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In this article the hypersingular integrals that arise when boundary integral equation (BIE) methods are
used to solve fracture mechanics problems are considered. An approach for hypersingular integral
regularization is based on the theory of distribution and Green’s theorems. This approach is applied for
regularization of the hypersingular integrals over triangular boundary elements (BEs) for the case of
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1. Introduction

Materials used in engineering often contain cracks and other
structural defects. Therefore investigation of 3-D crack problems
is very important in engineering practice. Since analytical
solutions to these problems have been limited to the case of
relatively simple geometry cracks in an infinite body with a
simple load, numerical methods such as the boundary element
method (BEM) have been developed. The boundary integral
equation (BIE) is a very powerful tool for solution of mathematical
problems in science and engineering [1,2]. BIE and BEMs are now
established in many engineering disciplines as an alternative
numerical technique for domain approaches, for example the
finite-element method. The attraction of BEM can be largely
attributed to the reduction in dimensionality of the problem.
Another advantage of the BEM is large accuracy of results,
especially for stress concentration problems. The solution at an
internal point of analyzed domain is exactly expressed through
the boundary values and no discretization of domain is required.
This is the main reason why BEM is the most accurate
computational method for solution of crack problems. A familiar
complication of BIE and BEM methods is, however, that they must
in general be formulated in terms of hypersingular integral
operators [3-9].

It is known that the overall accuracy of BEM is largely
dependent on the precision with which various integrals are
evaluated. No doubt, the evaluation of hypersingular integrals
requires much more sensitive treatment than that of regular
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integrals. Numerical methods developed for regular integral
calculation cannot be used for their calculation. There are many
methods for calculation of divergent integrals, for references see
the review article by Tanaka et al. [10] and references there. We
will not discuss here advantages and disadvantages of these
methods; this has already been done in the above-mentioned
review. We will consider here in more detail the method for
divergent integral regularization, which is based on the theory of
distributions and idea of finite-part integrals according to
Hadamard [11].

We apply the approach based on the theory of distributions
and finite-part integrals for problems of fracture mechanics firstly
in Zozulya [9]. Then it was further developed for regularization of
the hypersingular integrals in static and dynamic problems
of fracture mechanics in [12,13,23], respectively. More applica-
tions of the developed regularization method can be found in
review articles [14-16]. Further development of this approach and
application of Green’s theorems in the sense of the theory of
distribution has bean done in Zozulya [17]. The equations
presented in Zozulya [18] and Zozulya and Gonzalez-Chi [19]
permit transformation of divergent hypersingular integrals into
regular ones. The developed approach can be applied not only for
hypersingular integral regularization but also for a wide class of
divergent integral regularizations.

In the present paper, the above-mentioned approach for
divergent integral regularization is further developed and applied
for the case of 3-D elastostatic crack problems. We consider 2-D
hypersingular integrals over arbitrary convex polygons for piece-
wise-constant approximation and over triangular boundary
elements (BEs) for piecewise-linear approximation as Hadamard’s
finite-part integrals (EP.). Regularized equations for 2-D hypersin-
gular integral calculation have been presented here. It is

Please cite this article as: Zozulya VV. Regularization of hypersingular integrals in 3-D fracture mechanics: Triangular BE, and
piecewise-constant and piecewise-linear approximations. Eng Anal Bound Elem (2009), doi:10.1016/j.enganabound.2009.09.005



www.elsevier.com/locate/enganabound
dx.doi.org/10.1016/j.enganabound.2009.09.005
mailto:zozulya@cicy.mx
dx.doi.org/10.1016/j.enganabound.2009.09.005

2 V.V. Zozulya / Engineering Analysis with Boundary Elements 1 (11i) naa-am

important to mention that in the presented equations all
calculations can be done analytically, no numerical integration
is needed.

2. Boundary integral equations

Let us consider an infinite elastic medium occupying the whole
space R? that contains arbitrarily oriented plane cracks. The cracks
are described by corresponding oriented surfaces Q*uQ~, where
Q" and Q™ are opposite edges. The crack surfaces Q* and Q™ are
locally parallel and their curvatures are relatively small. In
V:=R3Q*UQ~ we consider the behavior of the medium governed
by the linear Lame equations of elastostatics for the displacement
field uy(x), i.e.

Aijuj(x) =0, A,] = ,ué,ja,(ak +(/1+,u)6,-8j, xeV, 2.1)
subject to the boundary conditions
pix)=p;" forx;e Q*, (2.2)

pix)=p; forx; e Q™.

Because we consider infinite region, additional conditions
must be satisfied in the form

Ux) =00, o;x)=00"%) for r—oo, 2.3)

where 4 and p are Lame constants, >0, 4> —pu, J; is the
Kronecker’s symbol, 6;=0/6x; denotes partial derivatives with

respect to space and r=/x?+x3+x% is the distance in the 3-D

Euclidian space. Throughout this paper we use the Einstein
summation convention.

