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Abstract- An electrostatic induction micromotor has been
simulated and analyzed using Maxwell equations defining the
mathematical model that governs it. We have introduced the
analytical solution of the mathematical model for a simple
geometry of the micromotor. The obtained results have been
generalized for a model that presents cylindrical symmetry. An
approximate solution has been evaluated through the realization
of the analysis and numeric calculus (FEM) of the model. The
force density has been estimated using the tensorial calculus. The
FEM solution has been compared with the analytical solution for
verification purpose.

I. INTRODUCTION

The present paper deals with the design, simulation and
analysis of an electrostatic induction micromotor. The laws
that govern the operation of electromagnetic induction motors
used in the industry are well known. However, micro scale
effects should be considered for micromotor design and
implementation. These effects are discussed in this paper.

Currently, the design and implementation of a micromotor
using MEMS technology is a great challenge. For this
purpose, we have developed some tools based on FEM to
simulate the electromagnetic fields and force density of an
electrostatic micromotor. The proposed analytical equations
are compared with the obtained solutions provided by FEM
tools. To our knowledge, only a few publications deal with
this topic [1]-[3].

The study has been carried out in a simple linear electrical
induction micromachine constituted by two parallel plates —
rotor and stator— isolated by a dielectric [4]. The distance
between plates is 6um. Fig. 1 illustrates the geometry and
electromechanical coupling effects of a linear electrical
induction micromachine.

This work is focused in the linear micromachine due to the
greater simplicity of its analytical equations. The linear
micromachine is the unfolding of a rotating electric
micromachine, and this is the reason why the conclusions
obtained for the linear micromachine are easily generalized to
the rotating one.
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II. PHYICAL PRINCIPLES

The main principles that explain micromachines in the
microscale are different from those that are present in the
macroscale. The Paschen’s [5] law applied in the microscale
establishes that the electric field intensity £ roles the behaviour
of the electrostatic induction micromachines, and not the
magnetic field intensity, as in the macroscale. Paschen’s law
can be expressed as
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where, parameters p and d are introduced in Table I. Fig. 2
illustrates the electric field vs. distance for Paschen’s law.
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Fig. 1. Linear electrical induction micromachine.
TABLE I
SYMBOLS
Symbol Name Units
a Height of dielectric 2 m
d Distance cm
Ep Break electric field V/m
k Number of waves per metre -
J Imaginary unity -
Jy Volumetric current density A/m?
p Pressure Torr
N Slip -
Linear speed of mobile part m/s
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14 Interelectrodic voltage \%
Vy Supply voltage \%
&9 Permittivity vacuum F/m
&, Electric permittivity of the dielectric F/m
Eeff Effective permittivity F/m
[ Electric scalar potential \Y
w Signal frequency Hz
o, Electric conductivity of the dielectric S/m
Ocf Effective Conductivity S/m
oy Surface current density A/m
Os Resistivity 1/Q
@ Voltage in the interface \Y%
pr Volumetric charge density C/m®
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Fig. 2. Graphical representation of Paschen’s law.

We have studied the energy density in both macroscale and
microscale level. The electric energy density in the microscale
is very high compared with the electromagnetic energy density
in the same scale. This is the opposite that in the macroscale.
Besides, we have studied the electric force per unit of volume
(electrostatic force density) in the microscale for our
micromachine and its expression is as follows:

e 80V2

S

@

It can be seen that for a particular voltage V, the lower the
distance, the higher the electric density force. This expression
has been deduced based on the energy stored in a planar
capacitor.

On the other hand, we have also -calculated the
electromagnetic energy density in the macroscale which is
expressed as

FY=JB  (Nm) (3)

Where, J is the current density and B is the magnetic flux
density.

Equations (2) and (3), electrostatic force density in the
microscale and electromagnetic in the macroscale,

978-1-4244-1736-0/08/$25.00 ©2008 IEEE

Paper ID 896

respectively, indicates that the energy density is greater in the
microscale.

One important advantage of induction electrostatic
micromachines is they needn’t coils for their operation.
Besides, the traditional techniques of fabrication of integrated
circuits can be implemented for its manufacturing.

III. ANALITICAL EQUATIONS

From the basic physical principles that govern the
micromotor behaviour, we determined an analytical equation
for a planar elemental model, as is expressed in (4).

