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Abstract

The problem of debonding of FRP plates glued over a concrete element is studied making use of boundary integral
equations. Mode II cohesive crack model is adopted for the interface, whereas linear elasticity is used for the two materials
outside the process zone. Symmetric Galerkin boundary element method is used, adopting the arc-length technique to fol-
low the equilibrium path beyond its critical point. It is shown that, due to the presence of a softening branch in shear stress-
slip law, the behavior of a specimen undergoing debonding may be strongly non-linear, and is associated with a very brittle
failure mechanism. For bond lengths longer than minimum anchorage length, a snap-back branch typically occurs after the
attainment of the maximum force. Two different test setups have been numerically simulated and results in good agreement
with experimental tests are found.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Debonding is the most important failure mode in reinforced concrete structures strengthened by external
bonding of fiber reinforced polymer (FRP) plates or sheets, and received great attention in recent years.
Debonding may arise from extremities of reinforcement or from intermediate cracks in the concrete due to
flexure [62]. In both cases, axial force must be transmitted from FRP external reinforcement to concrete,
and debonding occurs prevailingly in mode II condition, due to very high shear stresses at the interface level
and relatively small shear strength of the concrete cover. In other cases, debonding may start from diagonal
shear cracks in concrete, with displacement discontinuity over concrete support causing very high normal
(peeling) stresses associated with shear stresses (see [23,68,69,24]), and mixed mode fracture occurs.

As far as the problem of modelling of FRP–concrete debonding is concerned, most common procedures
can be divided into three main groups, those based on stress analysis, on linear elastic fracture mechanics
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(LEFM) or on cohesive crack models. In the first case, FRP–concrete interface is modelled as a linear elastic
layer, and debonding occurs if interfacial stress reaches shear strength of the interface [52,37], for a review see
[60]. The method is very simple, and can be used for both bond–slip models and 2D FEM domain discretiza-
tions. Nevertheless, experimental results showed that most of load is transmitted in mode II condition in non-
linear range for the interface (see Sections 2 and 4). Then, in order to predict at least the order of magnitude of
debonding load, unreasonably high values of interface strength must be assumed adopting a stress-based cri-
terion for debonding. LEFM has been widely adopted to model delamination problems. It relies on the
assumption of the existence of initial defects or cracks and cannot be applied directly without initial delam-
ination. Techniques such as virtual crack closure [32,53,72], J-integral [50] and virtual crack extension [29]
are some of the most used procedures. Applications of methods based on LEFM to FRP–concrete delamina-
tion can be found in [61,12,49]. More recently, models based on a cohesive or damage zone for the simulation
of fracture process are becoming more and more popular [13,4,46,2,71,18,26]. The basic idea for such models
can be traced back to [19,6,7,30]. In the cohesive crack model, the fracture process zone is modelled as a fic-
titious crack; strain localization is idealized as a crack opening and sliding, related to cohesive tractions by
means of constitutive relations. Advantages of such models are their simplicity and unification of crack initi-
ation and growth within one model.

Cohesive crack models are widely used to study FRP–concrete debonding. When mode II fracture is dom-
inant (such as in the case of end debonding), numerical models are typically based on shear stress–tangential
slip interface laws (see [35] for a review of existing bond–slip models). In this cases, relative displacement
between FRP reinforcement and concrete is lumped within the interface layer, whose constitutive law collects
all compliance contributions of adhesive and external concrete layer. Experimental studies clearly suggest that
debonding typically occurs a few millimetres inside the concrete specimen, but with this definition of FRP–
concrete interface, debonding is treated as occurring along the interface, and linear elastic laws can be adopted
for concrete (see Section 2). Mode II interface laws are usually obtained from post-processing of experimental
results [57,43,66,22]. In [36] it is shown that mode II bond–slip interface laws can be derived by a meso-scale
FE model by adopting mode I tension-softening law for damaged concrete during debonding.

Some analytical and numerical solutions have been derived by adopting mode II interface laws and simple
shear-lag models (as initially proposed by [65]), where axial deformation only is considered and bending of
concrete element and FRP–concrete reinforcement are neglected. Bilinear local mode II bond–slip interface
law has been used in [68,70] to study shear stress transfer and fracture propagation from FRP–concrete rein-
forcement extremities, and in [42,63] to study intermediate debonding. Power fractional interface law and
finite-difference solution technique have been used in [56,21]. In this case, mode II bond–slip interface law
has been calibrated starting from experimental data on delamination tests. This law includes non-linear behav-
ior of adhesive layer and external cover of concrete subjected to very high shear stress (see Section 2).

More complete analyses require concrete and external reinforcement be considered as two-dimensional (or
three-dimensional) bodies. In this framework, finite element method is the most widely used (see for instance
[33,16,36]). Boundary element methods [10] are also very attractive for FRP–concrete debonding problems,
because non-linear behavior can be localized in a non-linear interface law, whereas concrete element and rein-
forcement can be considered as linear elastic bodies.