We introduce Cartesian coordinates system, with x;- and x,-
axes in the plane of the crack and xs-axis perpendicular to this
plane. Following Guz and Zozulya [14,20] we suppose the opposite
crack edge surfaces are identified (Q"=Q~=Q) and are distin-
guished only by the direction of the external normal vectors
(n*=n"=n). Then deformation of the crack edges is defined by
crack opening

Aui(x) =u;t (X) — u; (X)vx e Q, 2.4)

since we suppose that only small deformations occur.

In Guz and Zozulya [14,15,20] it was shown that in this case the
BIE that relates load p;(y) on the crack faces Q" and 2~ and crack
opening Au;(x) may be written in the form

P =~ [ Fyxy)u00ds 25)
The kernels Fy(x,y) in BIE (2.5) may be presented in the form

_on |a=20) o —y)? _ W (1Y) — o)
Fn= 4n(1 —v) { r3 +3v rs o Fu= 4n(1 —v) [ ’

_ ko [A=20) o xo—y) k1
Fo = an(1 —v) |: 3 +3v P :|, F33 = mﬁ (26)

where g and o are the elastic modulus and Poison ratio,
respectively.

Simple observation shows that the kernels in BIE (2.5) tend to
infinity when r—0. More detailed analysis of the Eq. (2.5) and
kernels (2.6) gives us the following result, with x—y:

Fix,y)—>17>. 2.7)

Integrals with these kernels are divergent and therefore need
special consideration. Usually such integrals are considered in the
sense of finite part according to Hadamard [11].

Definition 1.1. Integrals with kernels Fj(x,y) are hypersingular
and must be considered in the sense of the Hadamard finite
part as

F.P. / wF;(X — y)dS = lim
Fl% e—-0

(X W (0.3
- (/aV\aV(r < C)u,(x)W],(x — Y)dS+2u;(x) m) (2.8)

Here functions fi(X) are chosen from the condition of the limit
existence. Refer to Gel'fand and Shilov [21] for details.

The hypersingular character of kernels in (2.5) determines
boundary properties of the corresponding potentials. Analyses of
these formulae show that the boundary potentials with kernels
Fi(x,y) contain hypersingular kernels. They continuously cross the
boundary dV.

3. BEM equations

In order to transform the BIE into finite-dimensional BEM
equations we have to split the crack surface Q2 into finite elements,
which are called boundary elements (BEs).

o fﬁlgn, QnQ=g ifnk 3.1)

n=
On each BE we shall choose Q nodes of interpolation and shape
functions ¢nq(X). Then the vectors of displacement discontinuity
and traction on the BE Q,, will be represented approximately in
the form

Q
Auix)~ > " AUl (Xg) Py (X), X ey,

qg=1
o 32)
PO~ Y plXg)PugX), Xy,
qg=1
and on the hold crack surface Q in the form
N Q N
Auix) ~ YN AU X Ppg(X), X Y 1Q” =Q,
—1g=1 =
e 3.3)

N Q N
P~ Y D> PlXg)PpgX). Xe U Qp=Q.
n=1q=1 n=
Substituting expressions (4) in (1) gives us the BE equations
that relate the vectors of displacements discontinuity and traction
on the crack surface in the form

N Q
Pl Y= — > > Fly,X)Aul(Xy), (3.4)
n=1q=1
where
Fx) = [ Fi¥x00,,0005. 3.5
Qn

More detailed information on transition from the BIE to the BEM
equations can be found in Balas et al. [1] and Banerjee [2].

4. Piecewise-constant approximation

The piecewise-constant approximation is the simplest one.
Interpolation functions in this case do not depend on the FE form
and dimension of the domain. They have the form

1 vxeS,,
Pa® =10 vxgs,. @D
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In order to simplify the situation we transform the global
system of coordinates such that the origin is located at the nodal
point, where y°=0, the coordinate axes x; and x, are located in the
plane of the element, while axis x3 is perpendicular to that plane.
In this case x3=0, n;=0 n,=0, n3=1 and fundamental solutions
have the form presented by Eq. (2.6).

Regular representations for integrals with kernels (2.6) can be
fond in our previous publications [17-19]. For the piecewise-
constant approximation they have the form

ds n
Jg’O=F-P-fs,,r_3: _/ _gdl’

T X5Tn  2X1M
FP]S 3 X s / (#—2—5— 33 )dl,

_Fpf. Bas— Tn _ X _ 2%
—Fpf; Rds= [ . <3r3 2 )dl,

X1X2In
> 3r3> d,

where S, is a polygonal boundary element, 8S,, is its boundary,
Tn=Xyly, T+=X1N2tXo1 and r_ =Xanq — XNy,

Divergent integrals of the type (4.2) have been transformed
into regular integrals and may be easily calculated. For example,
the hypersingular integral j3° for a circular area with point y
located at the center of the circle leads to the following result:

00 _ n 71 an _727“
3 /asnr3dl_ r. Odqo— r

Here polar coordinates are used, r and ¢ are the circle radius and
polar angle, respectively.

In the application of divergent integrals in the BEM, it is
necessary to calculate the above integrals over any triangular,
rectangular or polygonal elements. In the case of convex polygon
with K vertexes, Eq. (3.5), taking into account (4.2), has the form

42)

11 _ M2 45—
Js'=FP.[g 5 ds_./asn(

4.3)

FYr.Xq) = / Ry, 0di= 3 / Fi(y,, X)dL 4.4)

k=1
Here indexes r and g indicate the number of nodes.

