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ABSTRACT: A Boundary Element Method (BEM) solver based on the solution of boundary integral
equations of potential and electric field has been developedto simulate 3D electrostatic configu-
ration in gaseous detectors. Use of analytical solution of the integral equations governing electric
potential and field for estimating influence coefficients of the BEM solver has empowered it to pro-
vide extremely precise estimates of the potential and field for a given geometry. The nearly exact
BEM (neBEM) solver has been implemented in order to simulatephysical and weighting poten-
tial and field configurations in several gaseous detectors like MultiWire Proportional Counter and
Time Projection Chamber. The efficacy of the solver for simulating 3D electrostatic configuration
in composite systems containing both conductors and layered dielectrics has been demonstrated for
some of the MicroPattern Gas Detectors and Resistive Plate Chamber. It should be noted that the
method treats the dielectric interfaces to be in a steady state with polarization charges only. The
reasons why the neBEM can be a preferred tool for electrostatic simulation of gaseous detectors to
other 2D or 3D numerical solvers are discussed on the basis ofpresent results.
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1. Introduction

A detailed study of electrostatic configuration in gaseous detectors is important to facilitate the
optimization of their design as well as interpretation of their performance. Apart from the analytical
approach to study the same, numerical methods like Finite Element Method (FEM) and Boundary
Element Method (BEM) are widely used for this purpose. Whileanalytical approach offers the best
estimation, it can be employed only for a few simple 2D geometries. FEM is the most widely used
approach because it can handle any arbitrary geometry alongwith dielectrics. FEM solves for the
Laplace’s equation at nodal points of the volume elements specified by discretization or meshing
of the detector volume. However, its formulation leads to poor accuracy in estimation of potential
and electric field in certain critical zones despite consuming large computational resources related
to efficient meshing. The major reasons behind this loss of accuracy can be summarized in the
following points.

Using a FEM solver, the solution of potential is obtained at certain predetermined nodes which
is interpolated/extrapolated following a polynomial (normally of low order) to determine values
at non-nodal points. Estimation of electric field is carriedout by differentiating the polynomial
used to represent the potential which leads to the representation of the field by an even lower
order polynomial. As a result, in regions where electrostatic properties change rapidly, the electric
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field is of inadequate precision, specially at non-nodal points. Another reason for FEM not being
suitable for field computation in gaseous detectors is its difficulty of treating wide variation in
dimension (from microns to meters) which is common to most ofthese detectors. In fact, the
far-field region is quite commonly artificially truncated inorder to reduce computational expenses.
As a result, boundary conditions at the far-field region has apossibility of being inadequately
represented leading to detrimental effects on the overall solution.

BEM, on the other hand, solves boundary integral equation obtained from the solution of the
Poisson’s equation by numerically evaluating the potential or field as an effect of charge distribu-
tion accumulated over boundaries or material surfaces as a result of applying certain potential to
the detector. The boundaries or the surfaces are discretized into a number of small elements, each
carrying an unknown charge distribution. These charge distributions can be determined following
Green’s function technique while satisfying the given boundary condition of Dirichlet or Neumann
or a mixed (Robin) type. Once the charge distributions over all the surfaces are known, the potential
and electric field at any point owing to these charge distributions can be determined by using the
same Green’s function technique. The method is found to be more suitable for the field computa-
tion in gaseous detectors where electric field is necessary to be evaluated anywhere within the gas
volume where an avalanche can take place [1]. Working on a reduced dimensional space (involving
only the surfaces of the detector instead of domain volume asrequired by FEM), BEM can evaluate
potential and electric field at any arbitrary point due to theinfluences of surface charge distribution
on the detector boundaries with comparatively less computational expense. However, the method
is less commonly used owing to the complicated mathematicalexercise it necessitates in its formu-
lation in order to handle numerical as well as physical singularities. It is also known to suffer from
inaccuracies near the boundaries which is referred to asnumerical boundary layer[2, 3].