In case displacement discontinuity locus is not established a priori and fracture propagation occurs inside
the concrete specimen, with unknown directions, other numerical techniques can be adopted such as the dual
boundary element method, as detailed in [3].

In the present paper, a fully symmetric Galerkin boundary element method is used to study the problem of
mode II debonding of a FRP–concrete plate bonded on a concrete support. The incremental boundary inte-
gral equations (BIEs) for the problem of several elastic domains connected by cohesive non-linear interfaces
adopted in the present study have been originally proposed in [54], and are shortly summarized in Section 3.
Stemming from displacement and traction BIEs for a single domain [31,27], the problem is formulated in
terms of displacement fields u, v, traction field p and displacement discontinuity field w along the interfaces.
Displacement discontinuities are related to cohesive tractions by means of a holonomic non-linear interface
law. In the case of a symmetric cohesive law, the integral operator governing the problem is proved to be linear
with respect to the unknown rate fields and symmetric with respect to a suitable bilinear form. Therefore, the
boundary integral problem admits a variational formulation and its solution is a critical point of a quadratic



1668 F. Freddi, M. Savoia / Engineering Fracture Mechanics 75 (2008) 1666–1683
functional. As a main consequence of this variational framework, Galerkin approximation scheme [41] can be
adopted. Differently from [15], where the partial symmetric formulation proposed for multi-zone problems
implies an ad-hoc treatment of the non-symmetric part of the discrete matrix, the fully symmetric technique
adopted leads to clear advantage from theoretical and computational points of view.

Main guidelines of the proposed incremental algorithm, detailed in [25,1], are given in Section 3. Due to
softening nature of the interface law, debonding phenomenon is characterized by a highly non-linear behavior.
Hence, in the proposed numerical scheme, Riks arc-length technique with local control has been used as solu-
tion algorithm.

Several numerical simulations have been performed, concerning two different setups of mode II debonding
tests of FRP plates bonded on concrete substrate. Due to the presence of a sharp softening branch in shear
stress-slip law, debonding phenomenon may be strongly non-linear, and snap-back equilibrium branch may
be present after the attainment of maximum load. This circumstance confirms the very brittle failure mecha-
nism associated with FRP debonding. Nevertheless, with the proposed algorithm crack nucleation and growth
can be numerically followed, up to complete debonding. Numerical results are found in good agreement with
experimental results reported in the literature.

It is shown that the proposed symmetric Galerkin boundary element technique provides for a powerful tool
for solving cohesive interface problems, giving correct values of debonding forces for different anchorage
lengths and distributions of FRP strains along the bond length.

2. Mode II non-linear interface law

2.1. Mode II shear fracture for FRP–concrete debonding

In the so-called cohesive crack model, see [6,7,30], the fracture process zone is modelled as a fictitious crack,
constituting a transition zone between the un-cracked zone and the traction-free crack. Strain localization is
idealized as a crack opening and sliding, and cohesive forces (normal and shear) are related to displacement
discontinuities by softening laws. The area under stress–displacement relation represents the fracture energy
required to create a fully developed crack of unit length.

According to theoretical fracture mechanics, fracture propagation direction is governed by the criterion of
the maximum energy release rate, see for instance [9], as a consequence of basic laws of thermodynamics.
Then, cracks in concrete specimens are usually related to tensile failure (mode I fracture energy being the min-
imum), and crack propagation direction from the notch tip is taken as normal to the maximum principal ten-
sile stress according to [20]. Also in shear-loaded beams with a start notch in the mode II direction [5], if a wide
zone of beam is subject to shear, crack typically deviates from mode II fracture direction to that orthogonal to
maximum principal stress. Nevertheless, mode II (or shear) fracture failures may occur when a narrow region
is subject to high shear stresses. For instance, in [8], shear fracture has been observed in shear-loaded beams
with starting notches similar to those tested by [5], but with much smaller distance between applied shear
forces: in this case, according to the criterion of the maximum energy release rate, cracks cannot deviate into
a low stress zone of the material, because they would release little energy.

As clearly described in [8], shear fracture initially forms as a zone of inclined tensile microcracks. Full shear-
ing failure then requires inclined struts between microcracks be finally crushed in compression. The completely
different failure mechanism at the meso-level explains why mode II fracture energy GII

f is far larger than mode
I ðGI

fÞ, even 25 times larger according to [8]. For concrete specimens, GI
f can be considered as a basic material

constant whereas GII
f is not, since it can be calculated on the basis of GI

f , tensile concrete strength and crack
band width.

