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SUMMARY

This paper presents a new incremental formulation for predicting the curved growth paths of two-
dimensional fatigue cracks. The displacement and traction boundary integral equations (BIEs) are employed
to calculate responses of a linear elastic cracked body. The Paris law and the principle of local symmetry
are adopted for defining the growth rate and direction of a fatigue crack, respectively. The three governing
equations, i.e. the BIEs, the Paris law and the local symmetry condition, are non-linear with respect to the
crack growth path and unknowns on the boundary. Iterative forms of three governing equations are derived
to solve problems of the fatigue crack growth by the Newton–Raphson method. The incremental crack
path is modelled as a parabola defined by the crack-tip position, and the trapezoidal rule is employed to
integrate the Paris law. The validity of the proposed method is demonstrated by two numerical examples
of plates with an edge crack. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The phenomenon of fatigue is of great importance in designs of steel structures. Numerous
experiments and researches based on linear elastic fracture mechanics have been performed for
the prediction of fatigue crack growth [1, 2]. A fatigue crack usually does not grow straight due to
mixed-mode loads or asymmetric geometry [3]. The prediction of the growth path and evaluation
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of the fatigue life have been major issues in the analysis of fatigue crack growth. The fatigue life
is the number of load cycles required to have the crack grow to the critical length, at which the
equivalent stress intensity factor (SIF) reaches the fracture toughness of a material.

The growth path of a fatigue crack and other physical quantities are determined for a given
loading history by solving three governing equations simultaneously; the governing equation of
an elastic cracked body, the Paris law for the crack growth rate, and the criterion of growth
direction. Since the three governing equations of fatigue crack growth form a coupled non-linear
system with respect to the unknown growth path and responses of the cracked body, an incremental
approach is widely adopted. In the incremental approach, the total load cycles are divided into small
increments of load cycles, and the governing equations are solved for each increment sequentially.
The efficiency of a solution method is represented by the largest size of an increment that can
achieve the required accuracy of solutions.

The tangent approach, in which the growth rate and direction of a crack is determined based
on the current crack configuration without iterative corrections [4–9], is widely employed in the
analyses of fatigue crack growth due to its simplicity. Since, however, the growth direction and
rate change continuously during an increment of load cycles, the tangent approach generally yields
inaccurate crack paths, and overestimates the fatigue life unless increments of load cycles are kept
small.

A few iterative schemes have been proposed to predict a curved crack path for a predefined
incremental crack length [10–13]. However, the fatigue crack growth should be analysed for a
predefined load cycle rather than a predefined crack length, and thus previously proposed itera-
tive schemes are not directly applicable to fatigue crack growth. Moreover, since the Paris law
defining the growth rate is a non-linear implicit function of a crack path, the incremental crack
length should be iteratively corrected along with the growth direction of a fatigue crack simul-
taneously. Another shortcoming of the previous iterative schemes is that the crack-tip position is
not included as unknown in the system equations of fatigue crack growth, but is assumed for the
analysis of a cracked body. The assumed crack-tip position is updated iteratively based on results
of the analysis, which causes slow convergence and requires a rather small increment of load
cycles.

This paper presents a new incremental formulation to overcome the shortcomings of the previous
approaches. In the proposed method, the three governing equations of the fatigue crack growth are
solved simultaneously for boundary unknowns and crack-tip position for predicting the growth path
of a fatigue crack for a given increment of load cycles. The displacement and traction boundary
integral equations (BIEs) [6–8, 10, 14, 15] are employed to analyse a linear elastic body with a
crack, and are discretized by the boundary element method (BEM) [16, 17]. The crack growth
is simulated by adding a new boundary element along the crack extension. The singularity of
stress field near the crack tip is taken into account using the singular element proposed by Kebir
et al. [7]. The Paris law [1, 2, 18] and the principle of local symmetry (PLS) [11, 12, 19] are
adopted to define the growth path. The incremental crack length is obtained by integrating the
Paris law for a given increment of load cycles, and the incremental crack path is modelled as a
parabolic curve represented by the unknown crack-tip position. Since the crack-tip position for a
given increment of load cycles is unknown, the discretized BIEs include the crack-tip position as
unknowns. The mixed-mode SIFs are evaluated by the displacement extrapolation method using the
crack opening displacement (COD) [7]. The three discretized governing equations are linearized
and solved by the Newton–Raphson method for the unknowns on the boundary and the crack-tip
position.
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PREDICTION OF TWO-DIMENSIONAL FATIGUE CRACK GROWTH

Two numerical examples are presented to demonstrate the validity of the proposed method. In
the first example, a fatigue crack grows along an almost straight path from an inclined initial edge
crack in a plate under a tensile load. An edge crack of a plate under mode II loading condition,
which exhibits a curved growth path, is presented in the second example. It is shown that the
proposed method gives more accurate and stable results than the tangent approach for a larger
increment of load cycles.

2. GOVERNING EQUATIONS OF FATIGUE CRACK GROWTH

This chapter presents governing equations of fatigue crack growth. The displacement BIE is applied
on the exterior boundary of the body, while the traction BIE is used on the traction-free crack
surface. The Paris law is adopted to define the growth rate of a fatigue crack. The growth direction
of a crack is determined by the PLS.