<TZ >Zrepresents the mean force density of the micromachine.

1 N
(), = S V)&, ), (,0-67.) LK (V) (4
E

where, K stands for

1
K = - 5
€0 o sinh * (ka ) )
and, Sg stands for
SE= Tk S (6)
S is the slip and 1 stands for
& .
Oy

All the parameters and variables were introduced in Table 1.

Fig. 3 shows the graphic representation of the analytic
expression for the force density presented in (4). Slip S is the
independent variable. The force density has been represented
in this case for a value of the resistivity as=1/(2x10°)(1/Q).
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Fig. 3 Static working point.

At the same figure, we have also represented the resistant
force density which is applied to the micromotor in a particular
moment. This force resistant has been assumed linear and,
therefore, its representation is a straight line.
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In order to calculate the force density through the
electrostatic field and the induced charge in the mobile part of
the micromachine, first, the potential in the interface must be
evaluated. To accomplish this task we apply the charge
conservation law in the interface. We start from Laplace
equation

V=0 (8)

This equation has been particularized for the following
boundary conditions: zero volts for the inferior plate of the
mobile part and V volts for the fixed part.

By this way, we obtain next equation

do, L =
= +VS-(0'S-EZ+VZ~0'f)+n-H0'EH:O )

Once we have developed the terms of this equation, we

obtain the voltage in the interface of the micromotor

o £ :

—+ @Y
= to Gy g (10)
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off
where,

0, =0, coth (ka)+coth (kb)o, + o5k (11)
€, = €,k coth (ka )+ &,k coth (kb ) (12)

Please, note that parameters and variables were introduced in
Table I.

IV. FEM ANALYSIS

To our knowledge, no FEM analysis has been found in the
literature for the induction micromotor. Finite element
methods are used when the model introduces an irregular
geometry and the analytical solution becomes nearly
impossible to be obtained or, when the material properties are
changed due to the anisotropy of the medium.

The first step in a FEM analysis is to determine the field
equation that defines the problem. The following equations are
referenced in [4] and [7]-[9], and they have been taken as the
base for this work.

As initial assumption we use Gauss’s law:

V.-¢E = Py (13)
The charge conservation law says:
- dp .
VI, + °Pr_yp (14)
ot

And the constitutive law:
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s

=of +vp ; (15)
As initial hypothesis we assume a quasi conservative electric
field, therefore

VXE=0 (16)

- _ 0 P
V-O'E+V-pf-v+a—=0 (17)
' t
The free charge volumetric density is eliminated taking into
account (13), so

V.c6E+V -(\7V 'EE)+%V eE =0 (18)
In the same way, taking into account that

E=-Vp (19)

we eliminate £ from (18) and we obtain next equation

V-0V¢+V-(W-gv¢)=—aa—tv-gv¢ (20)

At the start, v=0, then

0
V-0V¢+8—V-8V¢:0 21
t
The previous equation is expressed in the time domain. In
sinusoidal stationary regimen, the operator 9/ is equal to jw
and it is expressed in the following form
V.-oVge + joV -eVge’ =0 (22)
where ¢ is a special complex distribution. By simplifying
the time dependent term e’ “ | we obtain (23). This field
equation represents the behavior of the structure in which we
are going to apply the FEM analysis.

V.oV + joV -eVgp =0 (23)

In this equation the scalar potential ¢ is the unknown
variable.

The two main methods derived from the FEM equations are
the variational approximation and the Galerkin approximation
that is a special case of the weighted residue method (WRM),
[11]-[16].

The variational method was first applied to magnetic
problems and embraced the major part of the scientific
literature. But nowadays, due to its generality, Galerkin’s
method is increasing its popularity and it is the method we
have used in this work.

The WRM requires that the integral of the projection of the
residue on a specific weight function is cero in the domain of
interest. The selected weight function determines the type of
WRM.



Proceedings of the 2008 International Conference on Electrical Machines

In this work, we have chosen a weight function that has the
same form of the shape functions of finite elements. This is
the method known as Galerkin’s method.

Equation (23) has been discretized and Galerkin [10] method
has been applied on the plane domain of the discretized
micromotor.

Five different regions have been considered for
discretization: the metal plate of the fixed element, the
dielectric (air), and the resistive metal sheet, the dielectric
(insulator) and the metal plate (conductor) of the mobile part,
as can be seen in Fig. 1. For this discretization triangular first
order isoparametric elements have been used.