Let us consider a polygon S, with K vertexes as shown in Fig. 1.
To calculate the divergent integrals of the type (4.2) the approach
developed in [17-19] will be used. All the calculations will be

X iy (k) fi (k)

iy (k)
(x; (k), x5 (k)

O 9 Xy

Fig. 1. Polygon with K vertexes.

done using the local rectangular coordinate system with its origin
located at the point y?, x;- and x-axis located in the plane of the
polygon and xs-axis perpendicular to this plane.

Global coordinates of the vertexes are (x%,x5). The coordinates
of an arbitrary point on the contour 0S, may be represented in the
form

x1(S) = x1(k)+ Akfi2(k)E and x3(S) = Xz (k) + ki1 (K)E, 4.5)

where x;(k) and x,(k) are the coordinates of the kth side of the
contour, (7, fiy) is a unit vector normal to the contour, e[ —1,1]
is a parameter of integration along the kth side and 24, is the
length of the kth side of the contour oS,,.

Coordinates x;(k) and x,(k), unit vector normal to the contour
dS, and its length can be calculated though the nodal points:

k+l k k+1 k
+X ~ X — X
xi(k) =~ fa (k) = ZTkZ’
R xk+1 xk
le(k) - 127 2Ak — \/(Xk+l x")2+(x"+] Xk)l (46)
k

These are some more useful notations that will be used below.

HE) =\ 2 E +2EMr - ()20, 1K) = /210 +23(00, k) = Xo(K)5(K),
14 (k) = x1(k)z (k) + X2 (k)11 (k), - (k) = X2(k)fi1 (k) — x1(k)Az(k),
(&) = (k) + 24171 (OR2(K)E, T4 (&) =14 () + EAp, T-(&) = 1_(K) + EA(RF — D).
“4.7)

Using these notations the integrals under consideration may be
represented in a convenient form for calculations. Substituting
(4.5)-(4.7) into (4.2) we obtain formulae for calculating the
corresponding integrals over each side [ of the S, polygon in the
form

1 ~ ~
0.0y = (k) +24, 71, (k)ny (k)&
=4 i .
200 1 1 (k) +24, 0, k)i, (k)E
()= 5/71 B Ay dé

2 (1 xp(kyna k) + iy (k)ha (k) A E
‘§/ =16} A

/ ) X1 (kyrn(k) +2A2(k)X1 (k)(rn (k) 4111 (R)x1 (k) Ai &
+ R (k)2 (rn(k) + 41 (R)x; (k) ARE + 201 (kyA3 () AR E3) Ay dE,

021 _ n(k)+24, 7, (k)i (k)&
5 (k)— 5/7 T'B(g) A dé
2 [ Xy (kyfg (k) +Aq ()R (k) A
_5/ P A

1
/ 508 Calorao+ 21 (0xa a0+ (o ) A

+n1(k) (rn(k)+4n2(k)x2(k))A & +2fl1(k)n2(k)A3 ’3)Akdg,
! r+<k)+£Ak

(k) 3 T'B(é) Ak dé

1
+/ 7505 X1 0000+ 7R+ 2 (01 (R (0 (K 44
3 or KA + 2020020 AL 440 438)

These formulae may be represented in the convenient form

K
= > )z 0+ 241111 (R)a (R)]3.1),
k=1
K

1 N
=3 (§(rn(k)13,o+2A1n1(k)nz(k)13‘1)

k=1

- % 2Ny ()3 0+ 1 (k) (k) Agl3 1)
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—x3 (k)5 0+ 25 (k)xX1 (k) (rn(k) + Ay (R)x1 (k)]s 1

+ 15 (k) (k) + 4111 (k)X (k)]s 2 + 2101 (k)3 (K)]s 3),
K

1 . .
22— 3" (30(0h0-+ 2411 00a011)
k=1

2 A A «
—3 x1 (A ()ls 0+ 111 (k) (k) Ail31)
—x5(k)ra(k)ls,0 -+ 2111 (K)X2 (K) (T (k) + 111 (K)X2 (k)]s 1
+ 111 () (T (k) + 42 (K)Xa ()]s 2 + 277 (K)o ()]s 3),

Q
= Y X1 (X (R)ra(R)]s 0 + (1 (k) + 271 (eyxs ()2 (k)Xo () 1

k=1
+301 (02 (R (k)]s 2 + 272 (RO 3 — %(u Wls0+151 )) .
4.9)

Here we use the following notation for the corresponding
integrals:

