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Abstract
In this paper, the Cauchy problem for the Helmholtz equation is investigated.
By Green’s formulation, the problem can be transformed into a moment
problem. Then we propose a numerical algorithm for obtaining an approximate
solution to the Neumann data on the unspecified boundary. Error estimate
and convergence analysis have also been given. Finally, we present numerical
results for several examples and show the effectiveness of the proposed method.

1. Introduction

The Helmholtz equation arises in many physical applications, especially in wave propagation
and vibration phenomena, such as the acoustic cavity problem, the scattering of a wave,
vibration of the structure, electromagnetic scattering and so on (see [2, 3, 7, 8, 13]). The
direct problems, i.e. Dirichlet, Neumann or mixed boundary value problems for the Helmholtz
equation have been studied extensively in the past century. However, in some practical
problems, the boundary data on the whole boundary cannot be obtained. We only know the
noisy data on a part of the boundary or at some interior points of the concerned domain,
which will lead to some inverse problems. The Cauchy problem for the Helmholtz equation
is an inverse problem and is severely ill-posed. That means the solution does not depend
continuously on the given Cauchy data and any small change in the given data may cause
large change to the solution [9, 17]. Several numerical methods have been proposed to solve
this problem, such as the alternating iterative boundary element method [13], the conjugate
gradient boundary element method [14], and the method of fundamental solutions [11, 15,
19]. In paper [10], the boundary knot method was applied to solve the Cauchy problem of
the inhomogeneous Helmholtz equation. In this paper, we propose a new numerical method
for dealing with this problem in a special domain. The main idea is to transform the Cauchy
problem into a moment problem whose numerical method has been studied extensively. The
Neumann boundary value of the solution on the unspecified boundary can be obtained by

0266-5611/08/035003+18$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0266-5611/24/3/035003
mailto:tingwei@lzu.edu.cn
http://stacks.iop.org/ IP/24/035003


Inverse Problems 24 (2008) 035003 T Wei et al

solving a corresponding Hausdorff moment problem. Convergence analysis and numerical
verification are also presented.

The paper is organized as follows. In section 2, we formulate the problem and transform
the Cauchy problem into a moment problem according to the idea in [4]. In section 3, we
propose a numerical algorithm for solving the moment problem and give error estimate and
convergence results. In section 4, we give several numerical examples to demonstrate the
effectiveness of our proposed method. Finally, we give a conclusion in section 5.

2. Formulation of the problem and transformation to a moment problem

Let � be a simply connected and bounded domain in R
2 with a sufficiently regular boundary

∂� and � be an open part of boundary ∂�. Without loss of generality, we assume that � is
connected.

Consider the following Cauchy problem for the Helmholtz equation:

�u(x, y) + k2u(x, y) = 0, (x, y) ∈ �, (2.1)

u(x, y) = f (x, y), (x, y) ∈ �, (2.2)

∂u(x, y)

∂n
= g(x, y), (x, y) ∈ �, (2.3)

where f ∈ H 3/2(�), g ∈ H 1/2(�), n is the outer unit normal with respect to ∂� and constant
k > 0 is the wave number. In this paper, we assume that −k2 is not an eigenvalue of the
Laplacian operator with the homogenous Neumann boundary condition.

Suppose the Cauchy problem (2.1)–(2.3) has a solution u in H 2(�), then for any
φ ∈ H 1(�), we know u satisfies the following formulation:∫

�

∇u∇φ dx dy − k2
∫

�

uφ dx dy =
∫

�

gφ ds +
∫

∂�\�

∂u

∂n
φ ds, ∀φ ∈ H 1(�), (2.4)

where ds is the curve element.
For any q ∈ L2(�), let vq ∈ H 1(�) be a weak solution of the following problem:

�v(x, y) + k2v(x, y) = 0, (x, y) ∈ �, (2.5)

∂v(x, y)

∂n
= 0, (x, y) ∈ ∂�\�, (2.6)

∂v(x, y)

∂n
= q, (x, y) ∈ �, (2.7)

then by theorem A.5 in the appendix, vq exists and satisfies∫
�

∇vq∇φ dx dy − k2
∫

�

vqφ dx dy =
∫

�

qφ ds, ∀φ ∈ H 1(�). (2.8)

Denote

H = {v(x, y) ∈ H 1(�) | v satisfies (2.8) for all q ∈ L2(�)}.
For any v ∈ H, take φ = v in (2.4) and φ = u in (2.8) with vq = v, minus (2.8) by (2.4),

note that u|� = f , then we have the following equation:∫
∂�\�

v
∂u

∂n
ds =

∫
�

(
f

∂v

∂n
− vg

)
ds. (2.9)
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Proposition 2.1. If the Cauchy problem (2.1)–(2.3) has a solution u ∈ H 2(�) such that
∂u
∂n

∣∣
∂�\� ∈ H 1/2(∂�\�), then β = ∂u

∂n

∣∣
∂�\� satisfies the following moment problem:∫

∂�\�
vβds =

∫
�

(
f

∂v

∂n
− gv

)
ds ≡ µv(f, g) (2.10)

where v ∈ H.
Conversely if β ∈ L2(∂�\�) is a solution of (2.10), then there exists a solution u ∈ H 1(�)

of the Cauchy problem (2.1)–(2.3) such that ∂u
∂n

∣∣
∂�\� = β.