When a plate is bonded to a concrete specimen and is subject to axial load up to failure, mode II shear
failure occurs. In fact, only a small layer of concrete close to interface is subject to very high shear stresses,
and criterion of the maximum release rate requires fracture propagates along it. Failure mechanism is similar
as described before: inclined microcracks forms in the small external layer of concrete because tensile strength
is much lower than adhesive, and final shear crack typically occurs few millimetres below adhesive-concrete
interphase. Correspondingly, fracture energy is much higher than mode I fracture energy of concrete, as con-
firmed by several experimental studies. Failure phenomenon at the meso-scale level has been studied in [36],
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where a mode II shear stress-slip law has been derived starting from tension-softening constitutive law for con-
crete. Similar results were also obtained by [16] by adopting a plastic damage model for concrete epoxy
interface.

Moreover, mode II fracture energy is usually higher than for plain concrete, due to penetration of adhesive
in the concrete external layer, so depending also on adopted adhesive characteristics and concrete surface
preparation before adhesive application [64,44,58]. For this reason, direct shear tests are recommended to cal-
ibrate mode II non-linear interface laws.
2.2. Mode II interface laws from shear tests

Mode II interface laws can be obtained from experimental strain gauge measures along FRP reinforcement
in a shear test performed up to complete debonding (see [35] for a review of existing models). These laws then
include overall compliance of the support, i.e. of both adhesive and concrete cover subject to high shearing
deformation: for low slip values, linear compliances of both adhesive and concrete cover are included; for high
slips, failure and subsequent post-failure softening behaviors, occurring in concrete cover, are also modelled at
the interface level. Hence, these laws are appropriate for models based on assumption of plane profile of defor-
mation over concrete height (called bond–slip models in the following), i.e., not including localized shear
strains close to the interface, because this deformation mode is already modelled at the interface level.

A mode II power fractional interface law has been recently proposed in [22]. It has been obtained by post-
processing experimental data of delamination tests, and gives the local bond stress s as a function of slip s (see
Fig. 1):
Fig. 1.
fractio
s
�s
¼ s

�s
n

ðn� 1Þ þ ðjsj=�sÞn ð1Þ
where ð�s;�sÞ denote peak shear stress and corresponding slip and n > 2 is a free parameter mainly governing the
softening branch, where shear stress transmission is due to aggregate interlock.

In [40,58] it has been shown that, if boundary effects are avoided in tests, parameters of interface law are
independent of geometry of the specimens and test setup, but they are a function of concrete strength, surface
preparation and reinforcement type (FRP plates or sheets).
2.3. Mode II interface laws for 2D numerical simulations

Interface laws (1) cannot be used directly for problems where concrete specimen domain is discretized as a
2D elastic body (such as FEM of BEM), since elastic concrete deformation close to the interface would be
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Mode II non-linear FRP–concrete interface laws: the power fractional law and a bilinear law. The parameters adopted for power
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1670 F. Freddi, M. Savoia / Engineering Fracture Mechanics 75 (2008) 1666–1683
considered twice. In the present study, according to BEM, concrete support is considered elastic. Hence, elas-
tic compliance must be removed from Eq. (1). Initial (tangent) stiffness of interface law is given by:
KBS
0 ¼

ds
ds
ðs ¼ 0Þ ¼ �s

�s
n

n� 1
; ð2Þ
Hence, elastic stiffness of interface law for 2D BEM discretization can be obtained by subtracting elastic com-
pliance of external concrete cover to the overall compliance defined in Eq. (2), i.e.:
1

KBEM
0

¼ 1

KBS
0

� 1

Kc

ð3Þ
where Kc = Gc/hc is the stiffness of external concrete cover, with Gc being shear modulus and hc thickness of
concrete contributing to interface compliance. Cover thickness hc = 25–30 mm has been estimated in
[68,56,39] by post-processing of experimental results.

Moreover, the value of fracture energy Gf of bond–slip law has been preserved, since that value is strictly
related with the value of maximum transmissible force by an anchorage of infinite length [22]. Fracture energy
of interface law (1) can be written as:
Gf ¼ �s�sp
1

n� 1

� � 1�2
nð Þ

csc
2p
n

� �
: ð4Þ
Hence, for a given value of KBEM
0 (from Eq. (3)) and Gf (from experimental results), parameters �s and n of

interface law for 2D BEM discretization can be easily obtained from Eqs. (2) and (4). The corresponding inter-
face law is reported in Fig. 1. In the same figure, a bilinear law is also depicted, which has been adopted in
numerical examples for comparisons. It has been obtained by prescribing the same peak values ð�s;�sÞ and frac-
ture energy Gf of power fractional law adopted in the present study.

2.4. Further considerations

As well known, debonding is not a pure mode II failure mode, due to the presence of ‘‘peeling stresses’’, i.e.
traction stresses normal to the interface. Hence, peak shear stress �s can be smaller than maximum shear stress
in pure mode II condition. Some rules have been proposed to define the peak shear stress in FRP–concrete
connections, usually based on Mohr–Coulomb criterion [11], but they have not been at present experimentally
validated. Difficulties are due to the fact that peeling stresses exhibit a very sharp gradient along the reinforce-
ment and vanish few millimetres far from the end of anchorage. Hence, due to heterogeneity of concrete, fail-
ure criteria based on local stresses may be not appropriate. Pan and Leung [47] conducted a series of
experimental tests under shear/peeling condition. They proposed a non-linear interface model where shear
behavior depends on maximum peeling stress of the interface, while peeling behavior is assumed independent
of shear stresses. Very often, due to the lack of experimental studies, shear and opening law are considered
independent (see for instance [45,66]). A fully coupled model for joints between cementitious materials based
on plastic-damage theory can be found in [34], even if the model has not been tested for joints under combined
shear and tension.