In this work, we have used a new BEM solver, namely, the nearlyexact BEM (neBEM) solver
to estimate the electrostatic configuration of gaseous detectors. The solver is based on a novel
formulation of the BEM that removes some of the major drawbacks of usual BEM. Here, the use
of analytical solutions of the potential and electric field influenced by a uniform charge distribution
over a rectangular [4 – 6] or triangular [7, 8] boundary element allows nominally exact estimation
of potential and field within the device. The analytic closedform expressions of the potential and
electric field for a single boundary element have been obtained from symbolic integration of the
Green’s function due to uniform charge distribution over anelement. As discussed in the following
sections, neBEM can work on geometries with wide variation in dimensions and configurations
having multiple dielectric layers without resorting to special modeling effort. Since the detailed
simulation of gaseous detectors begins with the computation of electrostatic configuration within
a given device and depends very critically on the accuracy ofthe estimated electric field at any
arbitrary point, the neBEM solver is expected to become an important tool in carrying out thorough
analysis of gaseous detectors. The success of the solver as illustrated below can be attributed to the
advantage of the Green’s function formulation for non-dissipative system coupled with the use of
analytical solutions for estimating potential and electric field at any arbitrary position.

In section 2, we have briefly described the neBEM solver whilein sections 3 and 4, we have
discussed in brief the test cases considered in this work. Insection 5, we present the results and dis-
cussions where the electrostatic configurations of six gaseous detectors have been studied. Finally
in section 6, we have presented our conclusions. It may be noted here that we have compared exact

– 2 –



2
0
0
7
 
J
I
N
S
T
 
2
 
P
0
9
0
0
6

analytic solutions against solutions obtained using the neBEM in order to illustrate the precision of
the latter. Existing numerical solutions obtained using charge simulation method (2D) and using
FEM (3D) have been used to illustrate the flexibility and robustness of the present solver.

2. Brief descriptions of BEM and neBEM

Using BEM approach, the Poisson’s equation for potential

∇2φ(~r) = −ρ(~r)/ε0

can be solved to obtain the distribution of charges which leads to a given potential configuration.
For a point chargeq at~r ′ in 3D space, the potentialφ(~r) at~r is known to be

φ(~r) =
q

4πε0|~r −~r ′|

For a general charge distribution with charge densityρ(~r ′), superposition holds and results in

φ(~r) =
∫ ρ(~r ′)dv′

4πε0|~r −~r ′|
=

∫

G(~r,~r ′)ρ(~r ′)dv′ (2.1)

where
G(~r,~r ′) =

1

4πε0|~r −~r ′|

is the free space Green’s function for the Laplace operator in 3D with ε0, the permittivity of free
space. Similarly, the field for a general charge distribution can be written as

~E(~r) = −∇φ

leading to

~E(~r) = −∇
(

∫

G(~r,~r ′)ρ(~r ′)dv′
)

and, finally to,

~E(~r) =

∫ ρ(~r ′)(~r −~r ′)dv′

4πε0|~r −~r ′|3
(2.2)

The charge distribution can be obtained from equation (2.1)or (2.2) by satisfying the boundary
conditions known either in the form of potential (Dirichlet) or field (Neumann) or a mixture of
these two (Mixed/Robin) on material boundaries/surfaces present in the domain.

Considering the Dirichlet problem only at present (for easeof discussion), the following inte-
gral equation of the first kind can be set up.

φ(~r) =
∫

vol
G(~r ,~r ′)ρ(~r ′)dv′ (2.3)

In the above equation,φ(~r) is the potential at a point~r in space andρ(~r ′) is the charge density at an
infinitesimally small volumedv′ placed at~r ′. The problem is, generally, to findρ(~r ′) as a function
of space resulting the known distribution ofφ(~r). Once the charge distribution on the boundaries
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and all the surfaces are known, potential and field at any point in the computational domain can be
obtained using the same equation (2.3) and its derivative.

The primary step of the BEM technique is to discretize the boundaries and surfaces of a given
problem. The elements resulting out of the discretization process are normally rectangular or tri-
angular though elements of other shapes are also used. Elements of triangular shape can be used to
model geometries of any variety and, thus, is one of the most commonly used in many approaches
of numerical simulation including FEM and BEM. The next stepis to find out charge distribution
on the elements that satisfies equation (2.3) following the given boundary conditions. The charge
distribution is normally represented in terms of known basis functions with unknown coefficients.
For example, in zero-th order formulations using constant basis function (collocation approach),
which is also the most popular one among all the BEM formulations because of a good optimiza-
tion between accuracy and computational complexity, the charge distribution on each element is
assumed to be uniform and equivalent to a point charge located at the centroid of the element. This
is the method that is referred to as theusual BEMin the rest of the paper. However, diverse va-
rieties of basis function have been exercised to develop many more BEM formulations in order to
represent the charge distribution on an element more efficiently so as to enhance the accuracy of
the method. Since the potentials on the surface elements areknown from the given potential con-
figuration, equation (2.3) can be used to generate algebraicexpressions relating unknown charge
densities and potentials at the centroid of the elements. One unique equation can be obtained for
each centroid considering influences of all other elements including self influence and, thus, the
same number of equations can be generated as there are unknowns. In matrix form, the resulting
system of simultaneous linear algebraic set of equations can be written as follows

