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We investigate a meshless method for the stable and accurate solution of inverse problems associated
with two-dimensional Helmholtz-type equations in the presence of boundary singularities. The
governing equation and boundary conditions are discretized by the method of fundamental solutions
(MFES). The existence of boundary singularities affects adversely the accuracy and convergence of
standard numerical methods. Solutions to such problems and/or their corresponding derivatives may
have unbounded values in the vicinity of the singularity. Moreover, when dealing with inverse
problems, the stability of solutions is a key issue and this is usually taken into account by employing a
regularization method. These difficulties are overcome by combining the Tikhonov regularization
method (TRM) with the subtraction from the original MFS solution of the corresponding singular
solutions, without an appreciable increase in the computational effort and at the same time keeping the
same MFS discretization. Three examples for both the Helmholtz and the modified Helmholtz equations
are carefully investigated.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Helmholtz-type equations are often used to describe the
acoustic cavity problem [1], the heat conduction in fins [2], the
vibration of a structure [3], the radiation wave [4] and the
scattering of a wave [5]. In many engineering problems governed
by Helmholtz-type equations, boundary singularities arise when
there are sharp re-entrant corners in the boundary, the boundary
conditions change abruptly, or there are discontinuities in the
material properties. It is well known that these situations give rise
to singularities of various types and, as a consequence, the
solutions to such problems and/or their corresponding derivatives
may have unbounded values in the vicinity of the singularity.
Singularities are known to affect adversely the accuracy and
convergence of standard numerical methods, such as finite
element (FEM), boundary element (BEM), finite-difference
(FDM), spectral and meshless/meshfree methods. If, however,
the form of the singularity is taken into account and is properly
incorporated into the numerical scheme then a more effective
method may be constructed.

There are important studies regarding the numerical treatment
of singularities in Helmholtz-type equations, see e.g. [3-11]. Chen
et al. [3] analysed time-harmonic waves in a membrane which
contains one or more fixed edge stringers or cracks by using the
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dual BEM. Huang et al. [4] investigated the electromagnetic field
due to a line source radiating in the presence of a two-
dimensional composite wedge made of a number of conducting
and dielectric materials by employing the Fourier transform path
integral method. A hybrid asymptotic/FEM for computing the
acoustic field radiated or scattered by acoustically large objects
was developed by Barbone et al. [5]. The method of the auxiliary
mapping and the p-version of the FEM were employed by Cai et al.
[6] and Lucas and Oh [7] to remove the pollution effect caused by
singularities in the Helmholtz equation. Wu and Han [8] solved
singular boundary value problems for both Laplace and Helm-
holtz-type equations by using the FEM and introducing a
sequence of approximations to the boundary conditions at an
artificial boundary. Xu and Chen [9] used the FDM and higher-
order discretized boundary conditions at the edges of perfectly
conducting wedges for TE waves to retrieve accurately the field
behaviour near a sharp edge. The treatment of singularities in
both isotropic and anisotropic two-dimensional Helmholtz-type
equations was investigated by Marin et al. [10], who modified the
standard BEM to account for the presence of singularities. For an
excellent survey on the treatment of singularities in elliptic
boundary value problems, we refer the reader to Li and Lu [11] and
the references therein.

The method of fundamental solutions (MFS) is a meshless/
meshfree boundary collocation method which is applicable to
boundary value problems for which a fundamental solution of
the operator in the governing equation is known. In spite of this
restriction, it has, in recent years, become very popular primarily
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because of the ease with which it can be implemented, in
particular for problems in complex geometries. Since its
introduction as a numerical method by Mathon and Johnston
[12], it has been successfully applied to a large variety of physical
problems, an account of which may be found in the survey
papers [13-16]. Recently, the MFS has been successfully applied
to solving inverse problems associated with the heat equation
[17,18], linear elasticity [19,20], steady-state heat conduction in
functionally graded materials [21], Helmholtz-type equations
[22-24], and source reconstruction in steady-state heat conduc-
tion problems [25]. Numerous studies in the literature have been
devoted to the application, in a stable manner, of the MFS to
singular problems, see [26-31]. The standard MFS was modified
in order to take into account the presence of boundary
singularities in both the Laplace and the biharmonic equations
by Karageorghis [26] and Poullikkas et al. [27], respectively.
Karageorghis et al. [28] adapted the MFS formulation to
obtaining stable solutions in linear elastic fracture mechanics
problems involving the opening mode (mode I). Later, Berger et
al. [29] extended the method developed in [28] to problems
involving not only the opening mode, but the forward shear
mode (mode II) as well, and also proposed another solution
method based on a domain decomposition approach. Marin [30]
applied the MFS, in conjunction with the removal of the
associated singular functions and regularization methods, to
the stable solution of both direct and inverse problems for the
Laplace equation subject to noisy boundary data. Recently, this
method was extended to solving, in a stable manner, direct
problems for Helmholtz-type equations, see e.g. Marin [31].

The objective of this paper is to propose, implement and
analyse the MFS for the accurate and stable solution of inverse
problems associated with two-dimensional Helmholtz-type
equations in the presence of boundary singularities. The
existence of boundary singularities affect adversely the accuracy
and convergence of standard numerical methods. Consequently,
solutions to such problems and/or their corresponding deriva-
tives, which are obtained by a straightforward inversion of the
MFS system, may have unbounded values in the vicinity of the
singularity. Moreover, when dealing with inverse problems
subject to noisy data, the stability of solutions becomes a key
issue and this is usually accounted for by employing regulariza-
tion methods. These difficulties are overcome by combining the
Tikhonov regularization method (TRM) with the subtraction
from the original MFS solution of the corresponding singular
solutions, i.e. using the so-called singularity subtraction techni-
que (SST), see e.g. Portela et al. [32], without an appreciable
increase in the computational effort and at the same time
keeping the original MFS discretization. The proposed modified
MFS is then implemented for inverse problems associated with
both the Helmholtz and the modified Helmholtz equations in
two-dimensional domains with an edge crack or a V-notch, as
well as an L-shaped domain.