1 1
PPN ¢
=0 [ e 4.10)
These integrals may be calculated analytically.
1 1 Alccf+r+(k) 1
bo=4, | ——dé=—_T 1t |1
>0 ’/ @)y (rz(k)fri(k))r(g)l
1 2
I — (AP RSP o (V1 s LU
31=( ")/ (5)3 S= TRk - dord
_ 30 A 41y (k) 1
50 A"/ 1> e T r2(k) — 1% (k) 2<r2<k>—ri(k)>r(®3|
a2 ¢ . B 1
Is1 = (4y) /7”(@5 =1, (K)lsp 3r(§)3|71,
1 2 3
I —(A 3 é—d — (Aké+r+(k)) 1
2= / @ T 300 - dorer
=2r (0)lsy — Tz(k)ls,o,
153—(Ak)/ P aé=
2r2(kr(&)? + 2R AR EE 345 (k)(r+(k)Ak€+r2(k)){
34,r(EP (r2(k) — 1% (k) b
411

Now divergent integrals with hypersingular kernels (2.6) may
be represented though regular contour integrals in the form

F{l] (yr,xq) [(1 - 20)] +3U_]5 ]a

471(1 v)
P Xg) = 7 (1 T ol - 20)/9°+ 30192,
n _ U 0,0 n _ Ho 1.1
F35(¥r.Xg) = 747“1 —o3 Fi2(¥r. Xg) = 4771(.1 oy (4.12)

It is important to mention that all calculations here can be done
analytically, no numerical integration is needed.

5. Piecewise-linear approximation

Let us consider the triangular BE that is shown in Fig. 2. In
order to simplify the situation we transform the global system of
coordinates such that the origins of global and local systems of
coordinates coincide. Coordinate axes x; and x, are located in the
plane of the element, while axis x3 is perpendicular to that plane.
In this case x3=0 and n;=0, n,=0, n3=1. The axes of local
coordinates £; and &, coincide with the sides of the triangular
BE that join at the nodal point 3 (see Fig. 2).

X2 A
2 2 2 2
(Xlsxz)

A

3 3y ¢
(x,x3) I 3 (x1,x3)

X1

3
>

Fig. 2. Triangular BE.

The triangular BE is defined by its angular nodes and its shape
functions are
011,62 =81, 92(81,82) =&,
P3(&1,8)=(1-¢& - &) & el0,1], &e[0,1] (5.1)

Then the global coordinates can be expressed as functions of local
ones in the form

3 3
Xi(€1. &)= > xpy(&1.5), Y. &)= D Yy, &),

(5.2a)
q=1 qg=1
or
X1 =X+AG & — A G, X =x5+AX3 & — AXS &, (5.2b)
where Ax?=(x;' —x;) and Ax?= — (x> —x;)
Derivatives of the shape functions are
0018 _ 1 0018 _ 9928 _ 5 99208 _4
0¢4 S S S ’
095(8) 0038 _
= _1, =1, 53
0&, 0% -3)

Taking into account that the coordinates £; and ¢&, are oblique,
normal derivative has to be calculated using the formula

0 0 nid; . nAA
On="N1— +My— (1 2 ,(2)+ 2 2

0Xq 0Xy A

where 4=Ax3 Ax3 — Ax3 AX3.
Normal derivatives of the shape functions are

x<3>) - (5.4)

onepy (k) = ﬁl(k)ﬁj O, ﬁz(ldﬁj (3)d5.
onpllg = 1ML | RalaG)s
onps(k)= — fl](k)(ﬁl(z)+ﬁ2(2))ﬁzZﬁz(l{)(ﬁ1(3)+ﬁz(3))é|3. 55)

The coordinates of nodal points are: point 1, (x},x3); point 2,
(x3,x3) and point 3, (x3,x3). Lengths of the triangle sides and radius
are

A= o X T X2, rE YD) =\ — YD+ — ¥,
(5.6)

Regular representations for these integrals can be fond in our
previous publications [17,18]. They have the form

q3 _FP/S" (/’q(é)ds__/'as ( q(é) 4= an(pq(f)>dl

n 2
=F.P. / 0,(®) 1 ds— /. (wq(a)<3?—xﬁ—§— g‘;;“)
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n 2” 2
q5_FP/ Q) §d5 / (qoq(%)(;?—x%— ;zr;b)

(3+%) e )a

Jig=FP [ @ tas= [ (o0& (" - 15)

aan(é)) dl. (5.7)

X1X2

The integrals under consideration may be represented in a
convenient form for calculation:

3
Fx)= [ 00,0005 = S [ g0l 5.8)
Su k=17 l

Analysis of this equation and representations (5.5) show that we
have to calculate the sum of integrals of the following type:

X €)X (E)
17(€)
Details of the calculations are presented in Appendix A. Final

results side by side of the calculations are presented below.
Side 1-2: in this case the sums of integrals (5.9) are

Jhml) = / 0y ® 1O gy (5.9)

]?:(3)(]):rn(l3,0+I3,1)/2+Alﬁlﬁ2(13,l +132)+ 00 (D] 0,
09D =ral31/2+ A1 fizls 2 +80pa (D0,
B3 = 003D o,
1 L
I = 3(Ml30 —B)+241mno(ls1 —152))

—x))°1alls0 — Is1) — 24111y (51 — Is2)
—2(x3)? A1ffa(s g — Is2) — ta(4171)* (s 2 — Is3)
*442 173Us2 — Is3) — 2430305005 3 — I5.4)

