþ fmðxlÞ ln
1� xl

1þ xl

. ðA:4Þ

For the integration constants gm
ij ðl; kÞ, relation (19) may

be recast as

gm
ij ðl; kÞ ¼ 2Re

Z 1

�1

X2
s¼1

pjsAis ln½zsðxÞ � yl
s�fmJk dx

" #
,

(A.5)

and hence another complex expression Is must be
evaluated, namely

Is ¼

Z 1

�1

ln½zsðxÞ � yl
s�fmJk dx. (A.6)

In the singular case, if l 2 k then the integral Is becomes
improper but after some manipulation it can be calculated
using the following integral:Z 1

0

ln
1

Z

� �
f ðZÞdZ. (A.7)

A specific Gaussian quadrature suitable for computing the
integral (A.7) is further employed, namelyZ 1

0

ln
1

Z

� �
f ðZÞdZ 


Xn

k¼1

w0kf ðZ0kÞ, (A.8)

where w0k is the weight coefficient and Z0k is the coordinate
for the quadrature, see e.g. Brebbia and Dominguez [30].
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