2.1. Displacement and traction BIEs

Figure 1 shows the geometry and boundary conditions of a cracked body subject to fatigue loads.
Either displacement u or traction q is prescribed on the exterior boundary of the cracked body, �.

u= u on �u (1a)

q= q on �q (1b)

where �u ∪ �q = �, �u ∩ �q =∅, and u and q are the prescribed displacement and traction, re-
spectively. It is assumed that a proportional cyclic fatigue load with a constant amplitude is applied
on �q , and that no traction is applied on the crack surface �c where �c ∩ �u =∅ and �c ∩ �q = ∅.
The crack path, v, is represented by the parametric form of a curve.

v(�) = (�1(�), �2(�)) (0����) (2)

where � is a curve parameter and � is the prescribed curve parameter at the crack tip.
The displacement and traction BIEs [6–8, 10, 14, 15] are employed to calculate responses of the

linear elastic body with a crack. The displacement BIE on the exterior boundary and the traction
BIE on crack surface are obtained by applying the reciprocal theorem between the real solution and
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Figure 1. Geometry and boundary conditions of a cracked elastic body.
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the fundamental solution as follows [6]:
Bu(n, x) ≡ c(n)us(n) +

∫
−

�q

T(n, x)u(x) d� +
∫

�c

T(n, v)u(v) d�

−
∫

�u

S(n, x)q(x) d� −
∫

�q

S(n, x)q(x) d�= 0 for n∈ � (3)

Bq(n, x) ≡ ns(n) ·
(∫

�q

T�(n, x)u(x) d� +
∫
=

�c

T�(n, v)u(v) d�

−
∫

�u

S�(n, x)q(x) d� −
∫

�q

S�(n, x)q(x) d�

)
= 0 for n∈ �c (4)

where n, x, c, us , and ns denote the co-ordinates of a source point and a field point on the
boundary, jump term, displacement and outward normal vector at a source point, respectively. S
and T are the displacement and traction kernels for the displacement BIE of a two-dimensional
body, respectively. The kernels for the traction BIE, S� and T�, are linear combinations of the
derivatives of S and T with respect to a source point, respectively [16, 17]. Refer to Appendix A.1

for the detailed expressions of the kernels. The integral symbols,
∫
− and

∫=, imply the Cauchy and

the Hadamard principal-value integral, respectively. In the derivation of (3) and (4), it is assumed
that the prescribed displacement on �u is zero.

Since the traction kernels on the opposite surfaces of a crack have the same magnitudes with
different signs, the boundary integral terms on the crack surface are expressed as single-path
integrals in terms of the COD.∫

�c

T(n, v)u(v) d� =
∫ �

0
T(n, v)uc(v)J (v) d� (5a)

∫
=

�c

T�(n, v)u(v) d� =
∫
=

�

0
T�(n, v)uc(v)J (v) d� (5b)

where uc is the COD, which is defined as uc = u+ − u−. Here, the signs (+) and (−) indicate the
opposite surfaces of a crack, respectively, and J is the Jacobian of the crack surface with respect
to the curve parameter.

J (v(�))=‖v′(�)‖2 =
√(

d�1
d�

)2

+
(
d�2
d�

)2

(6)

where ( )′ and ‖ ‖2 represent the differentiation with respect to the curve parameter and the
2-norm of a vector, respectively. Once the displacement on the exterior boundary and the COD are
obtained by solving (3) and (4), the displacement field on the crack surfaces can be reconstructed
by applying the displacement BIE (3) on the crack surface [7, 15].
2.2. Criteria for fatigue crack growth

The growth rate of a fatigue crack is defined by the Paris law [1, 2, 18] as follows:
da

dN
=C(K R

eq(u(v), v))m (7)
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rc << a ϕ
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Figure 2. Geometry and local tangent co-ordinate system of crack tip.

where a, N and K R
eq are the crack length, number of load cycles, range of the equivalent stress

intensity factor, respectively, while C and m are material constants determined from fatigue tests.
The range of the equivalent SIF, K R

eq = Kmax
eq − Kmin

eq = (1 − R)Kmax
eq , where R = Kmin

eq /Kmax
eq .

Kmax
eq and Kmin

eq are the equivalent SIFs corresponding to the maximum and minimum load level,
respectively. The equivalent SIF is defined for the mixed-mode fracture as follows [3]:

Keq(u(v), v) = KI(u(v), v) cos3
�

2
− 3KII(u(v), v) cos2

�

2
sin

�

2
(8)

where KI, KII and � are the mode I SIF, the mode II SIF and minor principal direction at the
crack tip, respectively, in the local tangent co-ordinate system (x̂1, x̂2) shown in Figure 2. In the
local tangent co-ordinate system, the crack-tip position and the tangent direction of the crack path
at the crack tip are taken as the origin and the x̂1-axis, respectively. Variables with a hat symbol
(ˆ) denote those defined in the local tangent co-ordinate system, hereafter. The angle between the
global and the local tangent co-ordinate system is denoted as �c in Figure 2.

The mixed-mode SIFs are defined by the COD as follows:

K(u(v), v) = (KII(u(v), v), KI(u(v), v))= �
√
2�

� + 1
lim
rc→0

ûc(v)√
rc

= �
√
2�

� + 1
lim
rc→0

Rtuc(v)√
rc

(9)

where �, rc, ûc and Rt are the shear modulus, distance from the crack tip, COD in the local
tangent co-ordinate system and rotational matrix from the global to the local co-ordinate system,
respectively. For plane strain condition, �= 3−4	 and for plane stress condition, � = (3−	)/(1+	),
where 	 is the Poisson ratio. The minor principal direction at the crack tip in the local tangent
co-ordinate is expressed in terms of the mixed-mode SIFs by setting ����/��= 0, where ��� is
the circumferential stress component near the crack tip [3, 18].