Proof. From the above deduction, we have known that if u is a solution of the Cauchy problem
(2.1)–(2.3) in H 2(�) and ∂u

∂n

∣∣
∂�\� ∈ H 1/2(∂�\�), then β = ∂u

∂n

∣∣
∂�\� is a solution of the

moment problem (2.10).
In the following, we verify that if β ∈ L2(∂�\�) is a solution of the moment problem

(2.10), then we can get a solution for the Cauchy problem (2.1)–(2.3) in H 1(�). Consider the
following Neumann boundary value problem:

�w + k2w = 0, in �, (2.11)

∂w

∂n

∣∣∣∣
∂�\�

= β, (2.12)

∂w

∂n

∣∣∣∣
�

= g. (2.13)

By theorem A.5 in the appendix, we know that there exists a unique weak solution w ∈ H 1(�)

for the Neumann boundary value problem (2.11)–(2.13) when g ∈ H 1/2(�) ⊂ L2(�) and
β ∈ L2(∂�\�). In the following, we will show that w|� = f .

By definition A.1 in the appendix, we know that w satisfies∫
�

∇w∇φ dx dy − k2
∫

�

wφ dx dy =
∫

�

gφ ds +
∫

∂�\�
βφ ds, ∀φ ∈ H 1(�). (2.14)

For any v ∈ H, we have∫
�

∇v∇φ dx dy − k2
∫

�

vφ dx dy =
∫

�

∂v

∂n
φ ds, ∀φ ∈ H 1(�). (2.15)

Let φ = v in (2.14) and φ = w in (2.15), minus (2.15) by (2.14), it is easy to obtain∫
∂�\�

βv ds =
∫

�

(
w

∂v

∂n
− gv

)
ds. (2.16)

Since β is a solution of the moment problem (2.10), by (2.16), we know∫
�

(w − f )
∂v

∂n
ds = 0. (2.17)

Now by theorem A.5 in the appendix, there exists a function v ∈ H 1(�) which satisfies (2.8)
and

∂v

∂n

∣∣∣∣
�

= w − f. (2.18)

Thus (2.17) becomes∫
�

(w − f )2 ds = 0. (2.19)
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Thus w|� = f and w is a solution of the Cauchy problem (2.1)–(2.3). The proof is
completed. �

In the following, we choose {vn}∞n=1 ⊂ H, such that

span{vn|∂�\�}∞n=1 = L2(∂�\�).

Then the moment problem (2.10) becomes∫
∂�\�

vn

∂u

∂n
ds =

∫
�

(
f

∂vn

∂n
− vng

)
ds := µn, n = 1, 2, . . . , (2.20)

where µn is determined by f, g, vn. It is noted that there is at most one solution to the moment
problem (2.10).

3. A numerical method for solving the moment problem

In this section, we choose a basis of L2(∂�\�) in space H for a special domain and then
the moment problem (2.10) will become a Hausdorff moment problem. Further, we use a
numerical method to solve it. Error estimate and convergence analysis will be given in the
following.

Let � ⊂ R
2 be a simply connected and bounded domain and hereafter ∂�\� = {(x, y) |

y = 0, 0 � x � 1} and � is a smooth curve in half plane {(x, y) | y � 0} which connects
two points (0, 0) and (1, 0). Note that here the boundary ∂�\� is supposed to be a special
shape. For general cases, usually the basis functions satisfying (2.5)–(2.6) cannot be given by
the analytic formulae, which will lead to a difficulty of the use of the proposed method.

Choose a basis of L2(∂�\�) in space H as follows:

vn(x, y) = 1

n2k2
cos (

√
n2 + 1ky) enkx, n = 1, 2, . . . . (3.1)

It is easy to verify that vn satisfy

�vn(x, y) + k2vn(x, y) = 0, (x, y) ∈ R
2, (3.2)

∂vn(x, 0)

∂y
= 0, x ∈ R. (3.3)

Then the Cauchy problem for the Helmholtz equation can be transformed to be the following
moment problem:∫ 1

0

1

n2k2
enkxβ(x) dx = µn, n = 1, 2, . . . , (3.4)

where

µn =
∫

�

(
f

∂vn

∂n
− gvn

)
ds. (3.5)

Assume that z = ekx−1
ek−1 , then the moment problem (3.4) becomes∫ 1

0

ek − 1

n2k3
(1 + (ek − 1)z)n−1β

(
ln(1 + (ek − 1)z)

k

)
dz = µn, n = 1, 2, . . . , (3.6)

furthermore, we have
n−1∑
m=0

1

n2k3
Cm

n−1(e
k − 1)(m+1)

∫ 1

0
zmβ

(
ln(1 + (ek − 1)z)

k

)
dz = µn, n = 1, 2, . . . .

