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The method of point matching proposed by Kang and Lee@J. Acoust. Soc. Am.107, 1153–1160
~2000!# is revisited. This method can be seen as a single-layer potential approach from the viewpoint
of imaginary-part dual BEM developed by Chenet al. @J. Chin. Inst. Eng.12, 729–739~1999!#.
Based on the concept of double-layer potential, an innovative method is proposed to deal with the
problem of spurious eigensolution for the Neumann problem. Also, the acoustic mode is analytically
derived for the circular cavity. Both the analytical study for a circular case and numerical result for
a square cavity show the validity of the proposed formulation. ©2002 Acoustical Society of
America. @DOI: 10.1121/1.1410966#

PACS numbers: 43.20.Ks, 43.20.Rz@ANN#
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I. INTRODUCTION

Kang and Lee1,2 presented a so-called method of po
matching for the eigenproblems. Also, they termed the n
dimensional dynamic influence function~NDIF! method in
another paper.3 Mathematically speaking, they are equivale
in essence. Based on the concept of radial basis func
~RBF! expansion,4 the method can be seen as one kind of
radial basis expansion since RBF is a function of the ra
distance between the observation point and the boun
point. Since only boundary nodes are required, this i
meshless method and can be called the boundary n
method. This method also belongs to the Trefftz meth5

since the approximation bases satisfy the governing eq
tion. The main advantage of this method is simple in d
preparation and no integration is required in comparison w
the boundary element method~BEM!. However, two disad-
vantages of the NDIF method,3 spurious eigenvalues and il
conditioned behavior, were pointed out by Chenet al.6 Al-
though many examples of the Dirichlet types we
successfully worked out,3 spurious eigensolution
occurred1,2,6 when this method was extended to solve for t
Neumann problems. Kang and Lee1,2 filtered out the spurious
eigenvalues by using the net approach, which can cance
the embedded spurious eigenvalues. However, two influe
matrices must be calculated. Based on the dual formula
developed by Chen and Hong,7 the influence function1–3 of
the NDIF method is nothing but the imaginary part of t
fundamental solution@U(s,x)5 iH 0

(1)(kr)#.8,9 The NDIF
method3 can be seen as a single-layer potential appro
from the viewpoint of the imaginary-part dual BEM.6,9 Also,
the main difference between the NDIF method and
imaginary-part BEM is the distribution of density functio
as shown in Table I. The former one lumps the density on
boundary point; the latter one distributes density along
boundary.6,9 The spurious eigensolutions originate from t
improper approximation of null operator since insufficie
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number of constraints is obtained. Many methods includ
the real-part, imaginary-part, and multiple reciprocity me
ods ~MRM!, suffer the problems of spurious eigenvalu
since information is lost. The real-part dual BEM was dev
oped by Chen’s group and many references can be found8,10

Particularly, the imaginary-part formulation also results in
ill-conditioned matrix since the condition number for the i
fluence matrix is always very large.6 Many approaches hav
been employed to filter out the spurious eigensolution an
extract the true eigensolution, for example, a dual meth
using the residue technique, SVD~singular value decompo
sition! updating terms and updating documents, and the g
eralized SVD technique. For the circular case, it was pro
by using circulants and degenerate kernels that the Kang
Lee method causes the problems of spurious eigensolut
and ill-conditioned behavior since these problems are inh
ent in the imaginary-part formulation.6,9

In this Letter, the Kang and Lee method is found to
the single-layer potential approach from the viewpoint of t
imaginary-part dual formulation.8,9 We will propose a
double-layer potential approach to avoid the occurrence
spurious eigensolution that has been filtered out using the
approach for the Neumann problems by Kang and Lee1,2

The acoustic modes will be derived analytically in the d
crete system of a circle case using circulants and degene
kernels. Both an analytical study and a numerical experim
will be considered to examine the solution.

II. A UNIFIED THEORY USING DUAL FORMULATION

As mentioned earlier, spurious eigenvalues occur in
real-part BEM or MRM formulation. Also, the imaginary
part dual BEM results in spurious eigensolutions.9 Here, we
will analytically derive the true and spurious eigensolutio
in the discrete system for a circular domain by using
imaginary-part dual BEM.9 The degenerate kernels and c
culants are employed to study the discrete system in an e
form. The unified theory is summarized in Table I and t
comparison between the Kang and Lee method and
present method is made. The symbols in Table I follow
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TABLE I. Comparisons of the nondimensional influence function method and the imaginary-part dual BEM.

Method Imaginary-part dual BEM by Chenet al. ~Ref. 6! Nondimensional dynamic influence function
by Kanget al. ~Refs. 1–3!