Nevertheless, if the interface law is calibrated from experimental data, reduction of peak shear stress due to
peeling stresses is already included in a simplified form. Of course, this interface law is valid when the anchor-
age is subjected to prevailingly mode II condition. Therefore, in the present analysis, a linearly elastic law is
adopted for normal stress-transverse displacement relation, r = kpw, where the adhesive stiffness is kp = Eg/hg,
Eg and hg being elastic modulus and thickness of the adhesive layer, respectively.

Finally, denoting with p ¼deffr; sg the cohesive traction vector and with w ¼deffw; sg the interface relative dis-
placement vector, interface constitutive equation can be written in incremental form as:
_p ¼ �bD tðwÞ _w ð5Þ

where bD tðwÞ is the tangent stiffness matrix of the cohesive law and overhead dot denotes derivative with re-
spect to t.
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3. Cohesive interface and BIEs incremental formulation

3.1. General statements

We consider two homogeneous isotropic elastic bodies occupying the domains X1 and X2 (see Fig. 2), rep-
resenting the undistorted natural reference configuration of two solids, bounded by exterior Lipschitz bound-
aries C1, C2 with outward unit normal n1 and n2, respectively, and connected by a cohesive interface
Cc = C1 \ C2. Domain boundaries Ci, i = 1, 2, are divided into three parts corresponding to different boundary
or interface conditions to be imposed: Ci ¼ Ci

D [ Ci
N [ Ci

c, where Ci
c is the portion of cohesive interface Cc

belonging to the boundary Ci, whereas Ci
N, Ci

D are boundary portions where Neumann and Dirichlet bound-
ary conditions must be imposed, respectively, i.e., pi ¼ rðuiÞni � �pi, on Ci

N, (where r is the Cauchy stress ten-
sor), and ui � �ui on Ci

D. Basic hypothesis of small displacements and strains implies:
n1ðxÞ ¼ �n2ðxÞ ¼ ncðxÞ; x 2 Cc; ð6Þ
and equilibrium condition reads:
p1ðxÞ ¼ �p2ðxÞ; x 2 Cc: ð7Þ
Moreover, we consider here the following assumptions: interface Cc is the locus of possible displacement dis-
continuities w, and equilibrium between tractions across the interface is satisfied. According to the definition
(6) of normal nc(x) along Cc, the relative opening displacement is defined:
wðx; tÞ ¼ u1ðx1ðtÞÞ � u2ðx2ðtÞÞ; xi 2 Ci
c; wðx; 0Þ ¼ 0: ð8Þ
From Eqs. (6) and (7) we define for all x 2 Cc: pc(x) = p1(x) where pc(x) is the traction on the interface. As a
further assumption in the problem formulation, cohesive tractions pc and relative displacements w at point
x 2 Cc are related by a non-linear cohesive law pc = pc(w(x, t)). Moreover we suppose that quasi-static external
tractions �piðx; tÞ ¼ kpðtÞ~piðxÞ imposed on Ci

N and displacements �uiðx; tÞ ¼ kuðtÞ~uiðxÞ assigned on Ci
D of each

domain Xi, i = 1, 2, are both products of a function of x and a function of t, where the second one plays
the role of a load multiplier.

3.2. Incremental boundary integral equations

We define, with reference to general functions wi and /i, the standard boundary integral operators, at x 2
Ci, i.e. the single and double layer potential operators [67]:
ðV iwiÞðxÞ ¼
Z

Ci
U iðx; yÞwiðyÞdsy; ðKi/iÞðxÞ ¼

Z
Ci

T i;yUiðx; yÞ/iðyÞdsy; ð9Þ
Fig. 2. Two domains connected by a cohesive interface Cc: the notation adopted.
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the adjoint double layer potential and the hypersingular integral operator:
ðK0iwiÞðxÞ ¼
Z

Ci
T i;xU iðx; yÞwiðyÞdsy; ðDi/iÞðxÞ ¼ T i;x

Z
Ci

T i;yUiðx; yÞ/iðyÞdsy: ð10Þ
Moreover, the operator Ti,y denotes the traction operator on Ci with differentiation with respect to y, and
Ti,yUi(x,y) is the boundary stress tensor of the fundamental solution Ui(x,y) of the linear elastic problem that
we assume to exist for each subdomain Xi (see [48]). Operators K and K0 are defined as Cauchy singular inte-
grals and D is defined as a hypersingular finite part integral in the sense of Hadamard [59], i.e. the finite part of
an asymptotic expansion. Finally, the operator V i is weakly singular and the integral is defined in the classical
Lebesgue sense.