—(X1(130 —I31)+ 4172031 — [2)A1 — 9n o (1)((X))P1al30

+24|1n2X113 1+ (x> A2 n2132+11 0)>

B = §(Tn13,1 +24171M15035) — (X5)*Tals 4
—2A1f1 x5 — 2(x3)? Ay finfinls s — Ta(4171)% D53
744‘2 2n2153 2A3fl3f121547E(X}I31+A1fl2132)ﬁ]

— PP ralz0+2417i2x 5 1 + (X)) Azn2132+11 0)s
] 2= —5n903(1)((x1) ralso+241 % 51 +(x1)? A1n2132+11 0)>
]1:5(1) = §(rn(13,o —LI1)+241010,(31 — I32))

—x1?ralso — Is1) — 241A2rex} (51 — Is2)

—2(x1)* Aiiyfip(Isy — Is2) — Tn(A1112)*(I5 2 — Is 3)
~4M3ATA3 (s — Is3) — 2031 A3 (s 5 — Is.a)

*% (X2(130 —Ly)+4i(31 - 13 2))”2 — 0o (1)(X3)°Tul3 0
+2A1n1x2131+(x2)2A2n I32+10),

1=
—2A1fiarnX}ls 5 — Z(X%)2A1ﬁ1ﬁ2152 — Ia(41R2)°I53

§(Tn13,1 +241A1A2032) — (x})?rals 4

—44‘%1’111'12153 — 2A1n1n2154 — —(X213 1 +A1Tl]I3 2)Tl2

—an(pz(l)((xz)zrnlg0+2A1n1x2131+(x2) A3, +1 ),
B2 = — on o (X2 rals 0+ 241 A1 X3 L5 1 + (K32 A2A% 150 + 11 ),
]1‘5(1):)‘1)‘2"11(15,0 —Is)+x3 4175051 — I52)

+X] 41111051 — Is2) +2 4174 12x] x5 (5.1 — I 2)

+ 2R fora(lsy — Is3)+24%0, A5x4 (052 — I53)

124307 Rox) (Is 5 — Is3)+ 24377553 — Is4)

2030~ )+ Gl — 12) - 20y (DXl
+ A1 (Rox} + 1 XDI3 1 +x1 x5 A2 A1 A3+ 1 0),

JEA(1) = XX ruls 1 +X3 A1 fiaTals 2 +X] A1ty Tals 2
+24, 11, 75x X35 5 + A2y g Tls 3+ 242711 %x 3 s 5
+2430TRox} s 3+ 24T R Rols 4 — %(h L1+ & 4k032)

—On @y (NXIXS L3 0+ A1 (Aox} +A1x))l5 1 + X1 X3 AT R AL L35 + 11 o),

JA() = — 00p3(DXIXYrals 0+ A1 (Ripx] +R1xd )l
+X1X3 A3 fials 5 +11 ). (5.10)
Side 2-3: in this case the sums of integrals (5.9) are
J2@)=0. JX@)=0. J2%2)=0,
15@)=0, L;32)=0, J352)= ﬁ (5.11)
Side 3-1: in this case the sums of integrals (5.9) are
J23)=0. JX3)=0. J023)=0,
133)=0, J;33)=0, J333)= % (5.12)

We have taken into account that integrations in (5.10)—(5.13) have
to be done in the way as shown by arrows in Fig. 3. Singular
integrals of the type f(])dﬁ/é on sides 2-3 and 3-1 can be neglected
because in the final relations they appear with opposite signs
during integration over adjacent elements, as follows from Fig. 3.

All integrals of the type I,; here can be calculated by the
following formulae:

A&+ (k)
Lo=4 =——2 T~ -
"/ (@3 4= T =2 (oyr® °

ro (KA E+T2(k) |4
I31=(4 - _
31 = (k)/ (é) €= =200 - 2 (oyrd °

Bs=ayt[ S e =~ 2448 ol =31

(2P A48 !
r2t -2k & )"

1
ISO:Ak/—H(]T)Sdé

_ JEY) A+ (k)
r2(ky —r?% (k) 2(r2(k) —

1

r2 (kyr(&)*
Is1 = (4) / —df ry (K)lso —
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Fig. 3. Path of integration.
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(Axé+r4 (k)? I

1 2
A3 &€ e
ba= 0" [ 5% = S0 - 2 o

(S8
=2r  (K)ls 1 — r?(k)ls o,

1 g3 2r2(R)r(€)? +1r2(k) A2 £ +-342E%12 (k)
I = 4 é d — k k + I 1
53 = (di) /71 &P ¢ 3407 3.1l05
1 64 1
s = (1)’ / L= (i o A
1
5r6 k) —3r4(&)4
PO -y O 73T OAe
—4r4 O ME + T2 () MEBT(E) + A2 E2)
=37 (O () — 645" — 4r (Or(©) 4xEBr*(9)
+2478%) = 1272 (AL (5.13)
Finally sums of the integrals in (5.9) have the form
3
Jis = > Jipdo. (5.14)
k=1

All integrals of the type jéfg(k) here have already bean calculated
above side by side for k=1,2,3 and represented by Egs. (5.10)-
(5.12).