Auxiliary system J0(kux2su) J0(kux2su)
Density Distributed on boundary using constant element Concentrated on discrete points
Solution representation
for field or boundary data

05( j*Bj
$(T(sj ,xi)u(sj )2U(sj ,xi)t(sj )%dB(sj ) u(xi)5(J0(kuxi2sj u)Aj

05( j*Bj
$(M (sj ,xi)u(sj )2L(sj ,xi)t(sj )%dB(sj ) u~xi!5(

]J0~kuxi2sju!
]nsj

Bj

Eigenequation for
the Dirichlet problem

UT method:Ui j t j50
LM method:Li j t j50

UL method: (SM)i j Aj50
TM method: (SMs) i j Bj50

Eigenequation for
the Neumann problem

UT method:Ti j uj50
LM method:Mi j uj50

UL method: (SMx) i j Aj50
TM method: (SMxs) i j Bj50

Influence matrix Ui j 5*Bj
U(sj ,xi)dB(sj ) (SM)i j 5J0(kuxi2sj u)

Ti j 5*Bj
T(sj ,xi)dB(sj ) ~SMs! i j 5

]J0~kuxi2sj u!
]nsj

Li j 5*Bj
L(sj ,xi)dB(sj ) ~SMx! i j 5

]J0~kuxi2sj u!
]nxi

M i j 5*Bj
M (sj ,xi)dB(sj ) ~SMsx! i j 5

]2J0~kuxi2sj u!
]nxi

]nsj

Spurious eigenequation
for the Dirichlet problem

UT method:Jn(kr)50
LM method:Jn8(kr)50

UL method:Jn(kr)50a

TM method:Jn8(kr)50
True eigenequation
for the Dirichlet problem

UT method:Jn(kr)50
LM method:Jn(kr)50

UL method:Jn(kr)50a

TM method:Jn(kr)50
Spurious eigenequation
for the Neumann problem

UT method:Jn(kr)50
LM method:Jn8(kr)50

UL method:Jn(kr)50b

TM method:Jn8(kr)50
True eigenequation
for the Neumann problem

UT method:Jn8(kr)50
LM method:Jn8(kr)50

UL method:Jn8(kr)50b

TM method:Jn8(kr)50

Condition number
Max~hn!

Min~hn!
,c n50,1,2,...

Max~hn!

Min~hn!
, n50,1,2,...

aExample is available in Ref. 1.
bExample is not available in Ref. 1.
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dual formulation of Chen and Hong.7 Based on the
imaginary-part dual BEM, the solution can be represented

u~xi !5(
j 51

2N

U~sj ,xi !A~sj !, ~1!

t~xi !5(
j 51

2N

L~sj ,xi !A~sj !, ~2!

u~xi !5(
j 51

2N

T~sj ,xi !B~sj !, ~3!

t~xi !5(
j 51

2N

M ~sj ,xi !B~sj !, ~4!

wherexi is the i th observation point,sj is the j th boundary
point, u and t are the potential and its normal derivativ
A(sj ) and B(sj ) are the unknown concentrated densities
sj , 2N is the number of boundary points, and the fo
imaginary-part kernels in the dual formulation can be e
pressed in terms of degenerate kernels9 as shown below:

U~s,x!5
2p

2
J0~kr !

52 (
m52`

`
p

2
Jm~kR!Jm~kr!cos@m~u2f!#, ~5!
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T~s,x!52 (
m52`

`
pk

2
Jm8 ~kR!Jm~kr!cos@m~u2f!#, ~6!

L~s,x!52 (
m52`

`
pk

2
Jm~kR!Jm8 ~kr!cos@m~u2f!#, ~7!

M ~s,x!52 (
m52`

`
pk2

2
Jm8 ~kR!Jm8 ~kr!cos@m~u2f!#, ~8!

in which x5(r,f), s5(R,u) in the polar coordinate,J and
J8 are the Bessel functions of the first kind and its derivati
respectively. For simplicity, we consider the same problem
a circular domain.1–3 Since the rotation symmetry is pre
served for a circular boundary, the four influence matrices
Eqs.~1!–~4! are denoted by@U#, @T#, @L#, and@M # of the
circulants with the elements

Ki j 5K~R,u j ;r,f i !, ~9!

whereK can beU, T, L, or M, f i and u j are the angles of
observation and boundary points, respectively. Based on
theory of circulants and the relation between the Riema
sum and integral,6,9 we have

l l52NpJl~kr!Jl~kr!, ~10!

m l52NpkrJl8~kr!Jl~kr!, ~11!
Chen et al.: Letters to the Editor



TABLE II. The true and spurious eigenvalues for circular and square cavities using the single- and double-layer potential approaches.

Boundary
value problem Eigensolution

Circular cavity Square cavity

Single-layer potential
approach

Double-layer potential
approach

Single-layer
potential approach

Double-layer
potential approach

Dirichlet
problem

True
eigensolution

Jm(kr)50 Jm(kr)50 kmn5AS m

L D 2

1S n

L D 2

p

(m,n51,2,3,...)

kmn5AS m

L D 2

1S n

L D 2

p

(m,n51,2,3,...)