2. Mathematical formulation

We assume that the homogeneous Helmholtz-type equation is
satisfied in the two-dimensional bounded domain Q with a
piecewise smooth boundary I' =06, such that the potential
solution and normal flux can be measured on I'nGI" and I'NG T,
respectively, where I'p # 0§ and I'y # 0. Moreover, both Dirichlet
and Neumann data (i.e. Cauchy data) are available on a portion
I'c =TIp NIy of the boundary I', where I'c # (), while neither the
potential solution, nor the normal flux can be measured on
N(I'pUTI'N)#0 and they have to be determined. Hence the

inverse problem considered recasts as:

2ux)  A*u(x)

2 _ 2 _
Au(X) + k“u(x) = P + —ax% +kux)=0, xeQ (1.1)
ux)=u’x), xelp 1.2)
qx) = VuX) - n(X)=§4°(x), Xxel\, 1.3)

where k € R, the plus sign corresponds to the Helmholtz equation,
while the minus sing is associated with the modified Helmholtz
equation, and &t|r, and §°|r, are perturbed prescribed boundary
potential solution and normal flux, respectively, given by

|y =1lpy +8u,  G°lr, =4qlr,+0q. 2)

Here 6ii and 8§ are Gaussian random variables with mean zero
and standard deviations oy =maxp,lu| x (py/100) and oq=
maxr,|q| x (pq/100), respectively, generated by the NAG subrou-
tine GO5DDF, and p, and pq are the percentages of additive noise
included into the exact input data u|, and q|,, respectively, in
order to simulate the inherent measurement errors.

In addition, we also assume that the boundary I" contains a
singularity at the origin O, which may be caused by a change in
the boundary conditions at the origin and/or a re-entrant corner at
the origin. For the simplicity of the following explanations, we
assume that the singularity point is located at the intersection of
the Dirichlet, I'p, and Neumann, [I'y, boundary parts, i.e.
{OycTpnTy, where I'p#0, I'v#0, I'pncI, I'yvc I and we
denote by an overbar the closure of a set, see Fig. 1(a), although
the method presented in this paper can easily be extended to
other local configurations or boundary conditions.

It is well known that, even for two-dimensional domains with
smooth boundaries, inverse problems are in general considerably
more difficult to solve than direct problems since the solution
does not satisfy the general conditions of well-posedness. More
precisely, small measurement errors in the input data may result
in very large errors in the solution, see e.g. Hadamard [33].
Moreover, the inverse problem under investigation (1.1)-(1.3) is
considerably more severe than a regular inverse problem, as
described above, since the additional singularity amplify the
unstable character of the problem. Hence we cannot use a direct
approach, such as the least-squares method (LSM), in order to
solve the system of linear equations which arises from the
discretization of the inverse boundary value problem (1.1)-(1.3).

3. Singular solutions for two-dimensional Helmholtz-type
equations

In this section, some well-known results on the solution of the
homogeneous two-dimensional Helmholtz-type equations are
revised. For more details, we refer the reader to Marin et al. [10]
and the references therein. For a fixed non-zero complex number
k the homogeneous Helmholtz-type equation in Q c R? can be
written as

AuX)+K2uX) =0, X=(x1,X2)e Q. 3)

Note that the values x =k and x =ik, where k € R, correspond to
the real Helmholtz and modified Helmholtz equations, respec-
tively. Let the polar coordinate system (r, 0) be defined in the usual
way with respect to the Cartesian coordinates (xi,X;)= (rcos6,
rsinf). If we assume that the solution of Eq. (3) in the domain Q
can be written using the separation of variables with respect to
the polar coordinates (r, 8), where r > 0, then the general solution
of the Helmholtz-type Eq. (3) can be written as

u(r, 0) = [y1J,(kr)+ 7y, N; (kr)][acos(A0) + bsin(L.0)]. 4)
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Fig. 1. Schematic diagram of the geometry and boundary conditions for
the singular inverse problems investigated, namely: (a) Example 1: N-D
singularity in a domain containing an edge crack OD with 0; =0 and 0, =, (b)
Example 2: D-D singularity in an L-shaped domain with 6; =0 and 6, =3n/2, and
(c) Example 3: D-N singularity in a domain containing a V-notch with 6; =0 and
0, =11m/12.

Here 74, 75, a and b are constants, whilst J; and N; are the Bessel
functions of the first kind and the second kind, respectively.
Consider now that Q is a two-dimensional isotropic wedge
domain of interior angle, 0, — 0;, with the tip at the origin, O, of
the local polar coordinates system and determined by two straight
edges of angles 0; and 6,, given by Q={xeR?|0<r<R(©0),
01 < 0 < 0,}, where R(0) is either a bounded continuous function

or infinity. Moreover, we consider the boundary value problem
given by Eq. (3) in Q and homogeneous Neumann and/or Dirichlet
boundary conditions prescribed on the wedge edges. On assuming
ReA>0 and taking into account the finite character of the
potential solution, u, in a wedge tip neighbourhood, we obtain
7, =0 in Eq. (4). Hence the basis function of singular functions to
the aforementioned boundary value problem obtained from
expression (4) can be written in the general form as

uS(r, 0) =, (kr)[acos(A0)+ bsin(1.0)], (5)

where a and b are the unknown singular coefficients, whilst A is
referred to as the singularity exponent or eigenvalue. The singularity
exponent/eigenvalue, as well as the corresponding singular coeffi-
cients, are determined by the geometry and boundary conditions
along the boundaries sharing the singular point.

The normal flux through a straight radial line defined by an
angle 0 and associated with the normal vector n(6) = (—sin0, cos0)
is given by

4.0 = 1 ZuS.0). ®)

For the sake of convenience, the singular function, u®, and
normal flux, ¢®, given by Egs. (5) and (6), respectively, can be
recast as

uS(r, 0) =J,(kr){acos[A(0 — 01)]+bsin[A(® — 61)]}, )

49r,0)= 1,6 ~asinlz(0 — 01) + beoslA — 0y ®)

Four configurations of homogeneous Neumann (N) and
Dirichlet (D) boundary conditions at the wedge edges applied to
expressions (7) and (8) are considered in this paper. On assuming
the existence of a nontrivial solution of the resulting system of
equations under the assumption Re/ > 0, one obtains the general
asymptotic expansions for the singular function of Helmholtz-
type equations for a single wedge and corresponding to homo-
geneous Neumann and Dirichlet boundary conditions on the
wedge edges, see also Marin et al. [10]:

Case I: N-N wedge

udr,0)= > auu™(r,0)= Y an J;,(kr)cos[ia(0 — 01)],
n=0 n=0

d n=0. )

