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SUMMARY

This paper presents the use of the method of fundamental solutions (MFS) for recovering the heat source
in steady-state heat conduction problems from boundary temperature and heat flux measurements. It is
well known that boundary data alone do not determine uniquely a general heat source and hence some
a priori knowledge is assumed in order to guarantee the uniqueness of the solution. In the present study, the
heat source is assumed to satisfy a second-order partial differential equation on a physical basis, thereby
transforming the problem into a fourth-order partial differential equation, which can be conveniently
solved using the MFS. Since the matrix arising from the MFS discretization is severely ill-conditioned,
a regularized solution is obtained by employing the truncated singular value decomposition, whilst the
optimal regularization parameter is determined by the L-curve criterion. Numerical results are presented
for several two-dimensional problems with both exact and noisy data. The sensitivity analysis with respect
to two solution parameters, i.e. the number of source points and the distance between the fictitious and
physical boundaries, and one problem parameter, i.e. the measure of the accessible part of the boundary,
is also performed. The stability of the scheme with respect to the amount of noise added into the data
is analysed. The numerical results obtained show that the proposed numerical algorithm is accurate,
convergent, stable and computationally efficient for solving inverse source problems in steady-state heat
conduction. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Inverse source problems arise in many branches of science and engineering, e.g. heat conduction,
crack identification, electromagnetic theory, geophysical prospecting and pollutant detection. In
heat conduction, the interior heat source is sought from the measurements of the temperature and
heat flux on the boundary. It is well known that a general source is not determined uniquely by
the boundary measurements. For a complete discussion of the theoretical aspects of this problem,
we refer the reader to the monograph [1]. The inverse source problem becomes solvable if some
a priori knowledge is assumed. For instance, if one of the products in the separation of variables is
known [2], the base area of a cylindrical source is known [2], the sought source is a characteristic
function [1] or a point source [3], then the boundary data can uniquely determine the unknown
source. In the present study, the source is assumed to satisfy a second-order partial differential
equation on a physical basis.

Reconstructing point sources has received much attention and several efficient numerical
algorithms, such as algebraic reconstruction and projection method, have been proposed. For
an overview of the state of the art, we refer the reader to References [3, 4], as well as the refer-
ences therein. The recovery of a general source presents difficulty and only a limited number of
papers devoted to this subject are available in the literature. The reconstruction of a general source
has been previously considered by Kagawa et al. [5, 6] and Trlep et al. [7], who employed the
dual reciprocity method (DRM) to approximate f (x) and the boundary element method (BEM)
to discretize the governing equation. However, they have only tested the proposed methods on
several examples using exact data and failed to note the non-uniqueness of the solution. Matsumoto
et al. [8, 9] also applied the DRM and BEM to the numerical solution for examples with exact
data only. Farcas et al. [10] investigated numerically the non-uniqueness of the problem and they
proposed the Tikhonov regularization method, in conjunction with the DRM, for recovering the
minimum-norm solution, which usually is the solution of the most practical interest and relevance
from the many solutions of the source reconstruction problem. However, it was not shown that
the regularized solution is guaranteed to be of minimum-norm since the Tikhonov regularization
method imposes the minimum-norm constraint on the coefficient vector used in the DRM, which
is only indirectly related to the minimum-norm heat source. El Badia et al. [11] applied an iterative
method, namely the Hilbert uniqueness method, to recover the harmonic component of the general
source, while the finite element method (FEM) was employed to discretize the Poisson equation.

The BEM reduces the dimensionality of the problem by one and thus it is useful for solving linear
problems. However, it requires the evaluation of singular integrals, suffers from slow convergence
due to the use of lower-order polynomials and requires the meshing of the boundary, which can
be difficult for complicated geometries in high dimensions. The method of fundamental solutions
(MFS) [12–14] avoids the difficulties associated with the BEM. It is a boundary-type meshfree
technique for the solution of partial differential equations and it has become very popular in recent
years due to its ease of implementation. In the present paper, we investigate a numerical scheme
based on the MFS, in conjunction with the truncated singular value decomposition (TSVD), for
solving the inverse source problem associated with the steady-state heat conduction. It should
be noted that the MFS, in conjunction with regularization methods, has recently been applied to
inverse problems with great success, such as the Cauchy problem for various partial differential
equations [15–20] and inverse heat conduction problems [21, 22].