�(K) = sin−1

⎛
⎝ KII√

K 2
I + 9K 2

II

⎞
⎠− sin−1

⎛
⎝ 3KII√

K 2
I + 9K 2

II

⎞
⎠ (10)
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Since the shear stress on the principal plane vanishes, the mode II SIF of a crack evaluated in
the minor principal direction given in (10) is zero [18]. Here, it should be noted that the minor
principal direction in (10) is not changed during a load cycle for the proportional fatigue load, and
is considered as a function of the maximum mixed-mode SIFs hereafter.

The fatigue crack length after N load cycles is obtained by integrating the Paris law, and is
equal to the arc length of the crack path defined in (2).

a = a0 +
∫ N

0
C(K R

eq(u(v), v))m dN = a0 +
∫ �

�0
‖v′(�)‖2 d� (11)

where a0 and �0 are the initial crack length and its corresponding curve parameter, respectively.
The Paris law in (11) is considered as a function of the maximum mixed-mode SIFs only since R
is constant through entire load cycles for a proportional cyclic load with constant amplitude.

The PLS is employed to define a curved path of a growing fatigue crack [11, 12, 19]. The PLS
states that a crack grows smoothly in the direction of KII = 0, which is the minor principal direction
defined in (10). Once a crack grows in accordance with the PLS, the mode II SIF of the crack
is always zero in the growing direction, and the minor principal direction given in (10) becomes
zero in the local tangent co-ordinate system.

�(K) = 0 (12)

Condition (12) implies that a crack grows in the tangential direction of a crack path at the crack
tip, and therefore the path of a growing crack is continuous in slope. Cotterell and Rice point
out that other criteria for growth direction such as the maximum principal stress criterion or the
maximum energy release rate criterion are equivalent to the PLS if a crack grows along a smooth
path [19]. Since the tangential direction at the initial crack tip generally does not coincide with the
direction of KII = 0 due to the arbitrariness of initial crack geometry, there may be discontinuity
in slope by the angle given in (10) at the initial crack tip. The boundary unknowns and the fatigue
crack path are obtained by simultaneously solving three non-linear equations, i.e. the BIEs, the
Paris law and the PLS.

3. DISCRETIZATION AND INCREMENTAL FORMULATION

The displacement and traction BIEs for a cracked body are discretized by the BEM using straight-
line elements, and the incremental crack path is modelled by a parabolic curve defined in the
local tangent co-ordinate system for each incremental step. Since the discretized equations of
the BIEs and the crack growth criterion are non-linear with respect to the nodal unknowns and the
crack-tip position, the iterative forms of the discretized equations are derived to solve the system
of non-linear equations by the Newton–Raphson method.

3.1. Discretization of the governing equations

The fatigue crack growth is analysed incrementally for finite sequential increments of load cycles.
The crack path for the pth increment of load cycles is parameterized as follows:

vp = vp−1 + 
vp(�) (0���1) (13)
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Figure 3. Parabolic modelling of a curved crack path.

where 
vp is the pth incremental crack path and � is a curve parameter for the incremental
crack path. Each increment of load cycles is referred to as a step for the purpose of brevity. In
this paper, each incremental crack path is modelled as a parabola defined in the local tangent
co-ordinate system set up at the old crack tip as shown in Figure 3. A parabola, which represents
the incremental crack path of the current step, is defined by the new crack-tip position in the local
tangent co-ordinate system.


v̂p(�) = ((X̂ c
1)p�, (X̂

c
2)p�

2) (14)

where X̂c
p = ((X̂ c

1)p, (X̂
c
2)p) is the new crack-tip position for the current step in the local tangent

co-ordinate system. The new crack-tip position, Xc
p, and the incremental crack path, 
vp(�), in

the global co-ordinate system are given as

Xc
p =Xc

p−1 + (Rt
p−1)

−1X̂c
p (15)


vp(�) = (Rt
p−1)

−1
v̂p(�) (16)

where Rt
p−1 is the rotational matrix between the global and the local tangent co-ordinate system

with a rotational angle � c
p−1. Since the tangential direction of the incremental crack path at � = 0

coincides with the x̂1-axis of the local tangent co-ordinate system, the crack path always maintains
continuity in slope as required in the PLS.

The BIEs given in (3) and (4) are discretized by the BEM using straight-line boundary elements
[7, 10, 15] as shown in Figure 4. The exterior boundary of the cracked body is discretized with
continuous quadratic boundary elements, while the crack surface is discretized with discontinuous
quadratic boundary elements. Semi-continuous elements [10, 15] are used to connect the exterior
boundary to the crack surface for an edge crack. Note that, although the incremental crack path
is modelled by a parabola, the incremental crack path is discretized with a straight boundary
element for the evaluation of the BIEs [15]. To model the 1/

√
r singularity of the stress field at
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Figure 4. Single-domain boundary discretization of a cracked body.

a crack tip correctly, a singular element has to be utilized. Various types of efficient and accurate
singular elements [7, 11] have been proposed. Among them this paper adopts the singular element
proposed by Kebir et al. [7]. Note that any singular element may be employed as long as it correctly
represents the singular field of stress. For each step, one new singular crack-tip element is added
to the old crack tip, and the old crack-tip element is replaced with a regular discontinuous element.
The boundary integrals for regular elements are integrated analytically. The boundary integrals
for the crack-tip element are numerically evaluated by using the 16-point Gauss quadrature when
the source is placed outside of the crack-tip element. Analytical integration is performed for the
crack-tip element when a source is placed inside of the crack-tip element.