(3.7)
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Remark 3.1. If span{vn(x, 0)}∞n=1 �= L2(0, 1), then there exists a function β0(x) ∈ L2(0, 1)

and β0(x) �= 0 satisfy∫ 1

0

1

n2k2
enkxβ0(x) dx = 0, n = 1, 2, . . . . (3.8)

From (3.7), it is easy to know∫ 1

0
zmβ0

(
ln(1 + (ek − 1)z)

k

)
dz = 0, m = 1, 2, . . . . (3.9)

Note that β0(x) ∈ L2(0, 1), then β0
( ln(1+(ek−1)z)

k

) ∈ L2(0, 1), due to span{1, z, z2, . . .} =
L2(0, 1), we know β0

( ln(1+(ek−1)z)

k

) = 0, further β0(x) = 0, which leads to a contradiction.
Thus span{vn(x, 0)}∞n=1 = L2(0, 1).

In the following, we will consider a finite moment problem for (3.6), i.e. take index n
from 1 to N + 1. Then we obtain a linear system of equations

Ba = µ, (3.10)

where B is a matrix B = (bi,j )N+1,N+1 with (i, j) element

bi,j =

⎧⎪⎨
⎪⎩

C
j−1
i−1 (ek − 1)j

i2k3
, i � j,

0, i < j.

(3.11)

and µ is a vector

µ = (µ1, µ2, . . . , µN+1)
T ;

a is a vector to be determined by solving (3.10)

a = (a1, a2, . . . , aN+1)
T

with aj = ∫ 1
0 zj−1β

( ln(1+(ek−1)z)

k

)
dz.

Denote ρ(z) = β
( ln(1+(ek−1)z)

k

)
. By solving equations (3.10), we get a finite Hausdorff

moment problem as follows:∫ 1

0
zj−1ρ(z) dz = aj , j = 1, 2, . . . , N + 1. (3.12)

The numerical computation for the Hausdorff moment problem has been proposed in
[1, 16, 18]. In this paper, we employ the Talenti’s method [16] to solve (3.12) and the basic
idea comes from paper [4].

Note that the solution of the finite Hausdorff moment problem (3.12) is not unique, so we
try to find an approximate solution with minimum L2-norm. That is, solving the following
optimal problem:

min
ρ

∫ 1

0
|ρ(z)|2 dz (3.13)

subject to the constraints∫ 1

0
ρ(z)zj dz = aj+1, j = 0, 1, . . . , N.

5
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According to [4, 16], the minimizer of (3.13) can be obtained by the following steps:

Step 1. Calculate the coefficients of the shifted Legendre polynomials

C0,0 = 1, Cj,0 = (2j + 1)
1
2 , Cj,k = −Cj,k−1

(
j

k
+ 1

)(
j + 1

k
− 1

)
.

j = 1, 2, 3, . . . , k = 1, 2, . . . , j.

Step 2. Calculate the coefficients of the solution

λj =
j∑

k=0

Cjkak+1

Step 3. Calculate an approximation solution

ρN(z) =
N∑

j=0

λjLj (z),

where the shifted Legendre polynomials are defined by

Lj(z) =
j∑

k=0

Cjkz
k, j = 0, 1, 2, . . . .

Then ρN(z) given in step 3 approximates ρ(z).
Due to the ill-posedness of the Cauchy problem for the Helmholtz equation, we need to

assume that Cauchy data f and g contain some noises. Let fδ ∈ L2(�) and gδ ∈ L2(�) be
measured noisy data satisfying

‖f − fδ‖L2(�) + ‖g − gδ‖L2(�) � δ. (3.14)

Moments corresponding to fδ and gδ in (3.5) are

µδ
n =

∫
�

(
fδ

∂vn

∂n
− gδvn

)
ds, n = 1, 2, . . . . (3.15)

From (3.5), (3.14) and (3.15), by the Hölder inequality, the error between the noisy
moment and the exact moment is bounded by

∣∣µδ
n − µn

∣∣ �
[∫

�

(
v2

n +

(
∂vn

∂n

)2
)

ds

] 1
2

δ.

By the definition of function vn in (3.1), we have

|vn(x, y)| � enkx

n2k2
� (Mk)n

k2
,

where M = sup(x,y)∈� |ex | > 1 is a constant depending on �. Similarly, we can obtain that∣∣ ∂vn

∂x

∣∣ � (Mk)n

k
,
∣∣ ∂vn

∂y

∣∣ �
√

2(Mk)n

k
. Then the error bound between the noisy moment and the exact

moment is
N+1∑
n=1

|µδ
n − µn|2 � c(Mk)2N+2δ2. (3.16)

where c > 0 is a constant which only depends on �, � and k.
According to (3.10), we obtain

aδ = B−1µδ, (3.17)

6
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where

µδ = (
µδ

1, . . . , µ
δ
N+1

)T
, aδ = (

aδ
1, . . . , a

δ
N+1

)T
.