A classical problem in rotating and linear machines is that
the meshing of the regions is different in each step of the
calculus. To avoid this problem, we work with only one
invariable mesh and we introduce the speed factor in the
formulation of the potential in each node, as can be seen in
(24). In addition, this saves a great amount of time.

% +awe
s __ S ‘ (24)
sinh(ka) O .
S + algeﬁ’

Equation (24) represents the value of the electric potential as
a function of the material conductivity that is modified by the
speed factor — it is contained in the slip term S.

The structure that we analyze has an elemental cell that is
repeated in the Z direction as can be seen in Fig. (4). This
simplifies noticeable the numerical calculus.
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Fig. 4. Periodic boundary conditions.

Fig. 5 shows the non—null elements in the stiffness matrix
obtained when solving a finite element problem. The matrix
has 2407 rows and 2407 columns, and there are 15586 non-null
elements, with a non—null element density of 0.269%, which is
very low. The stiffness matrices we are working with are
clearly sparse matrices.
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Fig. 5. Representation of the stiffness matrix for a FEM solution.
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V. RESULTS

We have calculated the potential in the interface applying
FEM and the obtained analytical equations (see (23)) for five
different values of the conductivity. The error between the
results obtained using analytical equations and the FEM are
neglected, as is shown in Table II. Fig. 6 shows the FEM
results for a conductivity of 1/(600-10°) (S/m).

Typical maximum discrepancies are lower than 0.1% as is
shown in Table II. This table represents the electric voltage in
permanent regimen in the interface.
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64.3
55.7
47.2
38.6 )

30 A /
214
12.9
4.29
-4.29
-12.9
-21.4

-30
-38.6
-47.2
-55.7
-64.3

0 1.1e-05 2.2e-05 3.3e-05 4.4e-05
Potential [V] (0) Length (m)
-200 0 200
-

Fig. 6. Graphical representation of FEM solution in all the domain and
potential in the interface mobile part-air.

We have also calculated the electric field in the interface.
FEM results and analytical solution results are presented in
Table III. Fig. 7 shows FEM results for a conductivity of
1/(600-10°) (S/m).

The error between the results obtained using analytical
equations and the finite element method are also neglected.
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TABLE II
INTERFACE ELECTRICAL VOLTAGE
Conductivity . Error
1/Q) Analytical FEM (%)
1/(50 -10 %) 21.6688 | 216947 -0.119
1/(100 -10 ) 37.7909 37.7259 0.172
1/(200 -10°) 53.6311 53.5904 0.075
1/(600 10 *) 64.2738 64.2748 -0.001
1/(1800 -10°) | 658906 65.9102 -0.029
TABLE III
ELECTRIC FIELD (V/m) IN THE STEADY STATE IN THE INTERFACE IN Z=0
.. Analytical Numeric Error
Con(dll;g)wlty solution solution (%)
(V/m) (V/m)
1/(50 -10 %) 3094307 3102000 -0.248
1/(100 -10 °) 5381641 5389700 -0.149
1/(200 -10 °) 7658503 7665400 -0.090
1/(600 -10 %) 9178278 9182800 -0.049
1/(1800 -10°) 9409100 9419900 -0.114

Potential V10,

1057, 0,/

Fig. 7. Electric field in the interface for a conductivity of 1/(600-10°) (S/m).

FEM convergence has been guaranteed with the refining of
the meshes of the micromotor as is shown in Table IV. The
electrical voltage in the interface has been obtained for a
conductivity of 1/(1800-10°) (S/m).

TABLE IV
EFFECT OF THE MESH IN THE CONVERGENCE

Number of | Number of Analy'tlcal Nume'rlc Error

nodes elements solution solution (%)

V) V)

2353 4704 65.89 65.91 0.030
613 1224 65.89 66.02 0.197
284 566 65.89 66.20 0.470
170 338 65.89 66.40 0.774

VI. CONCLUSION

A mathematical model has been deduced for the induction
electric lineal micromotor using the field equations. An exact
analytical equation has been found. Using this equation the
potential, the electrical field and the force density has been
determined.
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An analysis using FEM has been carried out and the same
parameters (potential, electrical field and force density) have
been calculated. Results have been compared and errors are
neglected (lower than 0.1%).
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