The discretized BIEs (3) and (4) are numerically evaluated and assembled for the maximum
load level. [

Hu(Xc
p)

Hq(Xc
p)

](
Un

p

Uc
p

)
=
[
Gu(Xc

p)

Gq(Xc
p)

](
Qn

p

0

)
or H(Xp)Up =G(Xp)Qp (17)

where Un
p and Uc

p are the nodal displacements on the exterior boundary and the nodal COD on the
crack surface, respectively, and Qn

p is the nodal traction on the exterior boundary corresponding to
the maximum load level. H and G are the system matrices of the discretized BIEs, and subscript
u and q denote the displacement and the traction BIE, respectively. Since the crack surface is
traction free, the nodal traction corresponding to Uc

p is set to zero.
For simplicity of presentation, the mixed-mode SIFs that appear in the following formulation

denote the maximum mixed-mode SIFs. The Paris law given in (11) is discretized for sequential
increments of load cycles.

ap = a0 +
p−1∑
l=1

∫ Nl

Nl−1

C(K R
eq(U

c
l ,X

c
l ))

m dN +
∫ Np

Np−1

C(K R
eq(U

c
p,X

c
p))

m dN

= a0 +
p−1∑
l=1

∫ 1

0
‖
v′l(�)‖2 d� +

∫ 1

0
‖
v′p(�)‖2 d� (18)
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In case the above relation is satisfied up to the previous step, the incremental crack length is equal
to the arc length of the incremental crack path.


a(Uc
p,X

c
p) ≡

∫ Np

Np−1

C(K R
eq(U

c
p,X

c
p))

m dN =
∫ 1

0
‖
v′p(�)‖2 d�≡ L(X̂c

p) (19)

where 
a and L indicate incremental crack length obtained from the Paris law and the arc length
of the incremental crack path. The Paris law and the arc length of the incremental crack path in
(19) are evaluated by trapezoidal rule and analytical integration, respectively, which leads to the
following expression:

C�Np

2
{(K R

eq(U
c
p−1,X

c
p−1))

m + (K R
eq(U

c
p,X

c
p))

m}

= 1

2

√
(X̂ c

1)
2
p + 4(X̂ c

2)
2
p + (X̂ c

1)
2
p

4(X̂ c
2)p

(
ln

∣∣∣∣2(X̂ c
2)p +

√
(X̂ c

1)
2
p + 4(X̂ c

2)
2
p

∣∣∣∣− ln |(X̂ c
1)p|

)
(20)

where �Np = Np − Np−1 is an increment of load cycles or simply referred to as a step size.
The SIFs are evaluated by the displacement extrapolation method using COD [7, 15], which is a

finite difference approximation of (9). As the COD at the crack tip is zero, the mixed-mode SIFs can
be calculated by the finite difference approximation using the CODs at node A and B in the crack-tip
element shown in Figure 4. To obtain more accurate SIFs at the crack tip, the two SIFs approximated
at node A and B are extrapolated to the crack tip. The extrapolation scheme employed in this study
is originally proposed by Portela et al. [15] for a regular quadratic element, and is extended to a
singular element by Kebir et al. [7]. The detailed derivation of the extrapolation formula is found in
Reference [15]. The mixed-mode SIFs for the current step should be calculated in the local tangent
co-ordinate system at the new crack tip. Since a straight crack-tip element connecting the new and
the old crack tip is used to discretize the BIE, the tangent direction of the new crack-tip element
becomes the secant direction between the old and the new crack-tip position. The mixed-mode
SIFs evaluated in a local secant co-ordinate system (x̂ s1, x̂

s
2), which is defined by taking the old

crack-tip position as the origin and the secant direction as the local x̂ s1-axis as shown in Figure 3, are
given as

K(Uc
p,X

c
p) ≈Rs

p(X
c
p)(5(U

c
A)p − 3

√
15

5
(Uc

B)p)
�

� + 1

√
�

lcp
(21)

where Uc
A and Uc

B are the CODs in the global co-ordinate system at nodes A and B of the crack-tip
element as shown in Figures 4, respectively, and lcp = ‖Xc

p −Xc
p−1‖2 is the length of the crack-tip

element for the current step. The rotation matrix Rs
p from the global to the local secant co-ordinate

system is defined as follows:

Rs
p =

[
cos � s

p sin � s
p

− sin � s
p cos � s

p

]
= 1

lcp

[
(Xc

1)p − (Xc
1)p−1 (Xc

2)p − (Xc
2)p−1

−((Xc
2)p − (Xc

2)p−1) (Xc
1)p − (Xc

1)p−1

]
(22)

The PLS is enforced discretely at every newly formed crack tip. Since the mixed-mode
SIFs (21) are calculated in the local secant co-ordinate system, the growth direction at the
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new crack tip in the local secant co-ordinate system is given as the angle defined in (10). As
shown in Figure 3, the crack growth direction at the new crack tip in the local tangent co-
ordinate system is obtained by adding the angle given in (10) to the secant angle of the crack-tip
element.