The mapping properties of all local boundary integral operators defined above are well known (see [17]).
Then, the incremental form of the standard boundary integral equation system related to the Dirichlet–
Neumann problem on the ith domain, i = 1, 2, reads (see [54,25]):
V i
DD _pi �Ki

ND _ui þ V i
cD _pi;c �Ki

cD _ui;c ¼ f i
D on Ci

D;

�K0iDN _pi þDi
NN _ui �K0icN _pi;c þDi

cN _ui;c ¼ f i
N on Ci

N;
ð11Þ
where
f i
D ¼

1

2
I þKi

DD

� �
_�ui � V i

ND
_�pi; f i

N ¼ � 1

2
I þK0iNN

� �
_�pi �Di

DN
_�ui:
Subscripts ab (where a, b = D, N, c denote the Dirichlet, Neumann and interface portion of the boundary)
mean integration over Ci

a and evaluation over Ci
b. The displacement and traction BIEs (11), for the two faces

of Cc are:
V i
Dc _pi �Ki

Nc _ui þ V i
cc _pi;c � 1

2
I þKi

cc

� �
_ui;c ¼ f i

Dc on Ci
c;

�K0iDc _pi þDi
Nc _ui þ ð�1Þi�1

2
I �K0icc

� �
_pi;c þDi

cc _ui;c ¼ f i
Nc on Ci

c;
ð12Þ
where
f i
Dc ¼ �V i

Nc
_�pi þKi

Dc
_�ui; f i

Nc ¼ K
0i
Nc

_�pi �Di
cc

_�ui:
In Eq. (12), for i = 2, the normal at the field point has been chosen as inward. Now, let us define two new
vector fields on the interface, the incremental mean displacement _vðx; tÞ ¼ 1

2
½ _u1ðx1ðtÞÞ þ _u2ðx2ðtÞÞ� and the

incremental half opening displacement _zðx; tÞ ¼ 1
2
½ _u1ðx1ðtÞÞ � _u2ðx2ðtÞÞ� ¼ 1

2
_wðx; tÞ. The interface constitutive

equation can be written in an incremental form making use of the tangent matrix of the cohesive law, denoted
with bDt, as (see Eq. (5)):
_pcðx; tÞ ¼ 2bD tðzðx; tÞÞ _zðx; tÞ: ð13Þ
Finally, considering a suitable linear combination between Eqs. (11) and (12), the definition of vectors _v, _z and
Eq. (13), we obtain a system giving the incremental problem of two domains connected by a cohesive interface
in the form (see [54]):
NðfðtÞÞ _fðtÞ ¼ FðfðtÞ; tÞ ð14Þ
where
NðfðtÞÞ ¼

V1
DD �K1

ND 0 0 �K1
cD C1

cD½fðtÞ�
�K01DN D1

NN 0 0 D1
cN C1

cN½fðtÞ�
0 0 V2

DD �K2
ND �K2

cN C2
cD½fðtÞ�

0 0 �K02DN D2
NN D2

cN C2
cN½fðtÞ�

�K01Dc D1
Nc K02Dc �D2

Nc C11
cc C12

cc ½fðtÞ�
C1

Dc½fðtÞ� C
1
Nc½fðtÞ� C

2
Dc½fðtÞ� C

2
Nc½fðtÞ� C

21
cc ½fðtÞ� C

22
cc ½fðtÞ�

2666666664

3777777775
: ð15Þ
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The components of unknown vector _fðtÞ ¼ ½ _p1 _u1 _p2 _u2 _v _z�T are tractions _pi on Dirichlet boundaries Ci
D, dis-

placements _ui on Neumann boundaries Ci
N, mean displacement _v and relative half opening displacement _z

on the cohesive interface Cc in their incremental form. Moreover:
fðfðtÞ; tÞ ¼ f1
D f1

N f2
D f2

N ½f1
Nc � f2

Nc� bDT
t ðfðtÞÞðf

1
Dc � f2

DcÞ þ f1
Nc þ f2

Dc

h ih iT

; ð16Þ
and terms Ci
ab, Cij

ab are combinations of integral operators previously defined and of cohesive tangent stiffness
matrix bDt:
Cj
cD½fðtÞ� ¼ V

j
cD
bD tðfðtÞÞ � Kj

cD; Cj
cN½fðtÞ� ¼ �K

0j
cN
bD tðfðtÞÞ � Dj

cN; j ¼ 1; 2;

C11
cc ¼

X2

j¼1

ð�1Þj�1Dj
cc; C

12
cc ½fðtÞ� ¼

X2

j¼1

�K0jccD̂tðfðtÞÞ þ ð�1ÞjDj
cc;