NG e 2

Case 1I: N-D wedge

u®(r,0) = i anu ™ (r, 0) = i anJ;, (k) COS[/n(0 — 01)],

n=1 n=1

1 T
An=<n—§>m, n>1. (10)

Case 11I: D-D wedge

uS(r,0)= i anuPP(r, 0) = i apj,, (kP)sin[An(0 — 01)],

n=1 n=1

T n>1. 1mn

=g e M

Case IV: D-N wedge

U0 = 3 at®.0)= 3 aus, (esintia(0 — 0}

n=1 n=1

1 b
An:(’,l_j)H, nZl (12)
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4. Singularity subtraction technique

In order to avoid the numerical difficulties arising from the
presence of the singularity in the solution at O, it is convenient to
modify the original problem before it is solved by the MFS. Due to
the linearity of the Helmholtz and modified Helmholtz operators,
as well as the boundary conditions, the superposition principle is
valid and the potential solution, u, and normal flux, g, can be
written as, see e.g. [10,30-32],

u(x) = x) — u® ) +u® ) = u® @) +ux),

XeQ=QUT, (13)

ax®) = (qx) — ¢°®)+q°®) = g0 +q°x), xeT, (14)
where u®(x) is a particular singular potential solution of the
original problem (1.1)-(1.3) which satisfies the corresponding
homogeneous boundary conditions on the parts of the boundary
containing the singularity point O and q®x) = Vu®(x) - n(x) is its
normal derivative. If appropriate functions are chosen for the
singular potential solution and its normal derivative then the
numerical analysis can be carried out for the regular potential
solution u®(x) and its normal derivative q®(x) = Vu®(x) - n(x)
only. In terms of the regular potential solution u®(x), the original
inverse problem (1.1)-(1.3) becomes

AuPX)+kPu®x) =0, xeQ (15.1)
u®x) =i°x) — u®x), xelp (15.2)
a0 =4"® - q®®, xelk. (15.3)

The modified boundary conditions (15.2) and (15.3) introduce
additional unknowns into the problem, which are the constants of
the particular potential solution used to represent the singular
solution. It should be noted that these constants are similar to the
stress intensity factors corresponding to an analogous problem for
the Lamé system and, in what follows, they will be referred to as
“flux intensity factors”. Since the flux intensity factors are
unknown at this stage of the problem, they become primary
unknowns.

In order to obtain a unique solution to the regular problem
(15.1)-(15.3), it is necessary to specify additional constraints
which must be as many as the number of the unknown flux
intensity factors, i.e. one for each singular potential solution
included in the analysis. These extra conditions must be applied in
such a way that the cancelation of the singularity in the regular
potential solution is ensured. This is achieved by constraining the
regular potential solution and/or its normal derivative directly in a
neighbourhood of the singularity point O

u®x) =0, xeI'yNB(O;71)

and/or q®x)=0, xeI'pnBO;1), (16)
where B(0;7)={Xe RZ\HXH <1}, T> 0 is sufficiently small and Il - |l
represents the Euclidean norm. For example, for the inverse

problem (15) the singular potential solution and its normal
derivative are expressed, in terms of the polar coordinates (r, 0), as

ng ns
W) =u®r, 0= auPVr,0), O =q,0= " a, gV, 0),

n=1 n=1
a7
where u®PV(r,0) is given by Eq. (12), ¢PV(r,0) is obtained by
taking the normal derivative of u®™(r,0) and a,,, n=1,...,ns, are

the unknown flux intensity factors.

5. Modified method of fundamental solutions

The fundamental solutions Fy and Fyy of the Helmholtz and
modified Helmholtz equations, respectively, in the two-dimen-
sional case are given by, see e.g. Fairweather and Karageorghis
[13],

Fuxy) = ‘ing”(ka—yH), xeQ, ye RAQ, 18)
and

Fuu(X,y) = 2iKo(knx—yu), XxeQ, ye RM\Q, (19)

Y

respectively. Here x = (x1,x,) is either a boundary or a domain
point, y = (y1,Y>) is a source point, Hf]” is the Hankel function of
the first kind of order zero and K is the modified Bessel function
of the second kind of order zero.

According to the MFS approach, the regular potential solution,
u®  in the solution domain is approximated by a linear
combination of fundamental solutions with respect to M source
points ¥ in the form

M

uP~ > ¢ Fxy), xeQ, (20)
j=1

where F = Fy in the case of the Helmholtz equation, F = Fyy in

the case of the modified Helmholtz equation, ¢;e R, j=1,...,M,

are the unknown coefficients. Then the regular normal flux on the

boundary I can be approximated by

M
P~ Y G axy), xel, 1)
j=1
where G(X,y) = VxF(X,y) - n(X), while G=Gy in the case of the
Helmholtz equation and G=Gyy in the case of the modified
Helmholtz equation are given by

Gux,y) =

[(X—y)-nEKi L

T dx_yl M KIx—yh. xel, yeRAQ, 22)
and
OMH(X,Y) =

[(x—y) - nX)]k -
,mm(k\\x—y\l), xel, yeR\Q, (23)

respectively. Here H(l” is the Hankel function of the first kind of
order one and K; is the modified Bessel function of the second
kind of order one.

Assume that the singularity point O is located between the
collocation points X e I'p and x™ e I'y, see also Fig. 2, and ng
singular potential solutions uP™(r,0), as well as flux intensities,
an, are taken into account, such that the additional constraints for

the regular potential solution and/or its normal derivative given

Cc B
Q
xMo xﬁN
xfio-1 Lyl
xho-2 7—\\ o ///77 xhin+2
D m A

Fig. 2. Schematic diagram of the MFS collocation points in the vicinity of the
singularity point O.
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by Eq. (16) read as, see e.g. Portela et al. [32], Marin et al. [10] and
Marin [30,31],

u®xN+A-My =0, 2m—1e(l,...,ns}

and q®x™1-™)y=0, 2me({l,...,ng}. (24)
If np collocation points Xi, i=1,...,np, and ny collocation points
xwm+i j=1,...,ny, are chosen on the boundaries I'p and Iy,

respectively, such that N = np+ny, and the location of the source
points yi, j=1,...,M, is set then the boundary value problem
(15.1)-(15.3), together with the additional conditions (16), recasts
as a system of (N+ns) linear algebraic equations with (M+ng)
unknowns which can be generically written as