Therefore the difference between aδ and a in 2-norm is bounded by

‖aδ − a‖2 = ‖B−1(µδ − µ)‖2 � ‖B−1‖2‖µδ − µ‖2 �
√

c‖B−1‖2(M
k)N+1δ. (3.18)

In the following, we estimate ‖B−1‖2. By (3.11), we note that matrix

B = 1

k3
QDP,

where diagonal matrices Q = (qij )N+1,N+1 and P = (pij )N+1,N+1, matrix D = (dij )N+1,N+1

with (i, j) element respectively are

qij =
⎧⎨
⎩

1

i2
, i = j,

0, i �= j ;
(3.19)

pij =
{

(ek − 1)i, i = j,

0, i �= j ; (3.20)

dij =
{

C
j−1
i−1 , i � j,

0, i < j.
(3.21)

The inverse matrix of B is then

B−1 = k3P −1D−1Q−1. (3.22)

It is not hard to obtain that the 2-norm of matrix P −1 and Q−1 are as follows:

‖P −1‖2 =
{

(ek − 1)−(N+1), 0 < k < ln 2,

(ek − 1)−1, k � ln 2,
(3.23)

‖Q−1‖2 = (N + 1)2. (3.24)

In the following we estimate ‖D−1‖2. Consider the linear system of equations

Dα = γ, (3.25)

where

α = (α1, . . . , αN+1)
T , γ = (γ1, . . . , γN+1)

T

and

D =

⎛
⎜⎜⎝

C0
0 0 0 · · · 0

C0
1 C1

1 0 · · · 0
· · · · · · · · · · · · · · ·
C0

N C1
N C2

N · · · CN
N

⎞
⎟⎟⎠ .

Since C0
N + C1

N + · · · + CN−1
N + CN

N = 2N , the maximum element d in matrix D is bounded by

1 � d � 2N . (3.26)

According to (3.25), it is easy to see

αi+1 = γi+1 − C0
i α1 − C1

i α2 − · · · − Ci−1
i αi, i = 0, 1, . . . , N. (3.27)

7
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Note that for every γi, |γi | � ‖γ ‖2, i = 1, 2, . . . , N + 1. For i = 0, α1 = γ1, thus we have
|α1| � ‖γ ‖2. Suppose that the inequality

|αi | � (1 + d)i−1‖γ ‖2 (3.28)

is satisfied, then we can prove

|αi+1| � ‖γ ‖2 + d(1 + d)0‖γ ‖2 + · · · + d(1 + d)i−1‖γ ‖2 = (1 + d)i‖γ ‖2.

Therefore, by the induction, the estimate 3.28 is satisfied for all i = 1, 2, . . . , N + 1.
From (3.25), we know

α = D−1γ. (3.29)

According to (3.28), (3.29), we can obtain

‖α‖2
2 =

N+1∑
i=1

α2
i �

(
N+1∑
i=1

(1 + d)2(i−1)

)
‖γ ‖2

2 � 22(N+1)d2N‖γ ‖2
2, (3.30)

thus

‖D−1‖2 � 2N+1dN . (3.31)

Further, consider (3.26), it can be obtained

‖D−1‖2 � 2N2+N+1. (3.32)

Therefore, by (3.22)–(3.24) and (3.32), we have

‖B−1‖2 = ‖k3P −1D−1Q−1‖2 � k3‖P −1‖2‖D−1‖2‖Q−1‖2 (3.33)

�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k3(N + 1)22N2+N+1

(ek − 1)N+1
, 0 < k < ln 2,

k3(N + 1)22N2+N+1

(ek − 1)
, k � ln 2.

(3.34)

Further,

‖B−1‖2 �

⎧⎪⎨
⎪⎩

k32N2+N+1 eN+1

(ek − 1)N+1
, 0 < k < ln 2,

k32N2+N+1 eN+1, k � ln 2.

(3.35)

In the following, the right terms in (3.35) are denoted by FN , i.e.,

FN =

⎧⎪⎨
⎪⎩

k32N2+N+1 eN+1

(ek − 1)N+1
, 0 < k < ln 2,

k32N2+N+1 eN+1, k � ln 2.

(3.36)

By (3.18), we have

‖aδ − a‖2 � KNδ, (3.37)

where

KN = √
cFN(Mk)N+1. (3.38)

For noisy Cauchy data, the coefficients in step 2 are

λδ
j =

j∑
k=0

Cjka
δ
k+1. (3.39)

8
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The approximate solution in step 3 with the noisy Cauchy data will be

ρδ
N(z) =

N∑
j=0

λδ
jLj (z). (3.40)

Denote βδ
N(x) = ρδ

N

(
ekx−1
ek−1

)
. We can obtain the following error estimate:

Theorem 3.2. Suppose that u is a solution of the Cauchy problem (2.1)–(2.3) satisfying

∂u

∂n

∣∣∣∣
∂�\�

∈ C1(∂�\�), (3.41)

then ∫ 1

0

∣∣∣∣∂u

∂n
(x, 0) − βδ

N(x)

∣∣∣∣
2

dx � K2
Nδ2 e3.5(N+1) +

1

4
(N + 1)−2E2, (3.42)

where ∫ 1

0

∣∣∣∣ d

dx

(
∂u

∂n
(x, 0)

)∣∣∣∣
2

dx � E2 (3.43)

and KN is given by (3.38).