Substituting everything obtained for each side results in (5.6)
and taking into account (5.14) finally we have

3 3
n L , :
FlL (V. Xg) = T —v) [(1 = 2v) k§: 1: 13300 +3v k§: ; T2,

3 3
n K X )
Fy(¥r.Xg) = m[(l —2v) k§: 1]3,?(")4‘30 1;: ]]f,’ﬁ(k)],

3 v 3
P X0 = — gzt 5 D030 Pl Xg) = s S id o,
k=1 k=1

(5.15)

It is important to mention here that all calculations can be done
analytically, no numerical integration is needed.

6. Numerical calculations

Let a 3-D elastic unbounded body have a penny-shaped crack
that is located in the plane R*={x:x3=0} and let its surface have
coordinates Q={x3+x3 <R, x3=0} as shown in Fig. 4. Assume that
the material has the following mechanical properties: elastic
modulus E=200GPa, Poisson ratio v=0.25 and specific density
p=7800kg/m>.

First we consider that the crack is subjected to a uniform
static stress at infinity. Analytical solution is available for this
problem [22]. The problem is axisymmetrical in this case.
Displacement discontinuity of the crack surfaces is defined by

Xy

Fig. 4. Penny-shaped crack in 3-D elastic space.

Crack opening

x 10
2

s b ] —— 1 - analytical sulution]
. ' : ——— 2 - piecewise linear
——— 3 - piecewise constan

0.5 _ ....................... ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ i

0 5 '
-1 -0.75 05 -0.25 0

Fig. 5. Penny-shaped crack opening versus radius in 3-D elastic space for 250 BEs.

x 1073 Crack opening
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I
/ |
1.5 ——— 1 - analytical sulution |_|
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% —— 3 - piecewise constant
3
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1
1
0.5
0
-1 -0.75 -0.5 -0.25 0

Fig. 6. Penny-shaped crack opening versus radius in 3-D elastic space for 548 BEs.

the equation

2
AU3(X): W /1 — TZ/RZ,

where R is the crack radius and r is the polar coordinate.
The BIE that relates the load on crack edges and their
displacement discontinuity (2.5) in this case has the form

6.1)

Ps)= = [ FaaCx.y)Aus0dS. (62)
The kernel F33(x,y) is defined by Eq. (2.6).

Results of analytical and numerical calculations for this case
are shown in Figs. 5 and 6 for 250 BEs and 548 BEs, respectively.
From the presented diagrams it follows that obtained numerical
results coincide well with the analytical solution outside the small
area near the crack tip.

Now let us consider a harmonic tension-compression wave
that propagates in the direction perpendicular to the surface of
the crack penny-shaped Q. The incident wave is defined by the
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Fig. 7. Complex amplitude of the penny-shaped crack opening Aus(x) for k;=0.45.

potential function

=1/(4+2w/p,

where w=27/T is the frequency, T the period of vibration, @, the
amplitude and c; the velocity of the dilatational wave.

We consider here the problem concerning reflected waves. The
load on the crack edges caused by the incident wave has the form

p3(X,t) =Re{p3(X)e"}, p3(X)= — pkdc? /c3Po(X). (6.4)

The BIE that relates complex amplitudes of the load on crack
edges and their displacement discontinuities in this case has the
form (6.2). The kernel F33(x)y) is a complex-valued function.
Details of its calculation and regularization can be found in
Zozulya [18]. Complex amplitude of the penny-shaped crack
opening Aus(x) for k;=0.45 is presented in Fig. 7.

@(X, t)= ¢Q(X)€i(klx3 —u)t)’ k1 = CO/C1, Cq (63)

7. Conclusions

Based on the theory of distribution approach for divergent
hypersingular integrals regularization is developed here and
applied for the case of 3-D elastostatic crack problems. We
consider 2-D hypersingular integrals over arbitrary convex
polygons for piecewise-constant approximation and over trian-
gular BE for piecewise-linear approximation and find regular
formulae for their calculation. It is important to mention that in
the presented equations all calculations can be done analytically,
no numerical integration is needed.

Appendix A

Side 1-2: from Fig. 8 it follows that in this case £;=1-¢&,. The
main parameters defined by (4.7), (5.1)-(5.4) are

X1 =X+ Mf2éy, X=X+ A&y, dl=A1dE,,

M) =\ RE+2edr, +12, r—\/(x1>2+(x1>2
ra=xMy, 1o =xiA+xif,, o =x10y — Xxif,,
(&) =T +241M1028,, 1o (&) =14 +E 4,
r_(&) =r_(k)+E MRS — AD),
181,82 =185, @y(81,8) =&,

03(£1,€2)=0

onpy(1) = fll(l)ﬁAl(z)Az N ﬁz(l)f2(3)4|3’
np 1) = MDD, | a(Dita3)ds
Onp3(1) = fﬁ1(1)(f‘1(2)+f12(2))4‘zZﬁz(l)(ﬁ1(3)+ﬁz(3))43

Integrals of the type J09:

1 n+2411110 On 1
R (R e LIS
1 L.
00,14\ _ m+24111038  Op,(1)
2’](1)_/0<éz 2r3&) (&) )Aﬂiéz,
)
00,1y _ n@3(1)
3’](1)_/0 (<)) Ardes.