AE=F, (25)

where

A= {::Z; ;\LZLJ e RIVHmOMEms) g (:(O)> eRM*™s F= (gf) e RV¥7s,
(26)

with the unknown vectors ¢@ =(cy,...,cp)" e RM and a=(ay, . ..,

ap)" e R™. The components of the matrices A” e RMM, AD ¢
R¥"s, and A? ¢ R™*M, and the vector F¥ ¢ R in Eq. (26) are
given by

FxiLy), i=1,....mp, j=1...M

AP =1 o v, i - 27.1)
gx',y), i=np+1,....,np+nN, j=1,....M

1 UJ('DN)(ria()i)a i:1»~~~=nD7 J:1=7M

z('j): ON) i piy i ; 27.2)
g @,0), i=np+1,....np+nn, j=1,....M

A2 FInrad-m y)  i=2m—-1e{l,....ns}, j=1,....M

i) gxiom-m iy i=2me(l,...,ns}, j=1....M

(27.3)

uéxh, i=1,...,n

FO = ~( ) , P (27.4)
G°(x), i=np+1,...,np+ny

where (1,0%) are the local polar coordinates of the collocation
point X/, i=1,...,N. Note that the matrix A, and the vectors c¢©@
and F? in (26) correspond to the standard MFS, i.e. ns =0, applied
to solving the regular inverse problem (15.1)-(15.3).

In order to uniquely determine the solution ¢ of the system of
linear algebraic Eq. (25), i.e. the coefficients ¢;, j=1,...,M, in
approximations (20) and (21) and the flux intensity factors ay,
n=1,...,ns, in the asymptotic expansions (17), the total number
of collocation points corresponding to the Dirichlet and Neumann
boundary conditions, N, and the number of source points, M, must
satisfy the inequality M < N.

To implement the MFS, the location of the source points has to be
determined and this is usually achieved by considering either the
static or the dynamic approach. In the static approach, the source
points are pre-assigned and kept fixed throughout the solution
process, this approach reducing to solving a linear problem [13]. In
the dynamic approach, the source points and the unknown
coefficients are determined simultaneously during the solution
process via a system of nonlinear equations which may be solved
using minimization methods [13]. Recently, Gorzelanczyk and
Kotodziej [34] thoroughly investigated the performance of the MFS
with respect to the shape of the pseudo-boundary on which the
source points are situated, proving that, for the same number of
boundary collocation points and sources, more accurate results are
obtained if the shape of the pseudo-boundary is similar to that of the
boundary of the solution domain. Therefore, we have decided to

employ the static approach in our computations, at the same time
accounting for the findings of Gorzelaficzyk and Kotodziej [34].

6. Regularization

As a direct consequence of the fact that the singular inverse
problem (1.1)-(1.3), as well as its regular version (15.1)-(15.3), is
highly ill-posed, the MFS discretization matrix A is severely ill-
conditioned. Hence a direct approach to solving the resulting MFS
system of linear algebraic equations (25), such as the LSM, would
produce highly oscillatory and unbounded solutions, i.e. unstable
solutions. The LSM solution to the MFS system (25) is sought as,
see e.g. Tikhonov and Arsenin [35]

Cism: Tism(€sm) = min T igu(C), (28)
ceRM*s

where 7 sy is the LSM functional given by

Tism : RMT™ 510, 00), Tism(€) = IAE — FII2. (29)

Formally, the LSM solution, €5y, of the minimization problem
(28) is given as the solution of the following system of linear
algebraic equations:

(ATA)é¢ =ATF, (30)
in the sense that
€ =(A"A)'AF. 31
The accurate and stable solution of the system of linear
algebraic equations (25) is very important for obtaining physically
meaningful numerical results. Regularization methods are among
the most popular and successful methods for solving stably and
accurately ill-conditioned matrix equations [35]. In the present
computations, we use the TRM to solve the matrix equation
arising from the MFS discretization. The Tikhonov regularized

solution to the system of linear algebraic equations (25) is sought
as [35]

é)‘ : T/L(é;) = min T,L(é), (32)
& e RM+ns

where 7 ; is the zeroth-order Tikhonov functional given by
T,() : RM ™ — [0, 00),

T,(€) = Tism(©)+ A2IE12 = IAE — FIZ + 221612, (33)
and A > 0 is the regularization parameter to be chosen. Formally,
for a given value of the regularization parameter, 4, the Tikhonov

regularized solution €, of the problem (32) is obtained by solving
the normal equation

(ATA+2Ty o )€ =ATF, (39
namely
&, =ATA+ Iy, ) 'ATF, (35)

where Iy, is the identity matrix. Note that the LSM solution is a
limit case of the TRM solution as A—0.

The performance of regularization methods depends crucially
on the suitable choice of the regularization parameter. One
extensively studied criterion is Morozov's discrepancy principle
[36]. Although this criterion is mathematically rigorous, it
requires a reliable estimation of the amount of noise added into
the data which may not be available in practical problems.
Heuristical approaches are preferable in the case when no a priori
information about the noise is available. For the TRM, several
heuristical approaches have been proposed, including the general-
ized cross-validation [37] and Hansen’s L-curve criterion [38]. In
this paper, we employ the L-curve criterion to determine the
optimal regularization parameter, Aoy. If we define on a
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logarithmic scale the curve {(IAC, —FI,I¢;IN|A >0} then this
typically has an L-shaped form and hence it is referred to as
the L-curve. According to the L-curve criterion, the optimal
regularization parameter corresponds to the corner of the L-curve
since a good tradeoff between the residual and solution norms is
achieved at this point. Herein, we employ the algorithm of Hansen
[38], which is based on fitting a parametric cubic spline to the
discrete points and then taking the point corresponding to the
maximum curvature of the L-curve to be its corner.

7. Numerical results and discussion

It is the purpose of this section to present the performance of
the modified MFS described in Section 5. To do so, we solve
numerically the inverse boundary value problem (1.1)-(1.3)
associated with two-dimensional Helmholtz-type equations in
the presence of boundary singularities.

