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The method of point matching proposed by Kang and [LeéAcoust. Soc. Am107, 1153-1160
(2000 ] is revisited. This method can be seen as a single-layer potential approach from the viewpoint
of imaginary-part dual BEM developed by Chenal.[J. Chin. Inst. Engl2, 729-739(1999].

Based on the concept of double-layer potential, an innovative method is proposed to deal with the
problem of spurious eigensolution for the Neumann problem. Also, the acoustic mode is analytically
derived for the circular cavity. Both the analytical study for a circular case and numerical result for
a square cavity show the validity of the proposed formulation. 2@2 Acoustical Society of
America. [DOI: 10.1121/1.1410966

PACS numbers: 43.20.Ks, 43.20.RZNN]

I. INTRODUCTION number of constraints is obtained. Many methods including
the real-part, imaginary-part, and multiple reciprocity meth-
Kang and Le&? presented a so-called method of point ods (MRM), suffer the problems of spurious eigenvalues
matching for the eigenproblems. Also, they termed the nonsince information is lost. The real-part dual BEM was devel-
dimensional dynamic influence functiqiNDIF) method in  oped by Chen’s group and many references can be fotfhd.
another papetMathematically speaking, they are equivalent Particularly, the imaginary-part formulation also results in an
in essence. Based on the concept of radial basis functioii-conditioned matrix since the condition number for the in-
(RBF) expansiorf,the method can be seen as one kind of thefluence matrix is always very largeMany approaches have
radial basis expansion since RBF is a function of the radiabeen employed to filter out the spurious eigensolution and to
distance between the observation point and the boundamxtract the true eigensolution, for example, a dual method
point. Since only boundary nodes are required, this is aising the residue technique, SMBingular value decompo-
meshless method and can be called the boundary nodtion) updating terms and updating documents, and the gen-
method. This method also belongs to the Trefftz methoderalized SVD technique. For the circular case, it was proved
since the approximation bases satisfy the governing equay using circulants and degenerate kernels that the Kang and
tion. The main advantage of this method is simple in datd-ee method causes the problems of spurious eigensolutions
preparation and no integration is required in Comparison witiand ill-conditioned behavior since these problems are inher-
the boundary element meth¢BEM). However, two disad- ent in the imaginary-part formulatidi.
vantages of the NDIF methdidspurious eigenvalues and ill- In this Letter, the Kang and Lee method is found to be
conditioned behavior, were pointed out by Chetral® Al- the single-layer potential approach from the viewpoint of the
though many examples of the Dirichlet types wereimaginary-part dual formulatioh? We will propose a
successfully worked o, spurious eigensolutions double-layer potential approach to avoid the occurrence of a
occurred>®when this method was extended to solve for theSpurious eigensolution that has been filtered out using the net
Neumann problems. Kang and L'édiltered out the spurious approach for the Neumann problems by Kang and tee.
eigenvalues by using the net approach, which can cancel odthe acoustic modes will be derived analytically in the dis-
the embedded spurious eigenvalues. However, two influencé€te system of a circle case using circulants and degenerate
matrices must be calculated. Based on the dual formulatiok€rnels. Both an analytical study and a numerical experiment
developed by Chen and HoRghe influence functioh3 of ~ Will be considered to examine the solution.
the NDIF method is nothing but the imaginary part of the
fundamental solution[U(s,x)=iH{"(kr)].8° The NDIF
method can be seen as a single-layer potential approac
from the viewpoint of the imaginary-part dual BEM Also, As mentioned earlier, spurious eigenvalues occur in the
the main difference between the NDIF method and theeal-part BEM or MRM formulation. Also, the imaginary-
imaginary-part BEM is the distribution of density function, part dual BEM results in spurious eigensolutidridere, we
as shown in Table I. The former one lumps the density on theyill analytically derive the true and spurious eigensolutions
boundary point; the latter one distributes density along then the discrete system for a circular domain by using the
boundary>® The spurious eigensolutions originate from theimaginary-part dual BEM.The degenerate kernels and cir-
improper approximation of null operator since insufficient culants are employed to study the discrete system in an exact
form. The unified theory is summarized in Table | and the
3 Author to whom correspondence should be addressed. P.O. Box 7-59, ke€Omparison between the Kang and Lee method and the
lung, Taiwan. Electronic mail: jichen@mail.ntou.edu.tw present method is made. The symbols in Table | follow the
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TABLE I. Comparisons of the nondimensional influence function method and the imaginary-part dual BEM.