The paper is organized as follows: In Section 2, we formulate the problem mathematically. Sec-
tion 3 is devoted to the numerical algorithm: The MFS used for discretizing the partial differential
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1572 B. JIN AND L. MARIN

equation and the TSVD employed for solving ill-conditioning matrix equations are described. In
Section 4, we present numerical results for several two-dimensional problems with both exact and
noisy data. Finally, concluding remarks are given in Section 5.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

Let � be an open bounded domain in Rd , where d is the dimensionality of the space and �= �� is
its boundary. The steady-state heat conduction in an isotropic medium is described by the Poisson
equation, namely

Lu(x)=
d∑

i=1

�2u(x)

�x2i
= f (x), x= (x1, . . . , xd) ∈ � (1)

The heat flux q(x) through the boundary � is given by

q(x)= �u
�n

, x∈ � (2)

where n(x) is the outward unit vector normal to the boundary �.
Assume that the source term f (x) is unknown and both the temperature and heat flux can be

measured on an accessible part of the boundary �1 ⊂ �, i.e.

u(x)= g(x), q(x)= h(x), x∈ �1 (3)

It should be mentioned that data may be available at a few measurement points only. This problem
is mathematically under-determined and hence some additional a priori assumptions on the source
should be made in order to guarantee the uniqueness of the solution.

In several practical applications, such as magnetoencephalography (MEG) and electroencephalo-
graphy (EEG), the source is assumed to be a point source. However, point sources cannot generate
an effect equivalent to that of body sources [23] and practically all sources are of body-type.
Therefore, it would be interesting to perform the reconstruction of body sources. However, the
inverse problem of recovering a general source does not admit a unique solution. A minimum-norm
solution to this problem is usually that of practical interest according to the so-called ‘principle of
parsimony’ [24], which states that, from the multitude of solutions to the inverse problem, the one
that reveals the least amount of details or information should be selected. This has been previously
exploited by Farcas et al. [10] to explain their results obtained using the Tikhonov regularization
method. It turns out that the minimum-norm solution should satisfy the Laplace equation [2],
which gives rise to the following formulation of the problem:

Formulation 1. The source satisfies the homogeneous Laplace equation L f (x)= 0, i.e. the source
is harmonic in �. Applying the operator L to both sides of Equation (1) gives

L2u(x) = 0, x∈ �

u(x) = g(x), x∈ �1

q(x) = h(x), x∈ �1

(4)
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In order to illustrate the facility of the proposed scheme for incorporating other a priori assumptions
involving a differential operator, we also consider the following:

Formulation 2. The source satisfies the homogeneous modified Helmholtz equation (L − �2)
f (x)= 0, with the wave number � known. The a priori assumption corresponds to the minimum-
norm solution in the case of heat conduction in a fin, which could be described by the modified
Helmholtz equation [25]. However, its engineering implication is not clear in the current context.
Applying the operator L − �2 to both sides of Equation (1) gives

(L − �2)Lu(x) = 0, x∈ �

u(x) = g(x), x∈ �1

q(x) = h(x), x∈ �1

(5)

Although other formulations of the problem may be possible, in this study we investigate only
the aforementioned two formulations of the inverse source problem. It should be noted that our
a priori assumption rules out the case of point sources, which are of interest in several impor-
tant applications. Adapting the MFS for the reconstruction of point sources will be considered
separately.

3. NUMERICAL ALGORITHM

In this section, we describe the numerical scheme for solving the inverse source problem, namely
the MFS, in conjunction with the TSVD. Rules for choosing an appropriate regularization parameter
are also detailed.

3.1. The method of fundamental solutions

The MFS was originally introduced by Kupradze and Aleksidze [26] and later numerically
implemented by Mathon and Johnston [27]. The basic idea of the method is to approximate
the solution of the governing partial differential equation by a linear combination of fundamental
solutions with singularities, also known as source points, located on a fictitious boundary out-
side the solution domain. For detailed theoretical grounds of the method and its wide range of
application to forward problems, we refer the reader to the comprehensive surveys [12–14, 28]
and the references therein. The MFS has recently been applied to inverse problems, such as the
Cauchy problem for Helmholtz-type equations [15–17] and the Navier system in linear elasticity
[19, 20], and inverse heat conduction problems [18, 21, 22]. Motivated by the encouraging results
reported in these works, we aim to adapt the MFS for inverse source problem in the current
investigation.