K ·ρ = φ (2.4)

whereK is the matrix consisting of influences among the elements dueto unit charge density on
each of them,ρ represents a column vector of unknown charge densities at centroids of the elements
andφ represents known values of potentials at the centroids of these elements. Each element of this
influence coefficient or capacity coefficient matrix,K is a direct evaluation of an equation similar
to equations (2.1) or (2.2) which represents the effect of a single element on a boundary/surface
(obtained through discretization) on a point where a boundary condition of the given problem is
known. While, in general, this should necessitate an integration of the Green’s function over the
area of the element, this integration is avoided in most of the BEM solvers through the assumption
of nodal concentration of singularities with known basis function. Since the right hand side of (2.4)
is known, in principle, it is possible to solve the system of algebraic equations and obtain surface
charge density on each of the element used to describe the conducting surfaces of the detector
following

ρ = K−1 ·φ

Once the charge density distribution is obtained, equations (2.1) and (2.2) can be used to obtain
both potential and field at any point in the computational domain.

The advantage of BEM technique in comparison to FEM may be briefly pointed out as follows.
(i) It is not necessary to interpolate/extrapolate to obtain potential at non-nodal points. (ii) It is also
not necessary to differentiate potential numerically to obtain field at nodal and non-nodal points.

– 4 –



2
0
0
7
 
J
I
N
S
T
 
2
 
P
0
9
0
0
6

(iii) The boundary conditions at infinity is automatically satisfied. It is not necessary to artificially
terminate the physical boundary of a problem and to devise appropriate boundary conditions at an
artificial edge. In addition, since the influence coefficientmatrix can be shown to depend only on
the geometry of the detector, it can be inverted and stored once and for all as long as the geometry
and its associated discretization does not change. Thus, for a given detector geometry, it becomes
trivial to find charge distribution for different potentialconfigurations once the matrix is obtained.

Despite the above advantages, usual BEM suffers from several drawbacks that have resulted
in its relative lack of popularity. Two of the most importantones can be mentioned as follows.
(i) It is assumed that a surface distribution of charge density on an element can be represented by
a nodal arrangement based on a chosen basis function. (ii) Itis assumed that the satisfaction of
the boundary condition at a predetermined point (or, through the use of known shape functions)
is equivalent to satisfying the same on the whole element in adistributed manner. The former
assumption leads to infamous numerical boundary layer due to which the near-field solution in
regions close to an element becomes erroneous. Thus the estimation of potential and field in near-
field region close to the boundaries and surfaces by usual BEMis found to be inaccurate. This also
leads to complications in solving problems involving closely spaced surfaces such as degenerate
surfaces, edges, corners and other geometrical singularities. The degenerate surface refers to a
boundary, two portions of which approach each other such that the exterior region between the two
portions becomes infinitely thin. It is well known that the coincidence of two boundaries gives rise
to an ill-conditioned problem. A number of special formulations has been developed to cope up
with these problems but, unfortunately, most of these formulations are effective in a rather small
subset of problems related to potential and field that are usually faced in reality.

This problem has been resolved to a great extent through the development of the neBEM solver
that usesexact integrationof the Green’s function and its derivative in its formulation. These inte-
grations for rectangular and triangular elements having uniform charge density have been obtained
as closed-form analytic expressions using symbolic mathematics. Thus they account for truly dis-
tributed nature of charge density on a given element. The expressions are too long and complicated
to be repeated here but are easily accessible from [5 – 7]. Besides the fundamental change in the
way the influence coefficient matrix is computed and the foundation expressions used for evaluat-
ing potential and field at any point after the charge density vector is solved for, most of the other
features of neBEM are similar to any other BEM solver. The major advantage achieved through
the use of the proposed closed-form expressions is that the accuracy is enhanced throughout the
physical domain including near-field region without using any special formulation in any part of
the domain.