C22
cc ½fðtÞ� ¼

X2

j¼1

bDT
t ðfðtÞÞVj

cc
bD tðfðtÞÞ þ ð�1Þj bDT

t ðfðtÞÞK
j
cc

� ð�1ÞjK0jccD̂tðfðtÞÞ þ ð�1Þj�1Dj
cc þ bDtðfðtÞÞ � bDT

t ðfðtÞÞ: ð17Þ
For a complete description of these blocks and further details, the reader is referred to [25]. The following
result holds [54]: if the tangent matrix of the cohesive law bD t is symmetric, the integral operator N is symmetric
with respect to the usual bilinear form:
ðN _f; _nÞL2ðCÞ ¼ ð _f;N _nÞL2ðCÞ: ð18Þ

Problem (14), equipped with an initial condition for t = 0 for the unknown vector f(t) (for instance f(t) = 0),
admits a unique solution under the hypothesis of invertibility for the operator N. This condition holds if the
interface law is stable in a second order sense (i.e. bD t is not negative definite). In this case, a semi-discretization
with respect to t can be performed with standard adaptive explicit one-step methods. Then, for discretization in
space, in order to apply the symmetric Galerkin boundary element method (see [10]), a family of finite-dimen-
sional subspaces Sh,d is defined on the boundary. Following well-known procedures, boundaries C1, C2 and
interface Cc are discretized into boundary elements. On each boundary element, tractions, displacements on
C1, C2, as well as mean displacement v and displacement discontinuity z over the interface Cc are interpolated
from nodal values using polynomial shape functions. In the present problem, the space of piecewise polynomi-
als Sh,d is used as approximating subspaces for the approximation of ui on Ci

N, pi on Ci
D and v, z on Cc.

3.3. Solution by arc length technique

Consider the non-linear incremental problem defined in Eq. (14), where the response is obtained for p vary-
ing from a null initial value and evolving quasi statically in time by means of a load factor k(t) in the form
�piðx; tÞ ¼ kðtÞ~piðxÞ.

In the spirit of arc length method [51], an additional equation relating _fðtÞ to the infinitesimal increment of
the unknown load factor k(t) is introduced. Then, problem (14) is transformed as
NðfðtÞÞ _fðtÞ ¼ _kðtÞfðfðtÞÞ t 2 ½0; tf �
k _fðtÞk2

2 þ j _kðtÞj
2 ¼ 1

fð0Þ ¼ f0; kð0Þ ¼ k0:

8><>: ð19Þ
Note that the operator N(f(t)) is invertible if and only if _kðtÞ 6¼ 0. In this case, a unique solution can be found if
the sign of _kðtÞ is specified. Under these hypothesis, problem (19) can be rewritten in the following normal form:
_yðtÞ ¼ Fðt; yðtÞÞ; t 2 ½0;�t½
yð0Þ ¼ y0

�
ð20Þ
where
yðtÞ ¼
fðtÞ
kðtÞ

	 

; Fðt; yðtÞÞ ¼ sgn½ _kðtÞ�½1þ kbðfðtÞÞk2

2�
�1=2 bðfðtÞÞ

1

	 

;
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with b(f(t)) = N�1(f(t))f(f(t)). In Eq. (20), �t represents the first value of t such that _kð�tÞ ¼ 0, corresponding to
the attainment of the limit point (see numerical examples). Integration in time cannot continue because the
operator N fails to be invertible.

In the discretization phase, the following constraint is introduced in order to determine the sign of _kðtÞ:
Table
Setup

t (mm

1.016
_kðtÞl1ðtÞ > 0; ð21Þ

where l1(t) denotes the smallest eigenvalue of the discrete operator Nh(fh(t)) evaluated with reference to the
approximated solution fh(t). If _kðtÞ ¼ 0 at the n-step, problem (19) becomes:
Nðfð�tÞÞ _fð�tÞ ¼ 0

k _fð�tÞk2
2 ¼ 1:

(
ð22Þ
In this case, the eigenvector q of the matrix Nhðfhð�tÞÞ related to the null eigenvalue must be determined and
normalized with respect to Euclidean norm. Also in this case, the ‘‘orientation’’ of q is not determined; there-
fore, the constraint q Æ [fh(tn) � fh(tn�1)] > 0 is introduced in order to get over the limit point and to obtain the
solution at tn+1:
fhðtnþ1Þ ¼ fhðtnÞ þ ðtnþ1 � tnÞq; kðtnþ1Þ ¼ kðtn�1Þ: ð23Þ

Note that for t > �t the sign of l1(t) changes and therefore the sign of _kðtÞ changes too, denoting a softening
branch on the equilibrium paths (see the following section).

Huge efforts have been made in the last two decades in order to improve computational efficiency of the
constraint Eq. (19)b – see [28] for an exhaustive review. In the present paper, a local control function, anal-
ogous to that proposed in [38], is used. Accordingly, only the unknowns related to the non-linear behavior are
used in the control equation. Differently from all previously cited papers, the present formulation is differential
in time and the solution is reached by (explicit) time integration strategies. The reader is referred to [25] for
additional details, exploiting features of boundary integral equations and arc-length technique.