The fundamental solution for the Laplace operator L is given by [29]

u∗
L(x)=

⎧⎪⎪⎨⎪⎪⎩
− 1

2�
ln r, x∈ R2

1

4�r
, x∈ R3

(6)

where r =‖x‖2 and ‖ · ‖2 denotes the Euclidean norm.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:1570–1589
DOI: 10.1002/nme



1574 B. JIN AND L. MARIN

The fundamental solution to the biharmonic operator L2 is given by

u∗
L2(x) =

⎧⎪⎨⎪⎩
− 1

2�
r2 ln r, x∈ R2

r

4�
, x∈ R3

(7)

The fundamental solution for the modified Helmholtz operator L − �2 is given by

u∗
L−�2

(x)=

⎧⎪⎪⎨⎪⎪⎩
1

2�
K0(�r), x∈ R2

1

4�r
e−�r , x∈ R3

(8)

where K0 is the modified Bessel functions of the second kind of order zero.
In the MFS, the solution of the partial differential equation is approximated by a linear

combination of the fundamental solutions [30, 31], namely

u(x) =
ns∑
j=1

a jG j (x) +
ns∑
j=1

b j Hj (x) for x∈ � (9)

where ns is the number of source points and {a j , b j } are unknown coefficients to be determined.
The basis functions G j (x) and Hj (x) are defined as follows:

G j (x)= u∗
L(x − y j ) (10)

and

Hj (x)=
{
u∗
L2(x − y j ), Formulation 1

u∗
L−�2

(x − y j ), Formulation 2
(11)

respectively, where {y j } are source points located on a fictitious boundary outside the solution
domain.

Although the approximate solution u(x) automatically satisfies the partial differential equation
(4) or (5), it does not necessarily satisfy the associated boundary conditions. The latter can be
achieved by the means of the collocation method. Let {xi } be a set of points chosen on the
accessible part of the boundary �1. By collocating the boundary conditions at {xi }, we arrive at
the following system of algebraic equations:

g(xi ) =
ns∑
j=1

a jG j (xi ) +
ns∑
j=1

b j Hj (xi ), i = 1, 2, . . . , nb

h(xi ) =
ns∑
j=1

a j�nG j (xi ) +
ns∑
j=1

b j�nHj (xi ), i = 1, 2, . . . , nb

(12)

where nb is the number of collocation points on the accessible part of the boundary �1 and �n
denotes taking the normal derivative.
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Briefly, the following matrix equation is obtained:

Aa=b (13)

where a= (a1, a2, . . . , ans , b1, b2, . . . , bns )
T is the unknown coefficient vector and b is the data

vector. The matrix A= (Ai j ) is an interpolation matrix with the entries Ai j defined by

Ai j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

G j (xi ), i = 1, 2, . . . , nb, j = 1, 2, . . . , ns

Hj−ns (xi ), i = 1, . . . , nb, j = ns + 1, . . . , 2ns

�nG j (xi−nb), i = nb + 1, . . . , 2nb, j = 1, 2, . . . , ns

�nHj−ns (xi−nb), i = nb + 1, . . . , 2nb, j = ns + 1, . . . , 2ns

(14)

In order to implement the MFS, the location of the source points has to be determined and this
is usually achieved by considering either the static or the dynamic approach. In the static approach,
the source points are pre-assigned and kept fixed throughout the solution process, whilst in the
dynamic approach, the source points and the unknown coefficients are determined simultaneously
during the solution process [13]. Moreover, Mitic and Rashed [32] have shown that the distribution
of the source points is not important under minor conditions. Therefore, we have decided to employ
the static approach in our computations.

3.2. Truncated singular value decomposition

The MFS can be regarded as a Fredholm integral equation of the first kind with an analytical kernel
function, which is severely ill-posed according to the theory of integral equations. Consequently, as
an approximation to the integral operator, the interpolation matrix A is severely ill-conditioned. The
accurate and stable solution of Equation (13) is very important for obtaining physically meaningful
numerical results. Regularization methods [33] are among the most popular and successful methods
for solving stably and accurately ill-conditioned matrix equations. In our computations we use the
TSVD to solve the matrix equation arising from the MFS discretization.

The singular value decomposition (SVD) of a matrix A∈Rm×n(m � n) is given by

A=URVT (15)

whereU=[u1,u2, . . . ,um] andV=[v1, v2, . . . , vn] are orthonormal matrices with column vectors
called the left and the right singular vectors, respectively, T denotes the matrix transposition
and R= diag(�1, �2, . . . , �n) is a diagonal matrix with non-negative diagonal elements in non-
increasing order, which are the singular values of A.