Proof. By proposition 2.1, we know that the Cauchy problem (2.1)–(2.3) is equivalent to the
moment problem (3.4). By [4, theorem 5] and (3.37), we have∫ 1

0

∣∣∣∣∂u

∂n
(x, 0) − βδ

N(x)

∣∣∣∣
2

dx � e3.5(N+1)‖aδ − a‖2
2 +

1

4
(N + 1)−2E2

� K2
Nδ2 e3.5(N+1) +

1

4
(N + 1)−2E2.

The proof is completed. �

In the following theorem, we give an a priori choice of N such that the convergence is
satisfied.

Theorem 3.3. Let

N(δ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎣
(

ln 1
δ

2k ln M + 11
2 + 4 ln 2 − 2 ln(ek − 1)

) 1
2

⎤
⎦ , 0 < k < ln 2,

⎡
⎣
(

ln 1
δ

2k ln M + 11
2 + 4 ln 2

) 1
2

⎤
⎦ , k � ln 2,

then there exist constants C1 > 0 and C2 > 0 which depend on E, k, � and � such that∫ 1

0

∣∣∣∣∂u

∂n
(x, 0) − βδ

N(δ)(x)

∣∣∣∣
2

dx � C1δ +
C2

|ln δ| ,

where [·] denotes the nearest integer towards minus infinity of a real number.

9
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Proof. By theorem 3.2, for 0 < k < ln 2, we have∫ 1

0

∣∣∣∣∂u

∂n
(x, 0) − βδ

N(x)

∣∣∣∣
2

dx � K2
Nδ2 e3.5(N+1) +

1

4
(N + 1)−2E2

= ck622(N2+N+1) e2(N+1)(Mk)2(N+1) e3.5(N+1)δ2

(ek − 1)2(N+1)
+

1

4
(N + 1)−2E2

= c122(N2+N) e2N(Mk)2N e3.5Nδ2

(ek − 1)2N
+

1

4
(N + 1)−2E2

� c124N2
e2N2

(Mk)2N2
e3.5N2

δ2

(ek − 1)2N2 +
1

4
N−2E2,

where c1 = 4ck6 e5.5M2k(ek − 1)−2.
Let

24N2
e2N2

(Mk)2N2
e3.5N2

(ek − 1)2N2 = 1

δ
,

then we can choose

N = N(δ) =
⎡
⎣
(

ln 1
δ

2k ln M + 11
2 + 4 ln 2 − 2 ln(ek − 1)

) 1
2

⎤
⎦ .

When k � ln 2, we have∫ 1

0

∣∣∣∣∂u

∂n
(x, 0) − βδ

N(x)

∣∣∣∣
2

dx � K2
Nδ2 e3.5(N+1) +

1

4
(N + 1)−2E2

= ck622(N2+N+1) e2(N+1)(Mk)2(N+1) e3.5(N+1)δ2 +
1

4
(N + 1)−2E2

= c222(N2+N) e2N(Mk)2N e3.5Nδ2 +
1

4
(N + 1)−2E2

� c224N2
e2N2

(Mk)2N2
e3.5N2

δ2 +
1

4
N−2E2,

where c2 = 4ck6 e5.5M2k .
Let

24N2
e2N2

(Mk)2N2
e3.5N2 = 1

δ
,

then we can choose

N = N(δ) =
⎡
⎣
(

ln 1
δ

2k ln M + 11
2 + 4 ln 2

) 1
2

⎤
⎦ .

For the special chosen N, we have the following convergence result:∫ 1

0

∣∣∣∣∂u

∂n
(x, 0) − βδ

N(δ)(x)

∣∣∣∣
2

dx � C1δ +
C2

|ln δ| ,

where C1 > 0 and C2 > 0 which depend on E, k, � and �. �

Consider the following Neumann boundary value problem:

�uδ
N + k2uδ

N = 0, in �, (3.44)

10
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0 0.2 0.4 0.6 0.8 1

(a) k = 0.5, N = 10

0 0.2 0.4 0.6 0.8 1

(b) k = 1, N = 11

0 0.2 0.4 0.6 0.8 1

0

(c) k = 3, N = 13
0 0.2 0.4 0.6 0.8 1

0

(d) k = 5, N = 10

Figure 1. The exact β (solid lines) and its approximation βδ
N (dotted lines) by using the exact

Cauchy data.