�̂cp(X
c
p) = �̂sp(X

c
p) + �p(K(Uc

p,X
c
p)) (23)

where �̂cp and �̂sp are the crack growth angle at the new crack tip and the secant angle of the
crack-tip element measured in the local tangent co-ordinate system, respectively. The secant angle
in the local tangent co-ordinate system is expressed as follows:

�̂sp(X
c
p) = tan−1

(
(X̂ c

2)p

(X̂ c
1)p

)
(24)

Meanwhile, the tangential direction of the incremental crack path at the new crack tip should be
equal to the crack growth direction given in (23) to maintain the smoothness of the crack path as
stated in the PLS.

�̂cp(X
c
p) = tan−1

(
2
(X̂ c

2)p

(X̂ c
1)p

)
(25)

Substitution of (24) and (25) into (23) leads to the following discretized criterion for crack growth:

�p(K(Uc
p,X

c
p))= tan−1

(
2
(X̂ c

2)p

(X̂ c
1)p

)
− tan−1

(
(X̂ c

2)p

(X̂ c
1)p

)
≡ �(X̂c

p) (26)

Three governing equations of (17), (20) and (26) are non-linear with respect to the new crack-tip
position and nodal unknowns. To solve the non-linear governing equations, iterative procedure
based on the Newton–Raphson method is employed.

3.2. Iterative forms of governing equations

Iterative expressions of the discretized governing equations are derived using the following notation
for iterative updates of field variables for the pth step:

( )kp = ( )k−1
p + �( )kp = ( )

¯ + �( ) (27)

where superscript k denotes the iteration count. The linearized, incremental forms of (17), (20) and
(26) are obtained by applying the truncated Taylor expansion with respect to the nodal unknowns
and the crack-tip position and including only the first-order terms of the iterative updates.

The discretized BIE (17) is linearized for the iterative updates of nodal unknowns and the new
crack-tip position.

H(Xc)U + H(Xc)�U +
(

�H
�Xc

U
)

�Xc =G(Xc)Q + G(Xc)�Q +
(

�G
�Xc

Q
)

�Xc (28)
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where �H/�Xc and �G/�Xc indicate the sensitivities of H and G with respect to the crack-tip
position, which are expressed as follows:
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where Ne
u , N

e
q ,
∑

e and sec are the shape functions for displacement and traction, the assembly
operator of the BEM and the discretized crack paths, respectively, and the BIEs and variables
with the superscript i correspond to those when a source is applied at node i . Since sources are
applied only on the exterior boundary in the displacement BIE, the sensitivity of the jump term of
the displacement at a source point vanishes. Refer to Appendix A.2 for the detailed forms of the
sensitivities of the kernel functions, the normal vectors and the Jacobian. Tai and Fenner [20] have
presented explicit expressions of the sensitivities of the displacement BIE. Note that the sensitivity
of the Jacobian exists only on the crack-tip element and is expressed in terms of the crack-tip
position. In case the solutions obtained by the previous iteration satisfy the BIE, the linearized
form (28) becomes as follows:

H(Xc)�U +
(

�H
�Xc

U
)

�Xc =G(Xc)�Q +
(

�G
�Xc

Q
)

�Xc (30)

The linearized forms of the discretized Paris law (20) and the PLS (26) are derived in terms of
the iterative updates of the COD and the new crack-tip position.

C�Np

2

{
(K R

eq(Up−1,Xc
p−1))

m + (K R
eq)

m + m(K R
eq)

m−1

(
�K R
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�K
�K
�Uc

�Uc

+ �K R
eq

�K
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)}
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Rt
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c (31)

� + ��
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�Uc + ��

�K
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where K R
eq = K R

eq(U,Xc), L = L(Xc), �= �(K(Uc,Xc)) and � = �(Xc). The derivatives of L and

� with respect to X̂c are given in Appendix A.3. The derivatives of K R
eq and � with respect to

SIFs in (31) and (32) are obtained by the direct differentiation of (8) and (10), respectively, and
presented in Appendix A.4. Terms containing �K R

eq/�� do not appear in (31) because the condition

of ����/��= 0 used to derive the minor principal direction (10) is equivalent to �K R
eq/�� = 0

[3, 18].
Direct differentiation of (21) with respect to the COD and the crack-tip position leads to the

following expressions for the sensitivities of the mixed-mode SIFs:
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where �lcp/�X
c = (Xc − Xc

p−1)/l
c and �Rs

p/�X
c is derived by the direct differentiation of (22).
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(35)

where I is the identity matrix, and Ia is defined as

Ia =
[

0 1

−1 0

]
(36)

The nodal unknowns and the crack-tip position are determined by solving (30), (31) and (32)
iteratively for each increment of the load cycles. The solution of the linearized equations at each
iteration does not precisely satisfy the BIEs. Since, however, the mixed-mode SIFs should be
evaluated by the displacement field that satisfies the BIEs exactly for the given crack geometry, the
displacement field is updated by solving (17) for the new crack-tip position obtained by solving
the linearized equations. The mixed-mode SIFs are calculated using the updated displacement field
for the next iteration.