On using the SVD, the solution a to the matrix equation (13) can be succinctly written as a
linear combination of the right singular vectors, namely

a=
k∑

i=1

uTi b

�i
vi (16)

where k is the rank of the matrix A. For an ill-conditioned matrix equation, there are many
small singular values clustering around zero and therefore the solution obtained by standard
methods, such as the Gauss elimination method, may be dominated by the contribution of the small
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1576 B. JIN AND L. MARIN

singular values and hence it becomes unbounded and oscillatory. One simple remedy is to truncate
the above summation, i.e. by considering an approximate solution, ap, given by

ap =
p∑

i=1

uTi b

�i
vi (17)

where p� k is the regularization parameter which determines when one starts to leave out small
singular values. This method is known as the TSVD [33] in the inverse problem community and
the principal component analysis (PCA) in statistics.

The performance of regularization methods depends crucially on the suitable choice of the regu-
larization parameter. One extensively studied criterion is the discrepancy principle [33]. Although
this criterion is mathematically rigorous, it requires a reliable estimation of the amount of noise
added into the data which may not be available in practical problems. Heuristical approaches are
more preferable in the case when no a priori information about the noise is available. For the
TSVD, several heuristical approaches have been proposed, including the L-curve criterion and the
generalized cross-validation. In this paper, we employ the L-curve criterion [34] to determine an
appropriate regularization parameter for the TSVD.

If we define the following curve:

L ={(log(‖ai‖2), log(‖Aai − b‖2)), i = 1, 2, . . . , k} (18)

then this typically has an L-shaped form and hence it is known as the L-curve. According
to the L-curve criterion, the optimal regularization parameter corresponds to the corner of the
L-curve since a good tradeoff between the residual and solution norms is achieved at this point.
Numerically, the L-curve method is robust and stable with respect to both uncorrelated and highly
correlated noise. Furthermore, this criterion works effectively with certain classes of practical
problems [33–35] and, for a discussion of the theoretical aspect of the L-curve criterion, we refer
the reader to References [36, 37]. Several algorithms for locating the corner of the L-curve have
been reported in the literature, see e.g. References [33, 38–40]. The first procedure [33] is based
on fitting a parametric cubic spline to the discrete points and then taking the point corresponding
to the maximum curvature of the L-curve to be its corner. The second algorithm employs a conic
to fit the set of discrete points [38], whilst the third one is based on using a linear-linear scale
and inverting the axis [39]. All these procedures need to check the monotonicity condition for the
sequences of the residual and solution norms, and discard those points where the monotonicity
condition is not fulfilled. The last algorithm, namely the triangle method, is based on geometric
considerations, see e.g. Reference [40]. In the present study, we mainly employ the first algorithm.
However, the curvature of the parametric spline is very sensitive to the node distribution and occa-
sionally the located corner is not suitable [34]. Therefore, visual inspection is used as an auxiliary
procedure.

Once the coefficients {a j , b j } are determined, the numerical solution for the heat source can be
easily obtained by applying the Laplace operator L to the approximate solution u(x). To be more
precise, the approximate solution f (x) to the heat source is given by

f (x)=
ns∑
j=1

a jLG j (x) +
ns∑
j=1

b jLHj (x) (19)
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where the first term on the right-hand side vanishes due to the harmonicity of the basis function
G j (x). For Formulation 1 in the two-dimensional case, we have

LHj (x) =
(

�2

�x21
+ �2

�x22

)(
− 1

2�
‖x − y j‖2 ln ‖x − y j‖

)
(20)

= − 1

2�
(4 ln ‖x − y j‖ + 4) = 4

(
G j (x) − 1

2�

)
(21)

Therefore, we arrive at the formula for computing the source term f (x):

f (x)= 4
ns∑
j=1

b j

(
G j (x) − 1

2�

)
(22)

Similar arguments yield the following expression:

f (x) = �2
ns∑
j=1

b j Hj (x) (23)

for Formulation 2 in the two-dimensional case, respectively. Similar expressions can be obtained
for higher-dimensional problems.

4. NUMERICAL RESULTS AND DISCUSSION

In this section, we present the numerical results obtained using the general numerical scheme
described in Section 3, namely the MFS in conjunction with the TSVD. The effect of regularization,
as well as the stability of the scheme with respect to the noise added into the data, are carefully
investigated. A sensitivity analysis is also performed with respect to two solution parameters and
one problem parameter.

4.1. Examples

The solution domains under consideration are given as follows:

Domain 1 (Unit disk: Smooth domain):

�={(x1, x2)|x21 + x22 < 1} (24)

where (r, �) are the plane polar co-ordinates.

Domain 2 (Square: Piecewise smooth domain):

�̂= {(x1, x2)|0 < x1, x2 < 6}, (25)

Domain 3 (Complex geometry): The configuration of the complicated domain �̃ is schematically
shown in Figure 1(a). Note that it involves two reentrant corners, which are deliberately designed
to verify the robustness, efficiency and effectiveness of the proposed scheme when dealing with
problems related to a complicated geometry.
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(a)

1.5 3.5

1.5

3.5

x1
x 2

(b)

Figure 1. (a) The configuration of the domain with reentrant corners; and (b) the distribution of the source
(•) and boundary collocation (◦) points.