In order to estimate potential and field in composite systemscontaining dielectric material,
the above formulations have been extended following [9]. Inthe process, integral equations rep-
resenting potential due to total charge distribution on conductor-to-dielectric (CD) interfaces and
polarization charge distribution (that are assumed to haveattained steady state values) on dielectric-
to-dielectric (DD) interfaces are used in conjunction with proper boundary conditions on these
interfaces. It should be noted here that while the value of potential onCD is usually a known quan-
tity and constitutes the boundary condition on these interfaces, it is only the continuity of normal
component of displacement vector that can be guaranteed across aDD interface. It should also be
noted that the presented solver is also capable of estimating effects of floating conductors as and
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when necessary. In the following, a very brief discussion onthe approach which is used to solve
composite systems that can be defined only by mixed boundary conditions, i.e., partly Dirichlet
and partly Neumann, is presented.

Assume that there areNCD number ofCD interfaces andNDD number ofDD interfaces. The
nth DD interface is considered to be the one where dielectric layers of permittivity εn and εn−1

meet. It should be noted that while on eachCD interface, total chargeρT is the sum of free charge
and polarization charge, on eachDD interface, polarization charge constitutes the total charge.
As discussed above, each interface is discretized into a setof planar rectangular and triangular
elements with a constant uniform charge density distributed over each element. Superposing effect
of all the elements on all the boundaries and interfaces, it can be shown that

φ(~r) =
NCD+NDD

∑
i=1

∫

Si

ρT(~r ′)ds′

4πε0|~r −~r ′|
=

NCD+NDD

∑
i=1

∫

Si

G(~r ,~r ′)ρT(~r ′)ds′ (2.5)

where
G(~r,~r ′) =

1

4πε0|~r −~r ′|

is, once again, the free space Green’s function for the Laplace operator in 3D. In the above,Si is
the surface area ofith interface andds′ is the differential element of area atr ′ on Si . The electric
field at any point away from an interface can be written as

~E(~r) =
NCD+NDD

∑
i=1

∫

Si

ρT(~r ′)(~r −~r ′)ds′

4πε0|~r −~r ′|3
(2.6)

while the same for a point on an interface is

~E±(~r) =
NCD+NDD

∑
i=1

∫

Si

ρT(~r ′)(~r −~r ′)ds′

4πε0|~r −~r ′|3
± n̂

ρT(~r)
2ε0

(2.7)

wheren̂ is the unit vector normal toSi at~r. The positive side ofSi is defined as the side towards
which n̂ points to. As in single dielectric case, any given problem with multiple dielectrics can be
solved by solving forρT satisfying a given set of boundary conditions.

In case of composite systems containing both conductors anddielectrics, boundary conditions
are of mixed type, Dirichlet on the conductor interfaceCD and Neumann on the dielectric interface
DD. The potential remains a constant on eachCD interface and forms the Dirichlet boundary
condition. Denoting the potential onjth CD interface byφ j , it can be written as follows.

φ j =
NCD+NDD

∑
i=1

∫

Si

ρT(~r ′)ds′

4πε0|~r −~r ′|
(2.8)

As discussed earlier, continuity of the displacement vector across eachDD interface constitutes the
following Neumann condition on any givenDD interface.

ε j−NCD + ε j+1−NCD

2ε0(ε j−NCD − ε j+1−NCD)
ρT(~r)+

NCD+NDD

∑
i=1

∫

Si

ρT(~r ′)(~r −~r ′)ds′

4πε0|~r −~r ′|3
= 0 (2.9)

where~r is on jth DD interface (j = NCD+1,NCD +2, . . . ,NCD +NDD) under consideration and ˆn is
outward pointing unit vector. Using equations (2.8) and (2.9), it is once again possible to construct
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a system of algebraic equations as in (2.4). After obtainingtotal charge densityρT from this set of
equations, potential and field at any point for a given problem can be easily obtained by evaluating
equations (2.5), (2.6) and (2.7). As in single dielectric case, the expressions in both setting up the
influence coefficient matrix and subsequent evaluation of potential and field are exact solutions as
discussed above.

3. Physical potential and field distributions

The precision, flexibility and robustness of neBEM solver have been demonstrated by simulating
potential and field distributions of several gaseous detectors of diverse nature. The MultiWire Pro-
portional Counter (MWPC) is one of the major gaseous detectors of earlier generation with many
variants of it still being implemented in various experiments. The analytic solutions used for calcu-
lating electric field in a MWPC are valid for only 2D geometry [10] and thus not expected to deliver
realistic estimates where the 3D effect is significant. The neBEM solver has been used to study in
detail the potential and electric field distributions considering several geometrical variations, par-
ticularly the inclusion of side plates and change of detector length. Comparison with analytical
values has been made in order to demonstrate the accuracy as well as the advantage of using a 3D
solver like neBEM.