4. NUMERICAL EXAMPLES

The validity of the proposed incremental formulation is demonstrated through two numerical
examples on the prediction of fatigue crack growth in plates with initial edge cracks under the
plane stress condition. In the examples, results obtained by the proposed method are compared
with those obtained by the conventional tangent approach. In the tangent approach, the BIEs are
solved for the fixed crack path determined by the SIFs using the previous crack path without
iterative correction.
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Figure 5. Inclined edge-cracked plate under tensile load and discretization of initial crack.

An incremental crack length corresponding to a fixed increment of load cycles becomes
longer as a crack grows because the equivalent SIF increases very fast with crack length. To
prevent numerical instability or inaccuracy of solutions caused by an excessive incremental
crack length, a step size is reduced by half of the previous one in case an incremental crack
length exceeds a prescribed value, 
amax. The convergence criterion for iterations is selected as
follows:

‖�Xc‖2
‖Xc

p‖2
<10−7 (37)

4.1. Fatigue crack growth in a rectangular plate under a tensile load

The rectangular plate with an inclined edge crack presented in Reference [9] is chosen as a first
example to verify the proposed method. The initial geometry, loading condition and material
properties are given in Figure 5. The fatigue crack grows from the initial crack of 2 cm inclined by
40◦ to the horizontal direction. A constant cyclic tension, which ranges from 0 to 40MN/m2, is
applied on the upper and lower side of the plate. The plate with the initial crack is modelled with
174 nodes and 79 boundary elements. The exterior boundary is discretized with 1 cm elements
and the initial crack is discretized with 15 elements, of which sizes gradually decrease from 0.2
at the edge to 0.0125 cm at the crack tip. The detailed mesh layout around the initial crack is
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Figure 6. Number of iterations of Examples 1 and 2.

presented in Figure 5. Results obtained by the tangent approach and the proposed method are
compared with those by Duflot and Nguyen-Dang [9], in which the meshless Galerkin method
is used for the analysis of the cracked body. In their study, the fatigue crack grows by constant
increments of 0.5 cm, and the growth direction is determined based on the maximum principal stress
criterion using the previous crack-tip position without iterative modification. The number of load
cycles required for each crack increment is evaluated by integrating the Paris law (7) with the
trapezoidal rule.

The fatigue crack growth is simulated by the proposed method and the tangent approach
with �N = 200 and 10 000. The simulation is terminated when the total crack length reaches
to 6.5 cm, and the maximum incremental crack length is set to 0.5 cm for the reduction of �N .
Total steps of 588, 19 in the tangent approach and 593, 20 in the proposed method are required
for �N = 200 and 10 000, respectively. No reduction of �N is made in the tangent approach with
�N = 200 and one reduction occurs at the 592nd step in the proposed method with �N = 200.
For �N = 10 000, the first reduction occurs at the 13th step in the tangent approach, and at the
11th step in the proposed method. This is because the tangent approach predicts shorter incre-
mental crack length than the proposed method. Figures 6 and 7 present the number of iterations
required to converge to the specified criterion for each step and the relative error of each it-
eration at the 1st step, respectively, in the proposed method for �N = 10 000. The proposed
method satisfies the specified criterion after 3 or 4 iterations with quadratic convergence rate for
all steps.

Figures 8 and 9 show the predicted growth paths of fatigue crack and SIFs, respectively. The
initial mode I and mode II SIFs are calculated as 8.95 and 4.02MN/m1.5, respectively. After a
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Figure 9. Stress intensity factors for Example 1.

crack initiates growth, the mode II SIF becomes zero as the applied criterion enforces the crack to
grow in such a direction. The initial mixed-mode SIFs have the initial crack grow to the direction
of 38◦ from the initial crack, which is almost in a horizontal direction. Since the minor principal
direction near the horizontal crack becomes perpendicular to the applied tension, the fatigue crack
grows to the horizontal direction after the initial kinks. Therefore, the correction on the direction
of crack growth is rarely required, and no significant difference is found in the predicted crack
paths among the three approaches.

Significant differences among the three approaches in the SIFs and the crack length vs the number
of load cycles, however, are found in Figures 9 and 10, respectively. The solutions obtained by the
proposed method and the tangent approach for �N = 200 are very close to each other because of
the small step size. The proposed method yields almost identical results for �N = 200 and 10 000.
However, the tangent approach with �N = 10 000 underestimates the SIF and the crack length for
a given number of load cycles, which is similar to the results by Duflot and Nguyen-Dang [9].
As the load cycles increase, the SIF and the crack length predicted by the tangent approach with
�N = 10 000 deviate significantly from those by the proposed method.

It is of great engineering importance to predict the fatigue life correctly. Since the mode II SIF
is almost zero for growing crack, the fatigue life is governed by the mode I SIF. The fatigue life for
the fracture toughness of 60MN/m1.5 is estimated as 118 250 and 133 130 cycles by the proposed
method and the tangent approach with �N = 10 000, which represents a 12.5% difference. When
the total number of load cycles reaches to the fatigue life by the proposed method, the SIF and
the crack length predicted by the tangent approach with �N = 10 000 are only about 38 and 61%
of those predicted by the proposed method, respectively.
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4.2. Fatigue crack growth in a square plate under a mode II fatigue load

The fatigue crack growth in a 20 cm×20 cm square plate is investigated for a mode II fatigue load.
Figure 11 shows the geometry, boundary conditions and material properties of the plate. Typical
material properties of the Ferrite-Pearlite steel [2] are adopted. Mode II fatigue traction that ranges
from 0 to 165MN/m2 is applied on the upper- and lower-left edge of the plate in the opposite
direction. Four different cases of 1, 2, 4 and 8 cm initial cracks are considered. The plates with 1,
2, 4 and 8 cm initial crack are modelled with 199, 214, 244 and 304 nodes and 94, 99, 109 and
129 elements, respectively. The exterior boundary is discretized with 1 cm continuous elements.
The element sizes on the crack surface gradually decrease from 0.2 cm at the edge to 0.0125 cm
at the crack tip. The mesh layout for the plate with a 1 cm initial crack is presented in Figure 11.