∂uδ
N

∂n

∣∣∣∣
�

= gδ, (3.45)

∂uδ
N

∂n

∣∣∣∣
∂�\�

= βδ
N, (3.46)

where we assume that gδ ∈ L2(�).
Suppose that u is a solution of the Cauchy problem (2.1)–(2.3), by theorem A.7 in the

appendix, the following error estimate is satisfied:

‖uδ
N − u‖2

L2(�) � C

(∫ 1

0

∣∣∣∣∂u

∂n
(x, 0) − βδ

N(x)

∣∣∣∣
2

dx + δ2

)
,

where C > 0 is a constant depending on �, � and k.
Therefore, we have the following main result in this paper.

Theorem 3.4. Under the assumptions given in theorem 3.2, we have the following error
estimate: ∥∥uδ

N − u
∥∥2

L2(�)
� C

{
e3.5(N+1)K2

Nδ2 + 1
4 (N + 1)−2E2 + δ2

}
where KN is given by (3.38), constant C > 0 depends on �, � and k.
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0 0.2 0.4 0.6 0.8 1

(a) k = 0.5, N = 5

0 0.2 0.4 0.6 0.8 1

(b) k = 1, N = 4

0 0.2 0.4 0.6 0.8 1

0

(c) k = 3, N = 4

0 0.2 0.4 0.6 0.8 1

0

(d) k = 5, N = 4

Figure 2. The exact β (solid lines) and its approximation βδ
N (dotted lines) by using the noisy data

ε = 0.0001.

Theorem 3.5. If we take

N(δ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎣
(

ln 1
δ

2k ln M + 11
2 + 4 ln 2 − 2 ln(ek − 1)

) 1
2

⎤
⎦ , 0 < k < ln 2,

⎡
⎣( ln 1

δ

2k ln M + 11
2 + 4 ln 2

) 1
2

⎤
⎦ , k � ln 2,

then we have the following convergence estimate:∥∥uδ
N(δ) − u

∥∥2
L2(�)

� Cδ2 + C3δ +
C4

|ln δ| ,

where constant C3 = CC1, C4 = CC2 depend on E, �, � and k.

4. Numerical examples

Let � = {(x, y)|0 < x < 1, 0 < y < 1} and ∂�\� = {(x, y)|y = 0, 0 � x � 1}.
12
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0 0.2 0.4 0.6 0.8 1

(a) k = 0.5, N = 4
0 0.2 0.4 0.6 0.8 1

(b) k = 1, N = 3

0 0.2 0.4 0.6 0.8 1

0

(c) k = 3, N = 3

0 0.2 0.4 0.6 0.8 1

0

(d) k = 5, N = 3

Figure 3. The exact β (solid lines) and its approximation βδ
N (dotted lines) by using the noisy data

ε = 0.001.

We choose u(x, y) = 1
2k2 sin(

√
2ky)(ekx + e−kx) as the exact solutions of (2.1)–(2.3) for

various wave number k = 0.5, 1, 3, 5. The numerical results for the approximate solution
βδ

N(x) and the exact solution ∂u
∂n

|
∂�\� (x) are presented in figures 1–3 in which the solid line

represents the exact solution and the dotted line is its approximation. There is no noise to f and
g in figure 1. The same examples with noisy data f δ = f + ε ex sin y and gδ = g + ε ex cos y

are given in figures 2–3 with ε = 0.0001 and ε = 0.001 respectively. It is observed that our
proposed algorithm is effective and stable to the noises.

5. Conclusions

In this paper, we proposed a numerical method for solving the Cauchy problem for the
Helmholtz equation. The error estimate and convergence analysis have been presented. The
numerical examples demonstrate that our proposed method is accurate and effective.
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Appendix A

Let � be a simply connected and bounded open set in R
2 with a sufficiently regular boundary

∂�. In this appendix, we always denote u = u(x), x = (x1, x2) ∈ R
2 and dx = dx1 dx2.

Definition A.1. Suppose f ∈ L2(�), g ∈ L2(∂�), the weak solution of the Neumann
boundary value problem

−�u + cu = f, in �, (A.1)

∂u

∂n

∣∣∣∣
∂�

= g (A.2)

is defined as a solution of the following variational problem:

u ∈ H 1(�),

∫
�

∇u∇v dx +
∫

�

cuv dx =
∫

�

f v dx +
∫

∂�

gv ds, ∀ v ∈ H 1(�),

(A.3)

where c is a real number.

Proposition A.2. The variational problem (A.3) with c > 0 has a unique solution in H 1(�).

Proof. Define a(u, v) = ∫
�
(∇u∇v + cuv) dx, 
(v) = ∫

�
f v dx +

∫
∂�

gv ds. Then (A.3)
becomes a(u, v) = 
(v),∀ v ∈ H 1(�). By the Lax–Milgram theorem from chapter VII,
section 1 of book [5], the variational problem (A.3) has a unique solution u ∈ H 1(�). �

Define

M =
{
u ∈ H 1(�);−�u ∈ L2(�) and

∂u

∂n

∣∣∣∣
∂�

= 0

}
.