7.1. Examples

In the case of the singular inverse problems for both the
Helmholtz and the modified Helmholtz equations analysed here-
in, the solution domains under consideration, Q, accessible
boundaries, I'p and I'y, and corresponding analytical solutions
for u@M(x) are given as follows:

Example 1. N-D singularity for the modified Helmholtz equation
(k=1) in the rectangle Q =ABCD =(—1,1) x (0, 1) containing an
edge crack OA, see Fig. 1(a):

U (x) = uM™ (x) — 1.30uy (x)+1.50u5 > (x)

- 1.70ufP(x), xeQ. (36)

Example 2. D-D singularity for the modified Helmholtz equation
(k=1) in the L-shaped domain =O0ABCDE=(-1,1)x
(0,1)U(-=1,0) x (1,0, see Fig. 1(b):

U x) = uPPx) — 1.30uPP(x) — 1.70uPP(x), xeQ. (37)

Example 3. D-N singularity for the Helmholtz equation (k=1) in
the rectangle containing a V-notch with the re-entrant angle /6
Q=0ABCD =(-1,1) x (0,1)\AODD’, see Fig. 1(c):

Ut (x) = uPVx) — 1.50uPV (x)+1.30uPV(x), xe Q. (38)

It should be mentioned that the functions u"”, u{®® and u{®",
i=1,...,4, used in expressions (36)-(38) are defined in Eqs. (10)-
(12), respectively. It is important to notice that all examples
analysed in this study contain a singularity at the origin O.
Moreover, this singularity is caused by the nature of the analytical
solutions considered, i.e. the analytical solutions are given as
linear combinations of the first four singular solutions satisfying
homogeneous boundary conditions on the edges of the wedge, as
well as by a sharp corner in the boundary (Examples 2 and 3) or
by an abrupt change in the boundary conditions at O (Examples 1
and 3), see Figs. 1(a)-(c). For all examples considered, it can be
seen that the boundary I'c=IpnNIy is over-specified by
prescribing on it both the boundary solution, u|, and the normal
flux, g/, whilst the boundary BC is under-specified since neither
the boundary solution, ulgc, nor the normal flux, q|gc, is known
and has to be determined.

The singular inverse problems investigated in this paper have
been solved using a uniform distribution of both the boundary
collocation points xi{, i=1,...,N, and the source points ¥,
j=1,...,M, with the mention that the latter were located on a
so-called pseudo-boundary, I's, which has the same shape as the

boundary I' of the solution domain and is situated at the distance
d =3 from I, see also Gorzelanczyk and Kotodziej [34]. Further-
more, the number of boundary collocation points was set to:

(i) N=120 for Examples 1 and 3, such that N/3 =40 and
N/6=20 collocation points are situated on each of the
boundaries BC and OA, AB, CD and DO, respectively;

(ii) N =154 for Example 2, such that 19 and 39 collocation points
are situated on each of the boundaries OA, AB, DE and EO, and
BC and CD, respectively.

In addition, for all examples investigated throughout this study,
the number of source points, M, was taken to be equal to that of
the boundary collocation points, N, i.e. M =N.

7.2. Accuracy errors

In what follows, we denote by u™™ and ¢™™ the numerical
values for the potential solution and normal flux, respectively,
obtained using the LSM, i.e. by a direct inversion method, and by
subtracting the first ns > 0 singular potential solutions, with the
convention that when ns=0 then the numerical potential
solution and normal flux are obtained using the standard MFS,
i.e. without removing the singularity.

In order to measure the accuracy of the numerical approxima-
tion for the potential solution, u™™_ and normal flux, ¢"™, with
respect to their corresponding analytical values, u®, and, q@v,
respectively, we define the relative root mean-square (RMS) errors
by

N; N
eul)) = || DM ) — u@(x))? / > uen)? (39)

j=1 j=1

N; N;
Z(q(num)(xj) — g@m(xi)) Z(q(“ﬂm(xi))2 (40)

j=1 j=1

eq(Fj) =

where N; is the number of collocation points on the boundary
Fj cl.
Furthermore, we also define the normalized errors

L lg" ™) — g0
maxy e |u(an)(y)| maxy o |q(an)(y)|
(41)

for the potential solution and normal flux, respectively, where I’
denotes the set of boundary collocation points, since on using
these errors divisions by zero and very high errors at points where
the potential solution and/or normal flux have relatively small
values are avoided.

In addition, we introduce an error that measures the
inaccuracies in the numerical results obtained for the flux
intensity factors, namely the absolute error defined by

err(u(x)) = ,  err(q(x)) =

>

Err(a) = \a]‘.““m) - ql. (42)

Here a](.“”"‘) represents the numerical value for the exact flux
intensity factor a;, provided that the latter is available.

7.3. Effect of the singularity subtraction technique

The first example investigated contains a singularity at the
boundary point O caused by both the abrupt change in the
boundary conditions and the nature of the analytical solution, see
Eq. (36), in the case of the modified Helmholtz equation. It should
be noted that this singularity is of a form which is similar to the
case of a sharp re-entrant corner of angle zero. This may be seen
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by extending the domain Q2 = (-1, 1) x (0, 1) using symmetry with
respect to the x;- axis, see also Fig. 1(a). In this way, a problem is
obtained for a square domain containing a crack, namely
Q=(-1,1) x (=1,1)\[0,1] x {0} with zero flux boundary condi-
tions along the crack [0, 1] x {0}. This problem may also be treated
by considering the domain Q described above, with the mention
that the singular functions (9) corresponding to Neumann-
Neumann boundary conditions along the crack must be used.

2.0

—— Analytical
15 ns=0

1.0 1

o 0.51

0.0

-0.5-

-1.0

X4

-10 08 -06 -04 -02 00

However, the original domain 2 and the mixed boundary
conditions illustrated in Fig. 1(a) have been considered in our
analysis, i.e. 01 =0 and 0, = 7.

If the LSM is applied to solving the singular inverse problem
given by Example 1 subject to noisy data without subtracting any
singular potential solutions (ns =0) then the numerical solution
retrieved by this direct solution method is not only inaccurate, but
also unstable. This aspect, which is strongly related to the

b :
Analytical
“rng =0 :
0.5 -
0.0 1. ’
> Ty
051 ", ;
-1.0 1 T

X4

Fig. 3. Analytical and numerical solutions for (a) glpo and (b) u|oa, obtained using the LSM, ns =0 and pq = 1% noise added into the Neumann data q|,,, for Example 1.
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Fig. 4. Analytical and numerical solutions for (a) qlpo, (b) uloa, (¢) ulgc, and (d) glgc, obtained using the LSM, ns € {1,2,3,4,5} and pq = 1% noise added into the Neumann

data q|r,, for Example 1.
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Fig. 5. Analytical and numerical solutions for (a) qlpo and (b) uloa, obtained using the TRM, ng =0 and pq = 1% noise added into the Neumann data q|r,,, for Example 1.
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Fig. 6. Analytical and numerical solutions for (a) q|po and (b) u|ga, and the corresponding normalized errors (¢) err(q(x)), X € DO, and (d) err(u(x)), X € OA, obtained using the
TRM, ns €{1,2,3,4,5} and pq = 1% noise added into the Neumann data q|,, for Example 1.

ill-posedness of the inverse problem [33] and hence the
impossibility of the standard MFS system to represent corner
singularities, can be clearly noticed from Figs. 3(a) and (b) that
present the analytical and LSM-based numerical normal flux and
potential solution on the wedges DO and OA, respectively, when
the Neumann data q|,, = q|ap,cp Was perturbed by pq = 1% noise.