Method

Imaginary-part dual BEM by Chest al. (Ref. 6

Nondimensional dynamic influence function
by Kanget al. (Refs. 1-3

Auxiliary system

Density

Solution representation
for field or boundary data

Eigenequation for

the Dirichlet problem
Eigenequation for

the Neumann problem
Influence matrix

Spurious eigenequation
for the Dirichlet problem
True eigenequation

for the Dirichlet problem
Spurious eigenequation
for the Neumann problem
True eigenequation

for the Neumann problem

Jo(KIx—9)

Distributed on boundary using constant element

O:ijBj{(T(Sj Xiu(sy) —U(s; , xi)t(s))}dB(s)

O:EjfBj{(M(sj Xu(s)) —L(sj x)t(s))}dB(s))

UT method:U;;t;=0
LM method:L;;t;=0
UT method:T;;u;=0
LM method: M;;u;=0
Ujj=Jg,U(s) %) dB(s))

Tij=Jg,T(s; X)) dB(s;)
Lij=Jg,L(s; . x)dB(s))

Mij=[g,M(s; . x)dB(s))

UT method:J,(kp)=0
LM method: J;,(kp) =0
UT method:J,(kp)=0
LM method: J,(kp) =0
UT method:J,(kp)=0
LM method: J;,(kp) =0
UT method:J;(kp)=0
LM method: J;,(kp) =0

Jo(k|x—9))

Concentrated on discrete points

u(x;)==Jo(K|x; —s;) A

3Jo(Kixi—si))
U(Xi)_E TBj
UL method: (SM);A;=0
TM method: (SM);;Bj=0
UL method: (SM);;A;=0
TM method: (SMy);;B;=0
(SM);j=Jo(kIxi—sj])

BJO(k|Xi75j‘)
SML),, = A 2
( S)IJ ansj
3Jo(KIx;—s;])
SM.). =— 2
( X)I] ﬂnx‘
PJo(K|xi—s;])
(SMsy)j ——anXiansj

UL method:J,(kp) =02
TM method:J}(kp)=0
UL method:J,(kp) =02
TM method:J,(kp)=0
UL method:J,(kp) =0°
TM method:J}(kp)=0
UL method:J/,(kp)=0P
TM method:J},(kp) =0

Condition number ’\I\jl?:((::)) ¢ n=01,2,... mi}x—((:::)), n=0,1,2,...
aExample is available in Ref. 1.
PExample is not available in Ref. 1.
‘h, can ben,, w;, v, or §.
dual formulation of Chen and Horlg.Based on the * ok
imaginary-part dual BEM, the solution can be represented by (s,x)= — 2 TJr’n(kR)Jm(kp)coim(a— )1, (6)
2N m=-=
u(x) =2, U(s; x)A(s), ) 5k ,
= L(sx)== 2 5 In(kRI(kp)cogm(6—¢)],  (7)
2N = =
100 =2, L(s X)A(S), ) © 2
N M(sx)== 2 —=Jn(kRiJp(kp)cogm(6—¢)],  (8)
U(Xi):jzl T(s;,%i)B(s)), () in whichx=(p,#), s=(R,#6) in the polar coordinate] and

J’ are the Bessel functions of the first kind and its derivative,
B respectively. For simplicity, we consider the same problem of
t(xi)_gl M(s; . xi)B(s;), @) a circular domairt=3 Since the rotation symmetry is pre-

served for a circular boundary, the four influence matrices in

wh_e;exi is (tjhte|th otEservzino? |c|)0|nt§j _|ts the jth Ib(()jun_da:_y Egs. (1)—(4) are denoted byU], [T], [L], and[M] of the
point, u and t are the potential and its normal derivative, .. - \vith the elements