Integrals of the type J2J:

1
221 = / -

424101158, (G +A111E) (Tn+24111102&5)
3r3(&y) (&)
2(x] + 411850,
3G )Al dc,
! (X}+Alﬁ2§2)2 1
_/O<W+r(f) onp1(1) 41 d&y,
2’0(1)=/15 241017028 (Kb + A &) (m+ 241 ady)
2,5 0 2 3,3(52) r5(€2)
2(x} + 41728, y
)

Vil 4+ A1) 1
Catdineey)” L 1) owgy(1) 41 dés,
+f o< A& gy e ade

1 (X]+A fli 2
]§;2<1)—/0< l r3(1fz§ 2t

Integrals of the type J02:

1 o
2= [ a-e (Mo
’ 0

1
r(é )> 8;1(,03(1)A1 dCz

3r3(&y)
o A
2 2
(xlyxz)
3
(%) 1 3 (Xllsxé)

Fig. 8. Sides for integration.

Please cite this article as: Zozulya VV. Regularization of hypersingular integrals in 3-D fracture mechanics: Triangular BE, and
piecewise-constant and piecewise-linear approximations. Eng Anal Bound Elem (2009), doi:10.1016/j.enganabound.2009.09.005



dx.doi.org/10.1016/j.enganabound.2009.09.005

8 V.V. Zozulya / Engineering Analysis with Boundary Elements 1 (11i) nsa-am

X1

Fig. 9. Sides for integration.
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r3(&,)

2(xX 4+ 4111 &y
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1 1 A
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_%W)Al dé,
+:/;<O@%;ig;€2f_+r¢;)>an¢zﬂ)dldéb

1201 —/ <(X2+raA(2;£2) + r@) ooy Ay s,

Integrals of the type ];;;Z

1 1 P 1 - .
]};3,(1):/ (1752)<(X1+Al”252)("2+4r'51(n€12§2)(rn+24‘1n1"252)
ro+& 4

Ty

_/1 ((x}+A1ﬁ252)(x§+A1ﬁ1£2)
0 r3(&)

+r(fz))5n(P1(1)A dé,,

] (1)_/ Z ((X1+Aln2Cz)(X2+Aln1fz)(fn+24‘1n1n252)

r3(&,)
Ty +C2Ak P
s
/] ((X% +A1112&5) (X3 + A1111 &)
+ 3z
0 3(c2)

-H’(fz))
Oon(1) 41 d&,,
1 /¢y - 1 -
RPN (X} + A1) (x5 + A11118)
5= / ( (&)

+r(£z)) onps(1) Ay dé.

Side 2-3. From Fig. 9 it follows that in this case ¢;=0, i;=1 and

fi;=0.
The main parameters defined by (4.7) and (5.1)-(5.4) are

=428, x1=0, dl=4;d&;, 1(&)=4&, 1m(é)=0,
=0, r.=0, r_=0, r,(&)=Aq&, (&)= — AhiE,
@1(62):0, (Pz(éz): &, @3(62) =1-¢&, Onp1(2)=42/4,
On(P,(2)=0, onp3(2)= — 43/4.

0,0) & 3 l ;=0 (A3, 0)
fy=—1
Fig. 10. Sides for integration.
Integrals of the type J09:
1g¢ td¢
0.0 _ 42 2 00,9\ 2
132)= A i Bi@=0, 1352 = ol
Integrals of the type J>2
dfz 2,0 déz
2)= —2 s =(2)=0, 2)=2—"=- .
Be= -2 [ 22 Ee-o Be-27 [ &

iy

J

J

Integrals of the type ]2:? :

ld¢ As [1d
o=-2 [ 2 g0 fio=2 [

Integrals of the type Jja:
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119y _ )= —ai | =
15(2)=0, J35(2)= 34, /0 & a2

L L
l’12—_—/7d +/ > d&;.
35(2) 03Azé§ b 03428, &

Side 3-1: From Fig. 10 it follows that in this case &,=0, i;=0

and fi,=—1.

The main parameters defined by (4.7) and (5.1)-(5.4) are

x1=43&1, x=0, dl=A43déy, (&) =43¢, (&) =0,
=0 =0, r_=0. r()=43&. r(&)=AA38,
Q1) =¢%1. @8 =0, @3&)=1-¢&;, 6p(3)=0,
npy(3)=43/4, onp33)= — 43/4.