Figs. 4(a) and (b) illustrate a comparison between the
analytical and numerical solutions for gqlpg and uga,
respectively, obtained with p;=1% and by removing various
numbers of singular potential solutions, namely ns e {1,2,3,4,5]},
for the N-D singular inverse problem given by Example 1. It can be
seen from these figures that the numerical results for both q|pg

and u|gu are considerably improved, even if only the first singular
potential solution corresponding to Dirichlet-Neumann boundary
conditions on (—1,1) x {0} is removed, i.e. ng=1. The same
pattern is observed if one continues to remove higher-order
singular potential solutions in the modified MFS, i.e. ns € {2, 3}, as
can be seen from Figs. 4(a) and (b). Moreover, the removal of
ns > 4 singular potential solutions from the standard MFS ensures
the retrieval of reasonably accurate numerical solutions for the
normal flux on DO and the potential solution on OA, respectively,
see Figs. 4(a) and (b). However, very inaccurate and highly
oscillatory solutions have been obtained for both the unknown
potential solution and normal flux on the under-specified
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boundary BC and these are presented in Figs. 4(c) and (d),
respectively.

Although not presented, it is reported that similar results have
been obtained for the other examples investigated in this study.
Therefore, in order to retrieve accurate and stable numerical
solutions for singular inverse problem associated with Helmholtz-
type equations, the use of the SST in the modified MFS approach
only is not sufficient, as clearly shown in Figs. 4(a)-(d).

7.4. Effect of the Tikhonov regularization

If solely the TRM is employed to solve the resulting MFS
system (25) without removing any singular potential solutions
then again very inaccurate numerical results have been retrieved
for both the potential solution and the normal flux. These results
are presented in Figs. 5(a) and (b) which illustrate the analytical
and numerical normal flux and potential solution on the wedges
DO and OA, respectively, when q|r,, =qlapucp Was perturbed by
Pq = 1% noise and ns =0, in the case of Example 1. By comparing
Figs. 3-5, we can conclude that both the SST and the TRM should
be employed in order to solve the singular inverse problem given
by Example 1 in a stable and accurate manner.

Indeed, if these two techniques are used together then the
difficulties caused by the ill-posedness of the inverse problem, as
well as the boundary singularity at O, can be overcome. Figs. 6(a)
and (b) present the analytical and numerical results for the normal

flux on DO and potential solution on OA, respectively, retrieved by
solving the MFS + SST system of linear algebraic equations (25) using
the TRM, in conjunction with the L-curve criterion for choosing the
optimal regularization parameter, p; = 1% and ns € {1,2,3,4, 5}, in
the case of Example 1. From these figures it can be noticed that the
effect of SST in the presence of the TRM is remarkable. When the
TRM is employed then even the removal of the first two singular
potential solutions, i.e. ng =2, provides a very accurate numerical
approximation for the potential solution u|gs, which is also bounded
and exempted from oscillations. Similar estimations are also valid for
the numerical normal flux q|po, with the mention that, as expected,
the numerical results obtained for the normal flux on DO are more
inaccurate than those retrieved for the potential solution on OA. The
same conclusion can also be drawn from Figs. 6(c) and (d) which
present the results shown in Figs. 6(a) and (b) in terms of the
normalized errors err(q(x)), XxeDO, and err(u(x)), xe OA,
respectively, as defined by formula (41). On comparing Figs. 3-6,
we can conclude that the TRM provides very accurate MFS+SST-
based numerical solutions to singular inverse problems for
Helmholtz-type equations, at the same time having a regularizing/
stabilizing effect on the MFS+ SST solutions to such problems.

7.5. Choice of the optimal regularization parameter

Figs. 7(a) and (b) illustrate the relative RMS errors e,(BC) and
eq(BQ), respectively, given by relations (39) and (40), as functions

a b
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Fig. 7. The RMS errors: (a) ey(BC), (b) eq(BC), and (c) the corresponding L-curve, obtained using the TRM, ns = 5 and various levels of noise added into the Neumann data,

qlry, namely pq € {1%, 3%, 5%}, for Example 1.
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of the regularization parameter 4, obtained with ng=5 and
various levels of noise added into the input normal flux data q|r,,
for the inverse problem given by Example 1. From these figures it
can be seen that both errors ey(BC) and eq(BC) decrease as the
level of noise pq added into the input Neumann data decreases for
all regularization parameters A and ey(BC)<eq(BC) for all
regularization parameters A and a fixed amount pq of noise
added into the input normal flux data q|r,, i.e. the numerical
results obtained for the normal flux are more inaccurate than
those retrieved for the potential solution on the under-specified
boundary BC. Fig. 7(c) shows on a log-log scale the L-curves
obtained for ng=5 and various levels of noise added into the
input normal flux data in the case of Example 1. By comparing this

Table 1

The relative RMS errors, e,(BC) and eq(BC), and the values for the corresponding
optimal regularization parameter, Aopt, obtained using the LSM and TRM, ns =5
and various levels of noise added into the normal flux q|r,, namely

Pq € (1%, 3%, 5%}, for Example 1.