Proposition A.3. For g = 0, c = 1 and any f ∈ L2(�), the Neumann boundary value
problem (A.1)–(A.2) admits a unique weak solution u ∈ M . Further, we have

‖u‖H 1(�) � C‖f ‖L2(�), (A.4)

where C > 0 is a constant.

Proof. See page 96 in chapter VIII of book [6] and pages 69–78 in chapter IV of book [12].
�

Furthermore, we have the following proposition.

Proposition A.4. The boundary value problem

−�u − k2u = f, in �, (A.5)

∂u

∂n

∣∣∣∣
∂�

= 0 (A.6)

has a unique weak solution u ∈ M for each f ∈ L2(�) if and only if −k2 is not the eigenvalue
of the Laplacian operator with the homogeneous Neumann boundary condition.

Proof. From proposition A.3, we know that L := (−� + I )−1 : L2(�) 
→ M ⊂ H 1(�) is a
bounded linear operator. Note that H 1(�) ↪→ L2(�) is compactly embedded. Thus, L is a
linear compact operator from L2(�) → L2(�).

14
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Note that if ϕ = −�u + u,ψ = −�v + v, with ∀u, v ∈ M , we have

(Lϕ,ψ)L2(�) = (L(−� + I )u,−�v + v)L2(�)

= (u,−�v + v)L2(�) = (∇u,∇v)L2(�) + (u, v)L2(�)

= (−�u + u, v)L2(�) = (ϕ, Lψ)L2(�).

Thus, L = L∗, i.e. L is self-adjoint.
The boundary value problem (A.5)–(A.6) is equivalent to

−�u + u = (k2 + 1)u + f, in �, (A.7)

∂u

∂n

∣∣∣∣
∂�

= 0. (A.8)

Thus, we can rewrite (A.5)–(A.6) as

u − (k2 + 1)Lu = Lf. (A.9)

According to the Fredholm alternative theorem from chapter VIII, section 2 of book [6],
the boundary value problem (A.9) exists a solution in L2(�) for every f ∈ L2(�) if its
homogeneous problem v − (k2 + 1)Lv = 0 has a unique solution v = 0. Further, there exists a
set of real numbers � = {k1, k2, . . .} where 1

k2
j +1

are the eigenvalues of problem λv − Lv = 0.

For k �∈ �, the problem v − (k2 + 1)Lv = 0 has a unique solution v = 0. Thus, the problem
(A.9) has a unique solution in L2(�) if k �∈ �.

Let uj ∈ L2(�) be the eigenfunction of problem λv−Lv = 0 corresponding to eigenvalue
1

k2
j +1

, i.e.,

uj − (
k2
j + 1

)
Luj = 0.

Note that Luj ∈ M , so we know uj ∈ M . Further, we have (−�uj + uj ) − (k2
j + 1)uj = 0,

i.e., �uj = −k2
j uj . Therefore, −k2

j is the eigenvalue of the Laplace operator with the
homogeneous Neumann boundary condition. Thus, the proof is completed. �

Theorem A.5. The boundary value problem

−�u − k2u = f, in �, (A.10)

∂u

∂n

∣∣∣∣
∂�

= g (A.11)

admits a unique weak solution in H 1(�) provided that f ∈ L2(�), g ∈ L2(∂�) and −k2

is not the eigenvalue of the Laplacian operator with the homogeneous Neumann boundary
condition.

Proof. For g ∈ L2(∂�), by proposition A.2, there exists a unique weak solution w ∈ H 1(�)

for the following Neumann boundary value problem:

−�w + w = 0, in �, (A.12)

∂w

∂n

∣∣∣∣
∂�

= g, (A.13)

i.e. w satisfies the following variational problem:∫
�

∇w∇φ dx +
∫

�

wφ dx =
∫

∂�

gφ ds, ∀φ ∈ H 1(�). (A.14)
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The variational formulation of the problem (A.10)–(A.11) is∫
�

∇u∇φ dx −
∫

�

k2uφ dx =
∫

�

f φ dx +
∫

∂�

gφ ds, ∀φ ∈ H 1(�). (A.15)

Let v = w − u, from (A.14) and (A.15), we have∫
�

∇v∇φ dx −
∫

�

k2vφ dx = −
∫

�

f φ dx −
∫

�

(k2 + 1)wφ dx, ∀φ ∈ H 1(�).

(A.16)

Note that (A.16) is the variational formulation of the following Neumann boundary value
problem:

−�v − k2v = −(1 + k2)w − f, in �, (A.17)

∂v

∂n

∣∣∣∣
∂�

= 0. (A.18)

Then, by proposition A.4, the problem (A.17)–(A.18) has a unique solution v ∈ M provided
that −k2 is not an eigenvalue of the Laplacian operator with the homogeneous Neumann
boundary condition. Hence, u = w − v ∈ H 1(�) is the unique solution of problem (A.10)–
(A.11) if −k2 is not an eigenvalue of the Laplacian operator with the homogeneous Neumann
boundary condition. �

Lemma A.6. If −k2 is not an eigenvalue of Laplacian operator with the homogeneous
Neumann boundary condition and let u ∈ M be the unique weak solution of problem

−�u − k2u = g, in �, (A.19)

∂u

∂n

∣∣∣∣
∂�

= 0, (A.20)

where g ∈ L2(�), then there exists a constant C > 0 such that

‖u‖L2(�) � C‖g‖L2(�).