Table I. Test cases for inverse source problems.

Example u(x) f (x) Domain

1 1
4 (x21 + x22 ) 1 �

2 1
4 (x21 + x22 ) 1 �̂

3 − 1
6 [(x1 − 6)3 + (x2 − 6)3] 12 − x1 − x2 �̃

4 ex1 sin(x2) + ex1−x2 2ex1−x2 �

For the ease of comparison and validation of the numerical results, we consider inverse problems
with analytical solutions as listed in Table I. Example 1 is adopted to investigate the effect of the
regularization and to perform the sensitivity analysis. Example 2 is a typical benchmark problem
considered in References [5–7, 10] and it is investigated for comparison purpose. Example 3 is
used to show the efficiency of the proposed numerical scheme for problems with a complicated
geometry. Example 4 is analysed to illustrate the application of the combined MFS + TSVD to
Formulation 2.

Unless otherwise specified, the fictitious boundary is a circle centred at the origin and of radius 3
for the circular domain �, a circle centred at (3, 3) and of radius 10 for the square domain �̂,
and a circle centred at (0.5, 0.5) and of radius 3 for the complicated domain �̃. For all the
domains investigated in this study, we consider ns = 40 source points uniformly distributed on
the fictitious boundary and nb = 40 collocation points evenly distributed on the accessible part of
the boundary �1, which is taken to be the complete boundary �. The distribution of the source and
boundary collocation points in the case of the complicated domain �̃ is illustrated in Figure 1(b).
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In real inverse problems, the known boundary data are measured and thus inevitably contaminated
by measurement errors. Therefore, the stability of the numerical scheme is of vital importance
to obtain physically meaningful results. In our test cases, the simulated noisy data are generated
using the following formula:

b̃i = bi (1 + ��), i = 1, 2, . . . , 2nb (26)

where � is a normally distributed random variable with zero mean and unit standard deviation and
� dictates the level of noise. In our computations, the random variable � was realized using the
Matlab function randn().

In order to measure the accuracy of the numerical approximation f̃ with respect to the exact
solution f , we use the relative error rerr( f ) defined by

rerr( f ) =
√∑N

i=1( f̃i − fi )2√∑N
i=1 f 2i

(27)

and the maximum error merr( f )

merr( f ) = max
1�i�N

| f̃i − fi | (28)

where f̃i and fi are the numerical and exact solutions evaluated at a point xi , respectively. Here
N is the total number of collocation points in the domain at which both the numerical and exact
solutions are evaluated. For all the results presented below, we consider N = 10,000 for � and �̂,
and N = 10,800 for �̃.

4.2. Effect of regularization

Before presenting the numerical results, it is interesting to investigate how the TSVD improves
the accuracy of the numerical results. To do so, we consider Example 1 with 1% noise added
into the data. Figure 2(a) shows the error distribution of the numerical solution by the Gauss
elimination method. The numerical solution is reasonable in most of the region, as can be seen from
Figure 2(a). However, it is highly oscillatory such that the pointwise relative error is as high as 180%
at the internal points close to the boundary and hence represents a very inaccurate approximation
to the exact heat source f (x). Although not presented, it is reported that similar conclusions have
been drawn for the numerical results obtained using the LU factorization and the least-squares
method. Thus standard methods could not yield accurate results for noisy data and, consequently,
regularization should be employed to retrieve stable numerical solutions in this case.

The numerical results, obtained using the TSVD and the L-curve criterion for determining
the optimal regularization parameter, are presented in Figure 2(b). The numerical results indicate
that the TSVD, in conjunction with the L-curve criterion, yields very accurate numerical results
for noisy data. Therefore, regularization methods are indispensable to guarantee the stability and
accuracy of the scheme when the data are contaminated by noise. The regularization method
restores the stability of the scheme by filtering out the contributions from the noisy data efficiently
and without losing too much information. The numerical results also indicate that the L-curve
criterion provides an appropriate regularization parameter for the TSVD.

The main difficulty when using standard methods for solving ill-conditioned systems of linear
equations is that the solution is dominated by contributions from very small singular values. From
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Figure 2. The error distribution for the numerical heat source f (x) obtained using 1% noise added into
the data: (a) the Gauss elimination method; and (b) the TSVD, for Example 1.
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Figure 3. (a) The singular value spectrum; and (b) the L-curve, for Example 1
with 1% noise added into the data.