Method Pq (%) ey (BO) eq (BO) Aopt

LSM 1 0.33621 x 10! 0.78192 x 10? =
3 0.10086 x 10? 0.23457 x 10° -
5 0.16809 x 10? 0.39093 x 10° =

TRM 1 0.51874 x 1072 0.10351 x 107! 1.0x107°
3 0.82568 x 1072 0.49427 x 107! 1.0x107°
5 0.11467 x 107! 0.90614 x 107! 1.0x107°

a
Analyt‘i);:al
1> pq: 0)
15477 Pa
p =
o
-10 -08 -06 -04 -02 0.0
X4
Cc

107 4

10

Normalized error err(q(x))

¢ 4
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X1
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figure with Figs. 7(a) and (b), it can be seen, for various levels of
noise, that the “corner” of the L-curve occurs at about the same
value of the regularization parameter . where the minimum in
the accuracy errors ey (BC) and eq(BC) is attained. Hence the choice
of the optimal regularization parameter Aop: according to the L-
curve criterion is fully justified. Similar results have been obtained
for the Cauchy problems given by Examples 2 and 3 and therefore
they are not presented here.

Table 1 presents the values of the relative RMS errors ey(BC)
and eq(BC) obtained by both methods, namely the LSM and the
TRM, with ng =5 and various levels of noise added into the input
normal flux data q|r,, namely pq e {1%,3%,5%)}, in the case of
Example 1, as well as the optimal values for the regularization
parameter A. By considering this table and Figs. 3-6, we can
conclude that the use of regularization methods, in conjunction
with the SST+MFS approach, is fully justified and provides both
stable and accurate numerical results not only on the edges
sharing the singularity point, but also on the under-specified
boundary BC.

7.6. Numerical stability of the method

In order to investigate the numerical stability of the proposed
modified MFS algorithm described in Section 5, in conjunction
with the L-curve method of Hansen [38] for selecting the optimal
value for the regularization parameter, 4, in what follows we
consider the inverse problems given by Examples 1-3, the
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Fig. 8. Analytical and numerical solutions for (a) qlpo and (b) u|ga, and the corresponding normalized errors (c) err(q(x)), X e DO, and (d) err(u(x)), x € OA, obtained using the
TRM, ns =5 and various levels of noise added into the Neumann data, q|r,, namely pq € {1%, 3%, 5%}, for Example 1.
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Fig. 9. Analytical and numerical solutions for (a) u|gc and (b) q|gc, and the corresponding normalized errors (c) err(u(x)), X € BC, and (d) err(q(x)), x € BC, obtained using the
TRM, ns =5 and various levels of noise added into the Neumann data, q|r,, namely pq € {1%, 3%, 5%}, for Example 1.

Table 2

The numerically retrieved values, a}"”‘“’, for the flux intensity factors and the corresponding absolute errors, Err(a;), obtained using the TRM , ns =5 and various levels of

noise added into the normal flux q|r,, namely pq € {1%, 3%, 5%}, for Example 1.

pq (%) a{™m™ Err(ay) a™™ Err(ay) a™ Err(az) @ Err(as)

1 1.0027 027 x 1072 -1.3009 0.85x 1073 1.5182 0.18 x 107! —1.6997 029 x 1073
1.0031 0.31 x 1072 —1.2988 0.12 x 1072 1.5472 047 x 107! —1.7833 0.83 x 107!
1.0036 0.36 x 1072 —1.2967 0.37 x 1072 1.5761 0.76 x 107! —1.8670 0.17 x 10°

corresponding MFS discretizations mentioned in Section 7.1 and
ng =5, whilst at the same time varying the level of noise added
into the Dirichlet or Neumann data as py, pq € {1%, 3%, 5%}.

Figs. 8(a) and (b) present the numerical normal flux on the
boundary DO and potential solution on the boundary OA,
respectively, obtained using the MFS+SST algorithm for various
levels of Gaussian random noise added into the normal flux q|r,,
in the case of Example 1, in comparison with their analytical
values. From these figures it can be seen that, for all amounts, pq,
of noise added into q|r,, both the numerical potential solution on
OA and the normal flux on DO represent excellent approximations
for their analytical counterparts, being at the same time exempted
from high and unbounded oscillations in the vicinity of the
singularity. Similar conclusions can be drawn from Figs. 8(c) and
(d) which show the normalized errors err(q(x)), xe DO, and

err(u(x)), Xe OA, respectively, associated with the numerical
results illustrated in Figs. 8(a) and (b). The numerical potential
solution and normal flux on the under-specified boundary BC, as
well as their corresponding normalized errors, obtained using the
regularized MFS+ SST and pq € {1%, 3%, 5%}, are illustrated in Figs.
9(a)-(d). From these figures we can conclude that the numerical
results for the potential solution and normal flux on the under-
specified boundary BC are also in very good agreement with their
corresponding exact values and, in addition, they are convergent
and stable with respect to decreasing the amount of noise added
into the input boundary normal flux q|,. Accurate, stable and
convergent numerical results with respect to decreasing pq have
also been obtained for the flux intensity factors a;, j=1,...,4, and
these, together with their associated absolute errors Err(g)),
j=1,...,4, are presented in Table 2.
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Fig. 10. Analytical and numerical solutions for (a) q|zo, (b) qloa, (¢) u|BC, and (d) q|BC, obtained using the TRM, ns =5 and various levels of noise added into the Dirichlet

data, u|,, namely py € {1%, 3%, 5%}, for Example 2.

The second example analysed in this paper is related again to
the modified Helmholtz equation and contains a singularity at the
origin O, which is caused by a sharp corner in the boundary, as
well as the nature of the analytical potential solution correspond-
ing to this problem, see Eqs. (11) and (37), for perturbed boundary
potential measurements u|r, . The analytical and numerical fluxes
on the boundaries EO and OA obtained in this case are shown in
Figs. 10(a) and (b), respectively. Although not presented, it is
worth mentioning that the numerical flux obtained on EO U OA
using the standard MFS (ns = 0) exhibits very high oscillations in
the neighbourhood of the singular point and hence it represents
an inaccurate approximation for the analytical flux. The numerical
potential solution and normal flux on the under-specified
boundary BC, obtained using the regularized MFS+SST for
various levels of noise added into u|r,, are illustrated in
Figs. 10(c) and (d), respectively. The effect of the TRM and the
MFS +SST algorithm on the accuracy of the numerical results in
comparison with the LSM is clearly displayed in Table 3, which
presents the relative RMS errors, e, (BC) and eq(BC), and the values
for the corresponding optimal regularization parameter, Aopt,
obtained on the under-specified boundary BC using the LSM and
TRM. From Figs. 10(c) and (d) and Table 3 we can conclude that the
numerical results for the potential solution and normal flux on the
under-specified boundary BC are also excellent approximations
for their corresponding exact values and, in addition, they are
convergent and stable with respect to decreasing the amount of
noise added into the input boundary potential solution u|,.