Proof. If the statement is not true, there exist sequences {gj }∞j=1 ⊂ L2(�) and {uj }∞j=1 ⊂ M

are the weak solutions of problems

−�uj − k2uj = gj , in �, (A.21)

∂uj

∂n

∣∣∣∣
∂�

= 0, (A.22)

with ‖uj‖L2(�) = 1 and

‖uj‖L2(�) � j‖gj‖L2(�), j = 1, 2, . . . .

Then gj → 0 in L2(�) when j → ∞. The problem (A.21)–(A.22) has the following
variational formulation:∫

�

(∇uj∇v + ujv) dx =
∫

�

((k2 + 1)ujv + gjv) dx, for ∀ v ∈ H 1(�). (A.23)

Choose v = uj , then

‖uj‖2
H 1(�) � (k2 + 1)‖uj‖2

L2(�) + ‖uj‖L2(�)‖gj‖L2(�) = (k2 + 1) + ‖gj‖L2(�),
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i.e. {uj }∞j=1 is bounded in H 1(�). Then, there exists a subsequence {ujm
}∞m=1 ⊂ {uj }∞j=1 such

that ujm
⇀ u0 weakly in H 1(�), hence ujm

→ u0 in L2(�).
Let m → ∞, then from (A.23), we obtain∫

�

(∇u0∇v + u0v) dx =
∫

�

(k2 + 1)u0v dx, for ∀ v ∈ H 1(�).

Therefore, u0 is a weak solution of the following Neumann boundary value problem:

−�u0 = k2u0, in �, (A.24)

∂u0

∂n

∣∣∣∣
∂�

= 0. (A.25)

Since −k2 is not an eigenvalue of the Laplacian operator with the homogeneous Neumann
boundary condition, so we have u0 ≡ 0. This leads to a contraction with ‖u0‖L2(�) = 1. �

Theorem A.7. If −k2 is not an eigenvalue of the Laplacian operator with the homogeneous
Neumann boundary condition and let u ∈ H 1(�) be the unique weak solution of problem

−�u − k2u = 0, in �, (A.26)

∂u

∂n

∣∣∣∣
∂�

= g, (A.27)

where g ∈ L2(∂�), then there exists a constant C > 0 such that

‖u‖L2(�) � C‖g‖L2(∂�).

Proof. Consider the following Neumann boundary value problem:

−�w + w = 0, in �, (A.28)

∂w

∂n

∣∣∣∣
∂�

= g. (A.29)

By proposition A.2, there exists a unique weak solution w ∈ H 1(�) such that∫
�

∇w∇v dx +
∫

�

wv dx =
∫

∂�

gv ds, ∀ v ∈ H 1(�). (A.30)

Choose v = w, we have

‖w‖2
H 1(�) � ‖g‖L2(∂�)‖w‖L2(∂�) � C1‖g‖L2(∂�)‖w‖H 1(�). (A.31)

Consequently,

‖w‖H 1(�) � C1‖g‖L2(∂�). (A.32)

Note that the problem (A.26)–(A.27) has the following variational formulation:

u ∈ H 1(�),

∫
�

∇u∇v dx −
∫

�

k2uv dx =
∫

∂�

gv ds, ∀ v ∈ H 1(�). (A.33)

Let ũ = u − w, by (A.30) and (A.33), we have∫
�

∇ũ∇v dx −
∫

�

k2ũv dx =
∫

�

(k2 + 1)wv dx, ∀ v ∈ H 1(�), (A.34)

which is the variational formulation of the following Neumann boundary value problem:

−�ũ − k2ũ = (1 + k2)w, in �, (A.35)
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∂ũ

∂n

∣∣∣∣
∂�

= 0. (A.36)

Then, by proposition A.4, there exists a unique solution ũ ∈ H 1(�) for the problem (A.35)–
(A.36) provided that −k2 is not an eigenvalue of the Laplacian operator with the homogeneous
Neumann boundary condition. By lemma A.6, we have

‖ũ‖L2(�) � C2‖w + k2w‖L2(�) � C3‖w‖L2(�),

where C3 > 0 is a constant which depends on �, ∂� and k.
Since ũ = u − w, then

‖u‖L2(�) � ‖w‖L2(�) + ‖ũ‖L2(�) � C4‖w‖L2(�),

combining (A.32), we have ‖u‖L2(�) � C‖g‖L2(∂�), where constant C > 0 depends on �, ∂�

and k. �
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