4. Simulation of FRP–concrete debonding problems via BEM

The proposed BE model for cohesive interfaces has been used to simulate FRP–concrete debonding tests.
Two different test setups are considered, depicted in Figs. 3 and 12. Mechanical and geometrical properties of
specimens considered in numerical simulations are reported in Tables 1–3. For FRP–concrete interface, the
non-linear law reported in Fig. 1 has been adopted.
Fig. 3. Setup No. 1: Geometrical properties of specimens tested in [14].

1
no. 1: geometrical and mechanical properties of specimens tested in [14]

) h (mm) Ep (MPa) Ec (MPa) fc (MPa) bp (mm) bc (mm) d (mm)

152.4 108,380 33,640 36.4 25.4 152.4 50



Table 2
Setup no. 1: geometrical and mechanical properties of specimens considered in numerical simulations

t (mm) h (mm) Ep (MPa) Ec (MPa) fc (MPa) bp (mm) bc (mm) d (mm)

1.016 100 230,000 33,640 36.4 50 50 50

Table 3
Setup no. 2: geometrical and mechanical properties of specimens considered in numerical simulations

t (mm) h (mm) Ep (MPa) Ec (MPa) fc (MPa) bp (mm) bc (mm)

1.016 150 230,000 33,640 36.4 50 50
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4.1. Simulation of Setup No. 1 debonding test

Fig. 3 shows a typical configuration for pull–pull tests of FRP plates bonded to concrete. Left and bottom
sides of the specimen are constrained in order to have no displacements in the direction normal to the surface
and free displacements tangent to it. Two different numerical tests have been performed.

4.1.1. Comparison with experimental tests

Experimental tests reported in [14] have been simulated first. Geometrical and mechanical properties of the
specimens are reported in Table 1. In these tests, FRP plate width (25.4 mm) was much smaller than concrete
width. Nevertheless, in the simulations presented here, a plane stress problem has been considered. Boundary
conditions are slightly different from those adopted in tests: an unconstrained front edge is adopted here. Since
state of stress in concrete specimen is very small, the change of boundary conditions has no effects on results.

Comparison between experimental data and numerical results obtained through the present BE model are
reported in Fig. 4a–d, for different bonding lengths. In each figure, strains in FRP plate along the bonding
length are reported, for increasing values of applied force. The highest load corresponds to failure load
obtained experimentally. For L = 101.6 mm bonding length debonding in numerical simulation occurred
for a load smaller than in experiments; the corresponding strain profile is reported by dashed line. All figures
show good agreement between numerical and experimental results both at low and high loading levels. Agree-
ment at low loadings (the interface behavior being almost linear) means that initial interface stiffness is cor-
rectly defined. The agreement is very good also for high loadings, where plate debonding occurs: the
change of curvature sign close to loaded plate end indicates that slip corresponding to maximum shear stress
has been overcome and softening branch of interface law is involved.

Moreover, values of failure load as a function of bonding length are reported in Fig. 5. Experimental results
are compared with numerical predictions obtained from the proposed BE solution and those given by a
recently proposed 1D bond–slip model [56,22]. The two models give practically the same results, for both
small and long bonding lengths. This circumstance confirms that the corresponding interface law for 2D
domain discretization and bond–slip law proposed in [22] are actually equivalent. In the same figure, dashed
line indicates failure loads obtained by adopting the bilinear interface law (also reported in Fig. 1) together
with 2D BE method. It is clearly shown that failure loads using the bilinear law are significantly overestimated
for small bonding lengths, even though the asymptotic values (for bonding length approaching infinity) are
practically the same because the two different interface laws have the same value of fracture energy.

4.1.2. Other numerical tests

With reference to the same test setup and mechanical properties of specimens depicted in Fig. 3 and Table
2, plate width is 50 mm and different bond lengths have been considered (L = 50 mm, L = 100 mm and
200 mm). Load–displacement curves obtained from numerical simulations are reported in Fig. 6a–c, com-
pared with results given by bond–slip 1D model [56,21]. Abscissa refers to relative axial displacement u

between the initial and the final section of FRP plate (axial elongation of the plate).
It is worth noting that, for long bonding lengths (see Fig. 6c), snap-back branch occurs after the attainment

of maximum load, due to elastic shortening of FRP plate when axial loading decreases during debonding. Of
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(b) L = 101.6 mm; (c) L = 152.4 mm; (d) L = 203.2 mm.

0 100 200 300 400
Anchorage Length (mm)

0

5

10

15

20

P m
ax

 (
kN

)

Chajes et al.
1D Model
BEM
Bilinear law (BEM)

Fig. 5. Maximum transmissible force vs. bond length: experimental (from [14]) and numerical results by BEM model obtained with
different interface laws and 1D bond–slip model (bp = 25.4 mm).