Figure 3(a) it can be seen that there are numerous small singular values in the singular value
spectrum of the matrix A. Furthermore, the singular values decay gradually to zero without any
obvious gap and eventual cluster at zero. This is a characteristic for matrices arising from Fredholm
integral equations of the first kind [33] to which the MFS is mathematically equivalent. The
condition number of the interpolation matrix A in the case of Example 1 is Cond(A) = 2.02× 1014

and this is enormous in comparison with the small size of the matrix A, namely 80× 80.
The L-curve obtained in the case of Example 1 with 1% noise added into the data is shown

in Figure 3(b). The L-curve consists of two distinct parts, namely a horizontal part and a verti-
cal one, which, intuitively speaking, correspond to under-regularization and over-regularization,
respectively. A good tradeoff between the solution and residual norms is achieved at the corner of
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the L-curve and the optimal regularization parameter is usually chosen such that it corresponds to
this corner.

4.3. Sensitivity analysis

In this section, we investigate the sensitivity of the numerical results with respect to two solution
parameters, i.e. the number of source points, ns , and the distance, D, between the fictitious and
physical boundaries, and one problem parameter, i.e. the measure of the accessible part of the
boundary, meas(�1).

The results for Example 1, obtained using 1% noise added into the data, various numbers of
source points and the optimal regularization parameter chosen according to the L-curve criterion,
are shown in Figure 4(a). Although not presented here, it is reported that similar results have been
obtained for the other examples analysed. It can be seen from Figure 4(a) that the errors rerr( f )
and merr( f ) decrease until the number of source points reaches the value ns = 8, after which
a further increase in the number of source points does not improve substantially the accuracy
of the numerical results. The numerical results are practically the same for ns � 8 in the case of
Example 1 and this indicates that accurate numerical results can be obtained using even a relatively
small number of source points.

Next, we investigate the sensitivity of the numerical results with respect to the distance D = R−1
between the physical and fictitious boundaries, where R is the radius of the fictitious boundary.
The numerical results for Example 1, obtained using 1% noise added into the data and various
values for the source radius R are illustrated in Figure 4(b). The accuracy of the numerical results
improves before the radius R approaches a specific value, namely R = 1.5, after which a further
increase of R does not produce any significant improvement in the accuracy achieved. The accuracy
of the numerical results is practically the same for 1.5� R � 15 and, consequently, it is relatively
independent of the radius R. Therefore, the TSVD mitigates the critical dependence of the accuracy
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Figure 4. The numerical results obtained using 1% noise added into the data: (a) various numbers of
source points ns ; and (b) various values for the source radius R, for Example 1.
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of the numerical results on the location of the source points, as in the case of forward problems
subjected to exact and noisy data [41, 42]. It is interesting to note that the numerical results obtained
using very large values of the radius R, e.g. R = 10 000, are still in excellent agreement with their
corresponding analytical solutions and the accuracy in the numerical solution deteriorates only
slightly in comparison with that obtained using R = 15. A similar behaviour has been observed
for the other examples analysed in this study.

In order to analyse the sensitivity of the proposed method with respect to the measure of
the accessible boundary �1, we consider �1 = {(r, �)|r = 1, 0� � < �}, where the polar angle
� ∈ [�/8, 2�]. The accuracy of the numerical results for the heat source in the case of Example 1,
obtained using exact and noisy (1%) data, and various values for the parameter �, are illustrated
in Figures 5(a) and (b), respectively. The TSVD can improve the accuracy of the numerical re-
sults significantly when the data is exact, usually by two orders in magnitude. Figures 6(a) and (b)
present the numerical results for Example 1, obtained with exact data, � = �/4, and using the Gauss
elimination method and TSVD, respectively, where the regularization parameter is p= 38. The
maximum error for the numerical results retrieved when employing the Gauss elimination method
is 3.99× 10−1, while its corresponding value obtained when using the TSVD is 6.72× 10−4. From
Figures 5(a) and 6(b) it can be seen that a small part of the accessible boundary �1, i.e. � = �/4,
is sufficient for obtaining accurate numerical results, provided that exact data are available. The
numerical results improve significantly as the polar angle � increases, i.e. meas(�1) increases, for
both exact and noisy data, as can be noted from Figures 5(a) and (b), respectively. It should be
mentioned that, as expected, the numerical results retrieved with noisy data are more inaccurate
than those obtained when exact data are available. The error distribution for the numerical heat
source f (x) at interior points of the solution domain, for Example 1, obtained using various val-
ues of the polar angle � and 1% noise added into the data, are shown in Figures 7(a) and (b),
respectively. Here, the truncation number, which is the regularization parameter for the TSVD,
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Figure 5. The numerical results obtained using the TSVD, various values of the polar angle �:
(a) exact data; and (b) 1% noise added into the data, for Example 1.
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Figure 6. The error distribution for the numerical heat source obtained using exact data, � = �/4:
(a) Gauss elimination method; and (b) the TSVD, for Example 1.
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Figure 7. The numerical heat source obtained using 1% noise added into the data:
(a) � = �/4; and (b) � = �/2, for Example 1.