The other class of gaseous detectors studied in this work is new generation MicroPattern Gas
Detectors (MPGDs) where simulation of electrostatic configuration is particularly crucial owing
to their multiple dielectric configuration and presence of multiple length scales. Three popular
types of MPGDs, namely MicroStrip Gas Chamber (MSGC), microMEsh GAseous Structure (mi-
croMEGAS) and MicroWire Detector (MWD) have been dealt within order to simulate their elec-
trostatic configurations. The accuracy of the results has been confirmed by comparing them with
existing 2D BEM for MSGC [11] and with 3D FEM results for microMEGAS and MWD [12].

The presence of closely spaced surfaces in gaseous detectors with multiple dielectrics like Re-
sistive Plate Chamber (RPC) is known to give rise to numerical complexities in conventional BEM
calculation. Special formulations are devised out to handle the difficulties, whereas the neBEM
does not need any such manipulation. The efficacy of the solver has been demonstrated by compar-
ing its results to that produced by several such formulations for a multiple dielectric geometry [13].
The accuracy of the solver has been confirmed by comparing itsresults for weighting potential and
field to the analytic solutions for configuration with one dielectric layer [14] before extending it to
simulate the electrostatic configuration for a detailed realistic geometry of RPC.

4. Weighting potential and field distributions

The neBEM solver has as well been implemented in studying weighting potential and field in sev-
eral detectors. The weighting field calculation turns out tobe equally important in terms of accuracy
when signal generation in a gaseous detector is studied following Shockley-Ramo theorem [15, 16].
According to the theorem, current induced on an electrode can be written as

i(t) = e0N(t)~vD(t). ~Ew(~x(t)) (4.1)
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Figure 1. Potential contours on the centralXY-plane at 2000V in MWPC

when a charge clustere0N(t) moves with a drift velocity~vD(t) =~̇x(t) where~Ew(~x(t)) is the weight-
ing field due to specific electrode under study at a location ofthe cluster~x(t). It is to be noted here
that the weighting field can be obtained when the readout electrode is set to unit voltage keeping
all other electrodes grounded.

The 3D weighting potential and field distributions have beenstudied in a Time Projection
Chamber (TPC) for a realistic geometry. Results for a simplified 2D strip detector neglecting
presence of anode wires altogether having an analytic solution are often used as an estimate for
~Ew. This, however, can not be considered to be accurate for realistic TPC geometries. Another
set of expressions most commonly used for design and analysis of pad chambers is obtained using
conformal mapping methods and semiempirical techniques (e.g. equation (7) of [17]). While they
turn out to be very useful for most of the circumstances they are limited by certain assumptions,
for example, the presence of two cathode planes on either side of anode wire plane. The presence
of anode wires, cathode wire plane and the effect of open or closed geometry have been studied to
examine 3D effect on the weighting field configuration. A similar study has been carried out for a
RPC which may be useful in simulating induced signal of the device.

5. Results and discussions

5.1 MultiWire Proportional Counter (MWPC)

A MWPC consists of an anode plane made of very thin equispacedwires. On both sides of anode,
cathode planes equipped with readout pads or strips are placed. A high voltage is applied to anode
plane while cathodes are maintained at ground potential. Inthe present calculation, geometry of the
MWPC consists of 11 anode wires with diameter 20µmand pitch 2mm, stretched inXZ-plane. Two
continuous conducting cathode plates, parallel to anode planes, have been placed at a gap of 2mm
with respect to anode on either sides. The dimension of the detector is 24mm×4mm×100cm, with
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length much larger with respect to other dimensions to attain 2D behavior at centralXY-plane. The
potential contours on centralXY-plane across anode or cathodes are shown in figure 1 as calculated
with neBEM at anode voltage 2kV.

The variation of electric field in close
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Figure 2. Normal component of electric field on the cen-
tral XY-plane at 2kV in MWPC

proximity to anode wires has been studied
with neBEM. The field values in this region
are crucial since they determine avalanche
size in active volume of the MWPC. The
results of electric field calculated within a
range of 1−40µm near an anode wire have
been compared with that produced by ana-
lytic solutions using GARFIELD [10]. In
figure 2, variation of normal component of
electric field on centralXY-plane at anode
voltage 2kV is plotted. The values are de-
picted for three different wires, namely, the
central, third and fifth wire (edge) on right

hand side. It is evident from figure 2 that the field values are quite even (within 0.15%) for all the
wires except the edge wires where an increase of about 9% is observed with respect to the central
or the third wire. The neBEM has produced an excellent agreement within 0.001% to 2D analytical
values at centre of the geometry (for central wire) while thedifference is less than 0.04% at edge.