Integrals of the type J09:
00,2\ A3 [1dé _ Tde,
293)=0.J353) = A_ V5 153 = A VE

Integrals of the type J2J:
20,2y _ _ td¢, A3 [1d&
03)=0, 3= 2A 0 E 3293)=2 o E

Integrals of the type ]q,’55

As [ldé¢ 1g¢

023y_0. 923y~ _ 43 [ dc1 3_7 1_
153)=0, 53503 1), 5203) 4/,

Integrals of the type ];j;:

1 1
11y 119y
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1v13’,:_/7dy+/7d
553 0345¢? “1 0343¢, G

Please cite this article as: Zozulya VV. Regularization of hypersingular integrals in 3-D fracture mechanics: Triangular BE, and
piecewise-constant and piecewise-linear approximations. Eng Anal Bound Elem (2009), doi:10.1016/j.enganabound.2009.09.005



dx.doi.org/10.1016/j.enganabound.2009.09.005

V.V. Zozulya / Engineering Analysis with Boundary Elements 1 (xian) ms-am 9

References

[1] Balas J, Sladek ], Sladek V. Stress analysis by boundary element methods.
Amsterdam: Elsevier; 1989.

[2] Banerjee PK. Boundary element method in engineering science. New York
and London: McGraw Hill; 1994.

[3] Chen JT, Hong H-K. Review of dual boundary element methods with emphasis
on hypersingular integrals and divergent series. Applied Mechanics Review
1999;52:17-33.

[4] Hong H-K, Chen JT. Derivations of integral equations of elasticity. Journal of
Engineering Mechanics, ASCE 1988;114:1028-44.

[5] Toakimidis NI. Application of finite-part integrals to the singular integral
equations of crack problems in plane and three-dimensional elasticity. Acta
Mechanica 1982;45:31-47.

[6] Lin’kov AM, Mogilevshaya SG. Finite-part integral in problems of three-
dimensional cracks. Journal of Applied Mathematics and Mechanics (PPM)
1986;50:652-8.

[7] Qin TY, Tang RJ. Finite-part integral and boundary element method to solve
embedded planar crack problems. International Journal of Fracture
1993;60:373-81.

[8] Qin TY, Chen W], Tang R]. Three-dimensional crack problem analysis using
boundary element method with finite-part integrals. International Journal of
Fracture 1997;84:191-202.

[9] Zozulya VV. Integrals of Hadamard type in dynamic problem of the crack
theory. Doklady Academii Nauk. UKrSSR, Series A: Physical Mathematical and
Technical Sciences 1991;2:19-22 [in Russian].

[10] Tanaka M, Sladek V, Sladek ]J. Regularization techniques applied to boundary
element methods. Applied Mechanics Review 1994;47:457-99.

[11] Hadamard ]. Lectures on Cauchy’s problem in linear partial differential
equations. New York: Dover; 1923.

[12] Zozulya VV, Lukin AN. Solution of three-dimensional problems of fracture
mechanics by the method of integral boundary equations. International
Applied Mechanics 1998;34:544-51.

[13] Zozulya VV, Men’shikov VA. Solution of three dimensional problems of the
dynamic theory of elasticity for bodies with cracks using hypersingular
integrals. International Applied Mechanics 2000;36:74-81.

[14] Guz AN, Zozulya VV. Fracture dynamics with allowance for a crack edges
contact interaction. International Journal of Nonlinear Sciences and Numer-
ical Simulation 2001;2:173-233.

[15] Guz AN, Zozulya VV. Elastodynamic unilateral contact problems with friction
for bodies with cracks. International Applied Mechanics 2002;38:3-45.

[16] Zozulya VV, Gonzalez-Chi PI. Dynamic fracture mechanics with crack edges
contact interaction. Engineering Analysis with Boundary Elements
2000;24(9):643-59.

[17] Zozulya VV. Regularization of the divergent integrals. I. General consideration.
Electronic Journal of Boundary Elements 2006;4:49-57.

[18] Zozulya VV. Regularization of the divergent integrals. II. Application
in fracture mechanics. Electronic Journal of Boundary Elements 2006;4:56-8.

[19] Zozulya VV, Gonzalez-Chi PI. Weakly singular, singular and hypersingular
integrals in elasticity and fracture mechanics. Journal of the Chinese Institute
of Engineers 1999;22:763-75.

[20] Guz AN, Zozulya VV. Brittle fracture of constructive materials under dynamic
loading. Kiev: Naukova Dumka; 1993 [in Russian].

[21] Gel'fand IM, Shilov GE. Generalized functions, vol. 1. New York: Academic
Press; 1964.

[22] Sack RA. Extension of Griffith theory of rupture of three dimension.
Proceedings of the Physical Society 1946;58:729-36.

[23] Zozulya VV. Regularization of the hypersingular integrals in 3-D problems of
fracture mechanics. In: Skerget P, Brebbia CA, editors. Boundary elements and
other mesh reduction methods XXX. Southampton, Boston: WIT Press; 2008.
p. 219-28.

Please cite this article as: Zozulya VV. Regularization of hypersingular integrals in 3-D fracture mechanics: Triangular BE, and
piecewise-constant and piecewise-linear approximations. Eng Anal Bound Elem (2009), doi:10.1016/j.enganabound.2009.09.005



dx.doi.org/10.1016/j.enganabound.2009.09.005

	Regularization of hypersingular integrals in 3-D fracture mechanics: Triangular BE, and piecewise-constant and piecewise-linear approximations
	Introduction
	Boundary integral equations
	BEM equations
	Piecewise-constant approximation
	Piecewise-linear approximation
	Numerical calculations
	Conclusions
	References