was found to be p= 8. It can be seen from these figures that the numerical results retrieved
for f (x) with � = �/4 represent reasonable approximations for their corresponding exact values,
whilst an excellent agreement between the analytical and numerical solutions is achieved for
� � �/2. From the numerical results presented in Figures 5–7, we can conclude that the proposed
scheme is very robust for the inverse source problem. Moreover, a small accessible part of the
boundary is sufficient for obtaining accurate numerical results when either exact or noisy data are
available.
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Figure 8. The error distribution for the numerical heat source obtained using exact data and various
numbers of source points, namely: (a) ns = 8; and (b) ns = 20, for Example 2.

4.4. Stability of the method

The proposed numerical scheme is extremely accurate for problems with exact data. For instance,
in the case of Example 2, eight source points provide a very good numerical approximation
for the exact heat source, e.g. the maximum error is 2.45× 10−3, as presented in Figure 8(a).
It should be mentioned that these numerical results are comparable with those reported by
Trlep et al. [7], who found the maximum error of around 3.37% for the same example. However,
the results reported by Trlep et al. [7] were obtained using 128 boundary elements and involving
an optimization procedure, such as the Fletcher method, and therefore they are computationally
much more expensive. The error distribution for the numerical results obtained using 20 source
points for Example 2 is illustrated in Figure 8(b), with the maximum error being 2.13× 10−7. It
should be noted that the present results also seem to be slightly more accurate than those reported
by Farcas et al. [10].

The striking accuracy of the present numerical results is due to the exponential convergence
property of the MFS [12] in the case of smooth solutions. This illustrates clearly the computational
efficiency of the proposed numerical scheme since only matrices of very small size are involved
in the solution procedure. It is worth mentioning that, although not presented herein, similar
conclusions have been drawn for the other examples investigated in this study.

The numerical heat source obtained for Example 1, using various amounts of noise added
into the data, are presented in Figures 9(a) and (b). Even for a relatively high amount (�= 2%)
of noise added into the data, the numerical results retrieved for the heat source represent good
approximations for their analytical values. In addition, the numerical heat sources converge towards
their corresponding exact solutions as the amount of noise decreases. Hence theMFS, in conjunction
with the TSVD, provides stable numerical solutions to the inverse source problem associated with
steady-state heat conduction.

The values for the accuracy errors rerr( f ) and merr( f ), the condition number Cond(A) of the
interpolation matrix A and the regularization parameter p, as given by the L-curve criterion, are
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Figure 9. The numerical heat source obtained using various amount of noise added into the data, namely:
(a) 1%; and (b) 2%, for Example 1.

Table II. The accuracy of the numerical results for the test
cases with 2% noisy data.

Example Cond(A) p rerr( f ) merr( f )

1 2.02× 1014 16 3.30× 10−3 1.09× 10−2

2 1.35× 1015 18 5.05× 10−3 1.58× 10−2

3 1.97× 1019 12 2.77× 10−2 6.22× 10−1

4 5.13× 1013 24 1.75× 10−2 2.50× 10−1

presented in Table II, obtained with 2% noise added into the data for all the examples investigated.
It is worth mentioning that the accuracy of the numerical results is maintained at a high level, with
the error comparable to the amount of noise added into the data.

Similar results have been obtained for Example 2 and these are illustrated in Figure 10. Example 2
has been previously solved by Farcas et al. [10] using the DRM-BEM and radial basis functions to
approximate the source term. The numerical results presented in our study seem to be more accurate
than those obtained by Farcas et al. [10] for both exact and noisy data. However, the present scheme
avoids singular integration, features fast convergence for smooth solution, is computationally more
efficient and enables an easier numerical implementation.