The fatigue crack growth is simulated by the proposed method with �N = 4000, 1400, 450 and
124 cycles for 1, 2, 4 and 8 cm initial cracks, respectively, to have the initial cracks grow with
similar increments of around 0.056 cm. The maximum incremental crack length for the reduction
of �N is set to 0.5 cm. In case total crack length for the plate with 1, 2, 4, and 8 cm initial crack
reaches to 8, 10, 11 and 15 cm, respectively, the simulation is terminated to prevent the separation
of the plate. Total steps of 30, 32, 35 and 36 are made before termination for 1, 2, 4 and 8 cm initial
cracks, respectively. The first reduction of �N occurs at the 11th, 18th, 23rd and 25th step for 1,
2, 4 and 8 cm initial cracks, respectively. As shown in Figures 6 and 7 for 1 cm initial crack, the
proposed method converges quadratically to the specified criterion within four or five iterations.

Figure 12 shows the growth paths of the four different initial cracks. The growth path of the 1 cm
initial crack forms a sharp curve with a small radius of curvature. The growth direction changes
towards the left edge from the lower edge of the plate at around the 20th step, which can be
explained as follows. The mode I and mode II SIF for the initial crack are calculated as 26.22 and
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Figure 11. Edge-cracked plate under a mode II load and discretization of initial crack.
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Figure 13. Predicted growth paths for 1 cm initial crack of Example 2.

21.63MN/m1.5, respectively, which has the initial crack kink by 50◦ from the horizontal direction.
As the crack grows after the initial kink, the crack turns the direction of its growth vertically,
which is perpendicular to the applied traction, according to the PLS. As the crack grows further,
the crack turns the direction of its growth towards the left edges of the plate due to the vertical
tension field generated by cantilever-like actions of the left part of the crack. Meanwhile, the other
initial cracks grow by relatively dull curves, and maintain the growth direction towards the lower
edge of the plate. This is because the cantilever-like actions in the left part of the crack become
weaker for the longer initial cracks.

The behaviours of fatigue crack growth are presented in detail for the plate with 1 cm initial crack
to demonstrate the efficiency of the proposed method in comparison with the tangent approach. The
results obtained by �N = 200 and 
amax = 0.1 cm are chosen as the reference solutions for both
methods. Figures 13–15 show the growth paths, SIFs and crack length vs number of load cycles,
respectively. In the figures, it is clearly seen that the proposed method yields almost identical results
regardless of the step size, while the accuracy of the tangent approach heavily depends on the
step size. Unlike the previous example, the crack growth path predicted by the tangent approach
with �N = 4000 exhibits significant differences from the others. Because no correction on the
crack growth direction is made for each step in the tangent approach, the crack keeps growing in
an incorrect direction once the erroneous growth direction is estimated. As shown in Figure 14,
fatigue life for the fracture toughness of 200MN/m1.5 is estimated as 48 250 and 48 630 cycles by
the proposed method and the tangent approach with �N = 200, respectively, which are very close
to each other. The differences in the estimated fatigue life between �N = 4000 and 200 are 12.6%
for the tangent approach and virtually 0% for the proposed method. As the load cycle increases,
huge errors in the SIF and crack length for a given load cycle occur in the tangent approach with
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a large step size. To obtain reliable results in the tangent approach, the step size should be kept
very small. On the other hand, the proposed method yields accurate results even for a large step
size.

5. CONCLUSIONS

A new incremental formulation is presented for predicting the curved growth path of a two-
dimensional fatigue crack. A cracked body and a crack path are modelled using the displacement
and traction BIEs and a parametric form of a curve, respectively. The Paris law and the PLS
are employed to define the growth path of a crack. Iterative forms of three governing equations,
i.e. the BIEs, the Paris law and the PLS, are derived with respect to the unknown displacement,
traction and the crack-tip position. An incremental crack path is discretized by a parabolic curve.
The Paris law is integrated by the trapezoidal rule. An iterative solution scheme based on the
Newton–Raphson method is presented.

The validity of the proposed method is demonstrated by two numerical examples of plates with
an edge crack under the plane stress condition. In the examples, the growth paths and fatigue life
predicted by the proposed method are compared with those by the tangent approaches. The proposed
method yields accurate and stable solutions, and converges very fast within four or five iterations
even for a large step size. It is believed that the proposed method provides a rigorous formulation
for the analysis of fatigue crack growth, which is also applicable to domain discretization schemes
such as the extended FEM and the element-free Galerkin method.

Although only the fatigue crack growth for two-dimensional edge cracks is presented as examples
in this paper, the proposed method can be easily extended to problems of multiple edge or embedded
cracks without modification of the basic formulation. In three-dimensional problems the growth
direction and length at a point on a crack front may be defined in the normal plane to the tangent
of the crack front as presented by Dell’Erba and Aliabadi [8]. Therefore, the proposed method can
be applied in the normal plane at each node on the crack front to derive incremental expressions
of the three-dimensional crack growth criteria.