1676 F. Freddi, M. Savoia / Engineering Fracture Mechanics 75 (2008) 1666–1683



F. Freddi, M. Savoia / Engineering Fracture Mechanics 75 (2008) 1666–1683 1677
course, this simulation cannot be performed with a standard force or displacement control procedure, and a
more refined technique is required, such as the arc-length technique described in Section 3. Snap-back branch
is not present in the case of shorter bonding lengths (see Figs. 6a and b).

For the 200 mm bonding length case, slip and shear stress profiles along the anchorage are reported in Figs.
7a and b. Curves refer to three different equilibrium points (A–C) indicated in Fig. 6c. Horizontal dashed line
in Fig. 7a shows the slip value corresponding to peak shear stress of interface law reported in Fig. 1
ð�s ¼ 0:0421 mmÞ. Hence, when slip is higher, softening branch in shear stress profile occurs (see Fig. 7b).

Furthermore, descending slip values that imply unloading behavior in the interface law may locally occur
for the 200 mm bonding length case. However, this phenomenon involves only a limited portion of the inter-
face (about 1/10 of the bonding length) and with very high slip values (P0.4 mm), so giving negligible traction
changes. For this reason, the adopted holonomic interface law may be considered to give sufficiently accurate
results in the present case.

For the same case (200 mm bonding length), shear stresses in concrete specimen are reported in Figs. 8 and
9, for values of applied load equal to 40% and 100% of debonding load. Shear stress values in concrete have
been evaluated by a post-processing procedure via the hypersingular Eq. (12), following [55]. Shear stresses
along the interface between FRP plate and concrete are also depicted. These figures clearly show the growth
of debonding along the interface between two materials. Shear stresses are always very high next to the inter-
face and decrease rapidly through the concrete specimen depth. The singular points at the beginning and final
sections of the anchorage, due to material discontinuity, are evident. Of course, stress distribution in the con-
crete specimen require the use of a 2D model and cannot be obtained from a single bond–slip 1D model.
Moreover, the deformed specimen is schematically reported in Fig. 10.

Finally, for the 200 mm bonding length, load-plate elongation curves adopting, for the interface, the power
fractional law reported in Eq. (1) and the bilinear law (see Fig. 1) are given in Fig. 11. The figure confirms that,
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Fig. 6. Setup No. 1: Pull–pull delamination test: numerical simulations by BEM model and 1D bond–slip model. Axial load-elongation
for: (a) L = 50 mm; (b) L = 100 mm; (c) L = 200 mm.
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adopting the bilinear law, higher values of maximum load are predicted; moreover, snap-back branch is given
by a (physically unrealistic) vertical straight line up to complete delamination.
4.2. Simulation of tests according to Setup No. 2

In No. 2 test setup, the specimen is symmetric and the load is applied at two external FRP plates (see
Fig. 12). Moreover, both concrete and FRP plates are restrained at the left end section. This experimental
setup has been proposed in [40] to obtain a stable delamination phenomenon. Bond length is L = 600 mm
and other geometrical and mechanical properties are reported in Table 3.

The corresponding load-displacement curve is reported in Fig. 13. The figure clearly shows the transition
between State 1 condition for low level loads (both stiffness contributions of concrete specimen and FRP
plates are present) and State 2 condition after complete FRP debonding (FRP plates only contribute to spec-
imen stiffness). Hence, in this case the post-delamination branch is stable and monotonically increasing.
Figs. 14a and b show the profiles along the bonded length of FRP–concrete slip and shear stresses, with ref-



Fig. 10. Setup No. 1: deformed configuration.
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erence to three different equilibrium points A–C indicated in Fig. 13. Point A indicates the beginning of delam-
ination process, point C a condition where almost the whole plate is delaminated, and point B an intermediate
condition. Fig. 14b clearly shows that, during delamination, the portion of plate contributing to the anchorage
translates along the specimen from the (right) loaded end to the (left) restrained section.



Fig. 12. Numerical simulation of FRP–concrete debonding test according to Setup No. 2.
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5. Conclusions

The problem of debonding of FRP plates externally bonded to concrete specimens is studied making use of
boundary element method. In the proposed model, mode II cohesive crack model is adopted for the interface,
whereas linear elasticity is used for the two materials outside the process zone (concrete and plate).

A non-linear constitutive FRP–concrete cohesive interface law suitable for 2D numerical simulations is
used. The numerical model is based on symmetric Galerkin boundary element method, adopting the arc-
length technique to follow the equilibrium path beyond its critical point, due to the softening behavior of
the FRP–concrete interface law.
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Some numerical simulations have been performed, concerning two different setups of delamination tests of
FRP plates bonded on concrete substrate. Numerical results are found in good agreement with experimental
results reported in the literature. Stress maps in concrete specimen are also obtained by post-processing results
obtained via BEM over concrete specimen surface, showing the growth of debonding along the interface up to
complete failure. The snap-back equilibrium branch outlined from numerical simulations confirms the very
brittle failure mechanism associated with FRP debonding.
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