A(sj) andB(s;) are the unknown concentrated densities at
s;, 2N is the number of boundary points, and the four  K;;=K(R,6;;p,¢;), 9

imaginary-part kernels in the dual formulation can be ex-

) ) whereK can beU, T, L, or M, ¢; and ¢; are the angles of
pressed in terms of degenerate kerhets shown below: observation and boundary points, respectively. Based on the

2N

—ar theory of circulants and the relation between the Riemann
U(s,x)=—Jo(kr) sum and integrdi® we have
w A= —NmJi(kp)Ji(kp), (10

—— 3 I3, (kRIn(kp)cosm(6— )], (5)

m=—oo

mi=—NmkpJ| (kp)J(kp), (11
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TABLE Il. The true and spurious eigenvalues for circular and square cavities using the single- and double-layer potential approaches.

Circular cavity

Square cavity

Boundary Single-layer potential Double-layer potential Single-layer Double-layer
value problem Eigensolution approach approach potential approach potential approach
.. m 2 n 2 m 2 n 2
Dirichlet True _ _ km:‘/(— +|=| km:W/(—) +(_ T
problem eigensolution Im(kp)=0 Im(kp)=0 " L L " L L
(mn=1,23,...) (m,n=1,2,3,...)
[(m\2 [n)\2 [[m\?2 [n)\2
Spurious _ ) _ K= (_ + _) T K= (_) +(_) T
eigensolution ‘]m(kp)_o ‘]m(kp)_o n L L n L L
(m,n=1,2,3,...) (m,n=0,1,2,3,...)
True ; C(mmx\ . (nwX
eigenmode In(kp)e"’ (mn=0,123,..) sm( L )Sln(T) (mn=1,23,.)
m\? [n)\2 [[m\2 [n)\2
Neumann True , _ , _ K= (_ + _) T K= (_) +(_) T
problem eigensolution Im(kp)=0 Im(kp)=0 " L L " L L
(m,n=0,1,2,3,...) (m,n=0,1,2,3,...)
)
_ , _ = — i = — —| 7
eigensolution Im(kp)=0 Jn(kp)=0 n L L n L L
(mn=1,23,...) (m,n=0,1,2,3,...)
True mwx) S(m-rx) ( 0123,
ino — co§——|cog—| (mn=0,1,2,3,..
eigenmode Jn(kp)e™? (m,n=0,1,2,3,...) L L

n=—NmkpJi(kp)J (kp), 12

&= —Nmk?pJ] (kp)J] (kp), (13

whereRis set to bep, [ =0,+1,=2,..../(N—1), N, and\,,
M, v, and g, are the eigenvalues ¢U], [T], [L], and
[M] matrices, respectively. The determinants for the four
matrices can be obtained by multiplying all the eigenvalues.
We summarize the true and spurious eigenvalues in Table I

erate kernel ofJ using Eq.(5), Eq. (14) reduces to

2N-1 %

N —
@ d)=— 3 3 " Inka)n(kp)

xXcodm(lA 66— ¢))cos<%nl)A0. (15

for the circular cavity using the single- and double-layer po-"Vhen N approaches infinity, the Riemann sum in Eg5)
tential approaches. Also, the square case is included. Figuf§duces to

1 shows the minimum singular value verskisusing the
single-layer potential approach for the Neumann problem. It
is found that both the analytical and numerical results match
well and indicate that spurious eigenvalues occur. Figure 2
shows the minimum singular value versksusing the
double-layer potential approach for the Neumann problem.
No spurious eigenvalues occur, as predicted theoretically.
For a square cavity, Fig. 3 shows the minimum singular
value versus using the single-layer potential approach for
the Dirichlet problem. No spurious eigenvalues are found.
By using the double-layer potential approach, spurious ei-
genvalues appear as shown in Fig. 4 for the Dirichlet prob-
lem. For the Neumann problem of a square cavity, the single-l_o
layer potential approach results in spurious eigenvalues
while these values disappear in a similar way to the circular
case when the double-layer potential approach is employed
By substituting thenth true eigenvalue fok in Eq. (10)
and thenth true boundary mode into E¢l), we have

2N-1

Un(a, )= — EO U(p,IAﬁ;a,¢)cos<%nl)A6,

O<a<p, 0<o¢<2m, (14

after considering the real part of the eigenvector, wheée

o, -20 —

un(a,¢)=—NmJ,(ka)J,(kp)cogne),

O<a<p, 0<¢<2m. (16)
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FIG. 1. The minimum singular value versksising the single-layer poten-

= /N is the increment of angle. By substituting the degen-iial approach for the Neumann problem of a circular cavity.
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FIG. 2. The minimum singular value versksising the double-layer poten-

4
k

tial approach for the Neumann problem of a circular cavity.