Table 3
The relative RMS errors, e,(BC) and eq(BC), and the values for the corresponding
optimal regularization parameter, Aqp, obtained using the LSM and TRM, ns =5

and various levels of noise added into the potential solution u|r, namely
Pu € {1%,3%, 5%}, for Example 2.
Method Du (%) ey (BO) eq (BO) Aopt
LSM 1 0.13585 x 10" 0.50453 x 10? -
3 0.40755 x 10" 0.15136 x 10° -
5 0.67924 x 10! 0.25226 x 10° =
TRM 1 0.54359 x 1073 0.48179 x 1072 1.0x107*
3 0.91608 x 1073 0.54250 x 1072 1.0x 1073
5 0.20574 x 1072 0.15029 x 107! 1.0x 1073

Consider now the singular inverse problem for the two-
dimensional Helmholtz equation, as given by Example 3, with
perturbed boundary potential solution on I'p. This singular
Cauchy problem is actually the most severe one among the
inverse problems investigated in this study, in the sense that the
singularity at O is caused by all factors that may occur in such a
situation, namely a sharp re-entrant corner and abrupt change in
boundary conditions on the side DO U OA (here u|gs and q|pg are
prescribed), see Fig. 1(c), as well as the nature of the analytical
potential solution corresponding to this problem, see Eqs. (12) and
(38). Figs. 11(a) and (b) present the numerical solutions for the
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Fig. 11. Analytical and numerical solutions for (a) u|DO and (b) q|OA, (c) u|BC, and (d) q|BC, obtained using the TRM, ns =5 and various levels of noise added into the

Dirichlet data, u|I'p, namely p, € {1%, 3%, 5%}, for Example 3.

Table 4

The numerically retrieved values, aJ‘.““m), for the flux intensity factors and the corresponding absolute errors, Err(a;), obtained using the TRM, ns =5 and various levels of
noise added into the potential solution u|r,, namely py € {1%, 3%, 5%}, for Example 3.

Pu (%) o Err(a;) a™ Err(ay) a™ Err(az) ) Err(as)

1 0.0048 048 x 1072 1.0142 0.14 x 107! —-1.5214 021 x 107! 1.0863 0.21 x 10°
3 0.0086 0.86 x 1072 1.0411 0.41 x 107! —1.5404 0.40 x 107! 0.5801 0.72 x 10°
5 0.0116 0.12 x 107! 1.0463 0.46 x 107! —1.5564 0.56 x 107! 0.4862 0.81 x 10°

potential solution ulpg and normal flux q|pa, respectively,
retrieved by the TRM and various levels of noise added into
ulr,, in comparison with their analytical counterparts, for
Example 3. It can be seen from these figures that the numerical
results for both the potential solution and the normal flux on the
edges adjacent to the singularity point O are in very good
agreement with their corresponding analytical values and being
at the same time exempted from high and unbounded oscillations.
Accurate, stable and convergent results have also been obtained
for the unspecified potential solution u|gc and normal flux q|pc
when the modified MFS described in Section 5, as can be observed
form Figs. 11(c) and (d), respectively. However, the numerical
normal fluxes q|gc are more inaccurate than the associated
potential solutions ulgc, as can be noticed by comparing
Figs. 11(c) and (d), and this is a direct consequence of the

severity of the singular inverse problem given by Example 3. In
addition, from these figures it can be concluded that both
numerical potential solutions and normal fluxes on the under-
specified boundary BC are convergent and stable with respect to
decreasing py. Similar conclusions can be drawn from Table 4,
which tabulates the numerical flux intensity factors, a}“”m),
j=1,...,4, and the corresponding absolute errors, Err(q;),
j=1,...,4, obtained using the TRM and various levels of noise
added into the potential solution u|,.

Overall, from the numerical results presented in this section it
can be concluded that the MFS+SST proposed in Section 5,
combined with the TRM and Hansen'’s L-curve criterion described
in Section 6, is a very suitable method for solving inverse
boundary value problems exhibiting singularities caused by the
presence of sharp corners in the boundary of the solution domain
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and/or abrupt changes in the boundary conditions, for two-
dimensional Helmholtz-type equations with noisy boundary data.
The numerical potential solutions and normal fluxes retrieved
using this regularized MFS+SST are very good approximations for
their analytical values on the entire boundary, they are exempted
from oscillations in the neighbourhood of the singularity point
and there is no need of further mesh refinement in the vicinity of
the singularities.

8. Conclusions

In this study, the MFS was applied for solving, in an accu-
rate and stable manner, inverse problems associated with
two-dimensional Helmholtz-type equations in the presence of
boundary singularities. The existence of such boundary singula-
rities affect adversely the accuracy and convergence of standard
numerical methods. Therefore, the MFS solutions to such
problems and/or their corresponding derivatives, obtained by a
direct inversion of the MFS system, may have unbounded values
in the vicinity of the singularity. This difficulty was overcome by
subtracting from the original MFS solution the corresponding
singular potential solutions, as given by the asymptotic expansion
of the potential solution near the singularity point, and at the
same time employing the TRM, in conjunction with Hansen'’s L-
curve method for choosing the optimal regularization parameter.
Hence, in addition to the original MFS unknowns, new unknowns
were introduced, namely the so-called flux intensity factors.
Consequently, the original MFS system was extended by consider-
ing a number of additional equations which equals the number of
flux intensity factors introduced and specifically imposes the type
of singularity analysed in the vicinity of the singularity point. The
proposed MFS+SST was implemented and analysed for singular
inverse problems associated with both the Helmholtz and the
modified Helmholtz equations in two-dimensional domains
containing an edge crack or a V-notch, as well as an L-shaped
domain.

From the numerical results presented in this paper, we can
conclude that the advantages of the proposed method over other
methods, such as mesh refinement in the neighbourhood of the
singularity, the use of singular BEMs and/or FEMs etc., are the high
accuracy which can be obtained even when employing a small
number of collocation points and sources, and the simplicity of
the computational scheme. A possible drawback of the present
method is the difficulty in extending the method to deal with
singularities in three-dimensional problems since such an exten-
sion is not straightforward. The extension of the current approach
to inverse boundary value problems associated with two-dimen-
sional isotropic linear elastic materials, as well as two-dimen-
sional biharmonic equation, is currently under investigation.
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