APPENDIX A

A.1. Kernels of displacement and traction BIEs

The Kernels of displacement and traction BIEs for two-dimensional elastostatic problems [16, 17]
are defined in tensor notation as follows:

Si j = 1

8��(1 − 	)

{
rir j
r2

− (3 − 4	)
i j ln r

}
(A1)

Ti j = − 1
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{
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(1 − 2	)
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where � and 
i j are the shear modulus and Kronecker delta, respectively. On the exterior boundary,
ri is the component of r= x − n corresponding to global co-ordinate components xi and r is the
distance between x and n. On the crack surface, v is used instead of x. The outward normal vector
of boundary, n, is defined as follows:

n= (n1, n2) = 1

J

(
dx2
d�

, −dx1
d�

)
(A5)

where � and J are the natural co-ordinate of boundary and the Jacobian of transformation from
global to natural co-ordinate system of boundary, respectively.
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)2

+
(
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)2

(A6)

A.2. Derivatives of kernels of BIEs with respect to crack-tip position

The derivatives of kernels (A1)–(A4) with respect to a crack-tip position is only considered in
case that v or n is on the crack-tip element in this paper.
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r2
+ 2

rir j,mrk
r2

+ 2
rir j rk,m

r2
− 4

rir j rk
r3

r,m

}
− 2

r,m
r

S�
i jk (A9)
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T �
i jk,m = �

2�(1 − 	)

1

r2

{
2

(
rl,mnl
r2

+ rlnl,m
r2

− 2
rlnlr,m
r3

)(
(1 − 2	)
i j rk + 	(
ikr j + 
 jkri )

− 4
rir j rk
r2

)
+ 2

rlnl
r2

((1 − 2	)
i j rk,m + 	(
ikr j,m + 
 jkri,m))

− 8
rlnl
r2

(
ri,mr jrk

r2
+ rir j,mrk

r2
+ rir j rk,m

r2
− 2

rir j rkr,m
r3

)
− 4	

r,m
r3

(nir jrk + n jrirk)

+ 2	
1

r2
(ni,mr jrk + nir j,mrk + nir jrk,m + n j,mrirk + n jri,mrk + n jrirk,m)

+ (1 − 2	)

(
2nk,m

rir j
r2

+ 2nk
ri,mr j
r2

+ 2nk
rir j,m
r2

− 4nk
rir j r,m
r3

+ n j,m
ik + ni,m
 jk

)

− (1 − 4	)nk,m
i j

}
− 2

r,m
r

T �
i jk (A10)

where commas (,) in the subscripts indicate the derivatives with respect to the co-ordinates of
a crack-tip position. The derivatives of ri , r , n and J are derived by direct differentiation as
follows:

ri,m = �i,m − 
i,m (A11)

r,m = rmrm,m

r
(here, m is a free index) (A12)

n1,m = − J,m
J 2

d�2
d�

+ 1

J

d�2,m
d�

, n2,m = J,m
J 2

d�1
d�

− 1

J

d�1,m
d�

(A13)

J,m = 1

J

(
d�1,m
d�

+ d�2,m
d�

)
(A14)

In above (A11), (A13) and (A14), the derivatives of �i,m and 
i,m are non-zero only on the crack-tip
element. On the straight-line crack-tip element for pth crack increment, �i,m and 
i,m are expressed
as follows:

�i,m = 
im
(Xc

i )p − �i
lcp

(A15)


i,m = 
im
(Xc

i )p − 
i
lcp

(A16)
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A.3. Derivatives of L and with respect to crack-tip position

The derivatives of L and � are derived by the direct differentiation of (20) and (26), respectively,
as follows:

�L

�X̂ c
1

= X̂ c
1

2X̂ c
2

(
ln

∣∣∣∣∣2X̂ c
2 +

√
(X̂ c

1)
2 + 4(X̂ c

2)
2

∣∣∣∣∣− ln |X̂ c
1|
)

(A17a)

�L

�X̂ c
2

=
√

(X̂ c
1)

2 + 4(X̂ c
2)

2

2X̂ c
2

− (X̂ c
1)

2

4(X̂ c
2)

2

(
ln

∣∣∣∣∣2X̂ c
2 +

√
(X̂ c

1)
2 + 4(X̂ c

2)
2

∣∣∣∣∣− ln |X̂ c
1|
)

(A17b)

��

�X̂ c
1

= − 2X̂ c
2

(X̂ c
1)

2 + 4(X̂ c
2)

2
+ X̂ c

2

(X̂ c
1)

2 + (X̂ c
2)

2
(A18a)

��

�X̂ c
2

= 2X̂ c
1

(X̂ c
1)

2 + 4(X̂ c
2)

2
− X̂ c

1

(X̂ c
1)

2 + (X̂ c
2)

2
(A18b)

A.4. Derivatives of K R
eq and � with respect to SIFs

The derivatives of K R
eq and � with respect to SIFs are obtained by the direct differentiation of (8)

and (10), respectively, as follows:

�Keq

�K
=
(

�Keq

�KII
,

�Keq

�KI

)
=
(

−3 cos2
�

2
sin

�

2
, cos3

�

2

)
(A19)

��

�K
=
(

��

�KII
,

��

�KI

)
= − 1

KI cos� − 3KII sin�
(3 cos� − 1, sin�) (A20)
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