Spurious
eigensolution

Jm(kr)50 Jm8 (kr)50 kmn5AS m

L D 2

1S n

L D 2

p

(m,n51,2,3,...)

kmn5AS m

L D 2

1S n

L D 2

p

(m,n50,1,2,3,...)

True
eigenmode

Jm(kr)einu (m,n50,1,2,3,...) sinSmpx

L DsinSnpx

L D ~m,n51,2,3,...!

Neumann
problem

True
eigensolution

Jm8 (kr)50 Jm8 (kr)50 kmn5AS m

L D 2

1S n

L D 2

p

(m,n50,1,2,3,...)

kmn5AS m

L D 2

1S n

L D 2

p

(m,n50,1,2,3,...)

Spurious
eigensolution

Jm(kr)50 Jm8 (kr)50 kmn5AS m

L D 2

1S n

L D 2

p

(m,n51,2,3,...)

kmn5AS m

L D 2

1S n

L D 2

p

(m,n50,1,2,3,...)

True
eigenmode

Jm(kr)einu (m,n50,1,2,3,...) cosSmpx

L DcosSnpx

L D ~m,n50,1,2,3,...!
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n l52NpkrJl~kr!Jl8~kr!, ~12!

d l52Npk2rJl8~kr!Jl8~kr!, ~13!

whereR is set to ber, l 50,61,62,...,6(N21), N, andl l ,
m l , n l , and d l are the eigenvalues of@U#, @T#, @L#, and
@M # matrices, respectively. The determinants for the fo
matrices can be obtained by multiplying all the eigenvalu
We summarize the true and spurious eigenvalues in Tab
for the circular cavity using the single- and double-layer p
tential approaches. Also, the square case is included. Fi
1 shows the minimum singular value versusk using the
single-layer potential approach for the Neumann problem
is found that both the analytical and numerical results ma
well and indicate that spurious eigenvalues occur. Figur
shows the minimum singular value versusk using the
double-layer potential approach for the Neumann proble
No spurious eigenvalues occur, as predicted theoretic
For a square cavity, Fig. 3 shows the minimum singu
value versusk using the single-layer potential approach f
the Dirichlet problem. No spurious eigenvalues are fou
By using the double-layer potential approach, spurious
genvalues appear as shown in Fig. 4 for the Dirichlet pr
lem. For the Neumann problem of a square cavity, the sin
layer potential approach results in spurious eigenval
while these values disappear in a similar way to the circu
case when the double-layer potential approach is emplo

By substituting thenth true eigenvalue fork in Eq. ~10!
and thenth true boundary mode into Eq.~1!, we have

un~a,f!5
N

p (
l 50

2N21

U~r,lDu;a,f!cosS pn

N
l DDu,

0,a,r, 0,f,2p, ~14!

after considering the real part of the eigenvector, whereDu
5p/N is the increment of angle. By substituting the dege
J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002
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un~a,f!5
N

p (
l 50

2N21

(
m52`

`
2p

2
Jm~ka!Jm~kr!

3cos„m~ lDu2f!…cosS pn

N
l DDu. ~15!

When N approaches infinity, the Riemann sum in Eq.~15!
reduces to

un~a,f!52NpJn~ka!Jn~kr!cos~nf!,

0,a,r, 0,f,2p. ~16!

FIG. 1. The minimum singular value versusk using the single-layer poten
tial approach for the Neumann problem of a circular cavity.
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It can be analytically proved that the acoustic mode is fou
to be trivial sincek satisfies the zero ofJn(kr), as shown in
Eq. ~16!. In the numerical implementation, the value
Jn(kr) is not exactly zero. This is the reason why the co
tour plots for acoustic modes can be displayed in the pa
of Kang and Lee, since a normalized valueJn(kr) is di-
vided.

III. CONCLUDING REMARKS

The NDIF method or the method of point matching w
classified to be the single-layer potential approach from
viewpoint of imaginary-part dual formulation. The differenc

FIG. 2. The minimum singular value versusk using the double-layer poten
tial approach for the Neumann problem of a circular cavity.

FIG. 3. The minimum singular value versusk using the single-layer poten
tial approach for the Dirichlet problem of a square cavity.
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between the Kang and Lee method and imaginary-part B
is the singularity distribution of the density function, whe
the former one lumps the density on the boundary point
the latter one distributes the density along the boundary. T
method was extended to the double-layer potential appro
for avoiding the occurrence of spurious eigensolutions
countered in the Kang and Lee method. By using the deg
erate kernels and the analytical properties of circulants fo
circular cavity, the spurious eigensolutions were studied a
lytically and the spurious eigenvalues disappeared. Also,
acoustic modes were analytically proved to be trivial. A
additional example of a square cavity was also considere
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