6

k
FIG. 4. The minimum singular value versksising the double-layer poten-
tial approach for the Dirichlet problem of a square cavity.

between the Kang and Lee method and imaginary-part BEM

It can be analytically proved that the acoustic mode is founds the singularity distribution of the density function, where

to be trivial sincek satisfies the zero of,(kp), as shown in  the former one lumps the density on the boundary point and
Eqg. (16). In the numerical implementation, the value of the latter one distributes the density along the boundary. This
Jn(kp) is not exactly zero. This is the reason why the con-method was extended to the double-layer potential approach
tour plots for acoustic modes can be displayed in the papeffer avoiding the occurrence of spurious eigensolutions en-
of Kang and Lee, since a normalized valdgkp) is di-

vided.

IIl. CONCLUDING REMARKS

countered in the Kang and Lee method. By using the degen-
erate kernels and the analytical properties of circulants for a
circular cavity, the spurious eigensolutions were studied ana-
lytically and the spurious eigenvalues disappeared. Also, the
acoustic modes were analytically proved to be trivial. An

The NDIF method or the method of point matching wasadditional example of a square cavity was also considered.
classified to be the single-layer potential approach from the1 _ _ o
viewpoint of imaginary-part dual formulation. The difference ~S- W Kang and J. M. Lee, "Eigenmode analysis of arbitrarily shaped
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FIG. 3. The minimum singular value verskaising the single-layer poten-

tial approach for the Dirichlet problem of a square cavity.

10

36 J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002

two-dimensional cavities by the method of point matching,” J. Acoust.
Soc. Am.107, 1153-11602000.

23, W. Kang and J. M. Lee, “Authors reply to the Comments on ‘Vibration
analysis of arbitrary shaped membranes using nondimensional dynamic
influence function,’” J. Sound Vib235 171 (2000.

3S. W. Kang, J. M. Lee, and Y. J. Kang, “Vibration analysis of arbitrary
shaped membranes using non-dimensional dynamic influence function,” J.
Sound Vib.221, 117-132(1999.

4M. A. Golberg, C. S. Chen, and H. Bowman, “Some recent results and
proposals for the use of radial basis functions in the BEM,” Eng. Anal.
Boundary Elem23, 285-296(1999.

SE. Trefftz, “Ein gegenstok zum ritzschen verahrenProceedings of the
2nd International Congress on Applied Mechanics, 1986 131-137.

6J. T. Chen, S. R. Kuo, K. H. Chen, and Y. C. Cheng, “Comments on
‘Vibration analysis of arbitrary shaped membranes using nondimensional
dynamic influence function,”” J. Sound Vit235 156—171(2000.

7J.T. Chen and H.-K. Hong, “Review of dual integral representations with
emphasis on hypersingular integrals and divergent series,” Trans. ASME,
J. Appl. Mech.52, 17-33(1999.

8J. T. Chen, “Recent development of dual BEM in acoustic problems,”
Comput. Methods Appl. Mech. End88 833-845(2000.

9J. T. Chen, S. R. Kuo, and K. H. Chen, “A nonsingular integral formula-
tion for the Helmholtz eigenprobles of a circular domain,” J. Chin. Univ.
Sci. Technol.12, 729-739(1999.

105, R. Kuo, J. T. Chen, and C. X. Huang, “Analytical study and numerical
experiments for true and spurious eigensolutions of a circular cavity using
the real-part dual BEM,” Int. J. Numer. Methods Emng8, 1401-1422
(2000.

Chen et al.: Letters to the Editor