The scheme works equally well for inverse source problems in domains exhibiting a complicated
geometry. To illustrate this, the numerical results retrieved for Example 3 using various amounts
of noise added into the data are presented in Figure 11. From this figure it can be seen that the
numerical solutions for the heat source converge to their corresponding analytical solutions as
the amount of noise decreases. The accuracy obtained for the numerical results in the case of
Example 3 is comparable with that retrieved for Examples 1 and 2, see e.g. Table II. It should be
noted that the analytical solution corresponding to Example 3 is smooth and this is a necessary
condition in order to guarantee the exponential convergence of the MFS. In the case of non-smooth
solutions, the accuracy of the numerical solutions may be influenced by the geometry of the domain
[43], but this is beyond the scope of the present investigation.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:1570–1589
DOI: 10.1002/nme



1586 B. JIN AND L. MARIN

x1 x1

x 2

0 2 4 6
0

2

4

6

0.996

0.998

1

1.002

1.004

1.006

(a)

x 2

0

2

4

6

(b)
0 2 4 6

0.992

0.994

0.996

0.998

1

1.002

1.004

1.006

1.008

1.01

1.012

Figure 10. The numerical heat source obtained using various amount of noise added into the data, namely:
(a) 1%; and (b) 2%, for Example 2.
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Figure 11. The numerical heat source obtained using various amount of noise added into the data, namely:
(a) 1%; and (b) 2%, for Example 3.

So far, the combined MFS + TSVD scheme has been applied to Formulation 1. We now turn
to Formulation 2, i.e. Example 4. The numerical results for Example 4, obtained using various
amounts of noise added into the data are presented in Figure 12. From this figure it can be seen that
better approximations to the analytical solutions are obtained as the amount of noise decreases,
i.e. the stability of the proposed scheme is checked for Formulation 2 as well. Furthermore, for
the same amount of noisy data on the boundary, the accuracy of the numerical heat source for
Example 4 is comparable with that retrieved in the case of Examples 1–3, as depicted from Table II.
Therefore, we can conclude that the proposed scheme could easily accommodate other a priori
assumptions on the heat source.
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Figure 12. The numerical heat source obtained using various amount of noise added into the data, namely:
(a) 1%; and (b) 2%, for Example 4.

Although not presented, it is reported that numerous other numerical experiments have been
performed and the same conclusions have been drawn. Overall, it can be concluded that the
proposed scheme is computationally efficient, robust, accurate, stable with respect to decreasing
the amount of noise added into the data and convergent with respect to increasing the number of
source points and the distance between the fictitious and physical boundaries. Furthermore, the
approximation of the solution and its derivatives on the entire solution domain are readily available
by simple and direct function evaluations.

5. CONCLUSIONS

In this paper, an efficient, accurate, convergent and stable numerical scheme for solving inverse
source problems associated with the steady-state heat conduction was proposed. The present
numerical procedure was based on the MFS, in conjunction with a popular regularization method,
namely the TSVD. The regularization parameter was determined by the L-curve criterion, which
assumes no a priori knowledge about the noise added into the data. Numerical results for both
exact and noisy data have been presented. The numerical results obtained have shown that the pro-
posed scheme is a competitive alternative to existing methods for solving inverse source problems
associated with steady-state heat conduction.

There are several potential extensions of the present method. Firstly, the proposed numerical
procedure can also be applied to inverse source problems associated with other elliptic partial
differential equations, such as the Helmholtz equation [44]. Secondly, the proposed scheme can
be easily extended to recover the �-harmonic source associated with anisotropic heat conduction
problems [3]. Thirdly, iterative regularization methods [45], such as conjugate gradient-type meth-
ods and the GMRES, may be employed to solve large-scale problems since computing singular
value decomposition for large-scale matrices is computationally prohibitive. However, these are
deferred to future work.
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30. Cheng AH-D, Antes H, Ortner N. Fundamental solutions of products of Helmholtz and polyharmonic operators.

Engineering Analysis with Boundary Elements 1994; 14(2):187–191.
31. Poullikkas A, Karageorghis A, Georgiou G. Method of fundamental solutions for harmonic and biharmonic

boundary value problems. Computational Mechanics 1998; 21(4–5):416–423.
32. Mitic P, Rashed YF. Convergence and stability of the method of meshless fundamental solutions using an array

of randomly distributed source. Engineering Analysis with Boundary Elements 2004; 28(2):143–153.
33. Hansen PC. Rank-deficient and Discrete Ill-posed Problems: Numerical Aspects of Linear Inversion. SIAM:

Philadelphia, 1998.
34. Hansen PC, O’Leary DP. The use of the L-curve in the regularization of discrete ill-posed problems. SIAM

Journal on Scientific Computing 1993; 14(6):1487–1503.
35. Chen LY, Chen JT, Hong HK, Chen CH. Application of Cesàro mean and the L-curve for the deconvolution
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