The electrostatic field values have been studied for a wide variation of aspect ratio,λ (length
divided by breadth), ranging from 40.0 to 1.25. However, no significant effect of aspect ratio on the
field has been observed for the present geometry. To study theeffect of closed geometry, grounded
plates on the right, left, front and back sides of the detector geometry have been considered. The
results of field calculation are same as before for all the wires except the one at edge. The values
at edge for closed box geometry (illustrated by open box symbol in figure 2) are larger by 2.4%
with respect to earlier results observed in case of open geometry. The presence of side plate is
presumably the reason of increase in field values observed near edge wire. The other results are
not included in the figure to avoid too many data points.

5.2 MicroStrip Gas Chamber (MSGC)

MSGC is a detector in which wires of the standard MWPC are replaced by lithographically pro-
duced strips on solid substrates. The geometry of a typical MSGC consists of many anode and
cathode strips laid alternately on a substrate. A drift volume is added before electrodes with a
drift electrode placed above. High voltage is supplied to cathodes and drift electrode in order to
generate a drift field. In the present calculation, 10 cathode and 9 anode strips have been consid-
ered stretched inXZ-plane with a pitch of 300µm. The width of the strips are 100µm and 10µm
respectively for the cathode and anode. Two conducting plates of dimension 2mm×2mm, parallel
to anode-cathode plane, have been included as drift plane and back plane at a distance of 3mm
on either sides. The cathode strips and drift plane have beenprovided with−0.6kV and−1kV
respectively while anodes and back plane with ground potential. The potential contours on central
XY-plane as calculated by neBEM with a vacuum substrate (dielectric constant 1.0) is presented
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Figure 3. Potential contours on the centralXY-plane with a vacuum substrate in MSGC

Substrate Thickness neBEM 2D [11]
(µm) (kV/mm) (kV/mm)

Vacuum 500 32.70 32.7
100 35.47 35.6

Glass 500 32.73 32.5
100 36.91 36.9

Table 1. Comparison of total electric field at the centre of the anode in MSGC

in figure 3. A comparative study of electric field has been madebetween the present results and
2D calculation following charge simulation method [11]. Inthe geometry, two different substrates,
namely vacuum and glass (dielectric constant 5.0), have been considered each with two different
thickness, 100µm and 500µm. The cross-sections used in the neBEM calculation have beenmade
identical to that used in 2D calculation in [11]. The drift plane is placed 1cm away from anode-
cathode plane and provided with a voltage of−3kV. The electric field values at the centre of the
anode for different geometrical conditions are tabulated in table 1. It is evident from the table
that electric fields estimated by charge simulation method and by neBEM are almost identical. The
maximum relative deviation is about 0.7% with respect to the earlier 2D calculation. This small de-
viation can be attributed to the facts that the present calculation is 3D in nature and the formulations
of two methods are significantly different.

5.3 MicroWire Detector (MWD)

MWD is one of the various micropattern gaseous detectors that emerged with advent of printed
circuit technology. It is made of a lithographically produced cathode mesh of square holes on
one side of a kapton foil and anode strips on the other, running along the middle axis of cathode
mesh holes. The kapton is used in a manner to provide a mechanical joint between anode strips and
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Figure 4. Total electric field contours on the centralXY-plane in MWD

cathode mesh of square holes. The detailed structure of thisdetector has been described in [12, 18].
In the present work, the same geometry as discussed in [12] has been used to pursue the calculation
using neBEM, the only difference being the shape of kapton foil. It has been considered rectangular
instead of trapezoidal as can be found in [12]. A drift plane has been considered 785µmaway from
anode strip with a voltage−1.11kV following [12]. The total electric field contours in centralXY-
plane across anode or cathode plane (XY-plane) are shown in figure 4. The variation in total electric
field along the axis passing through the mesh hole is illustrated in figure 5. The FEM calculation
(using ANSYS) [12] for the same is depicted as well in the figure.

The comparison between neBEM and
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Figure 5. Total electric field along the axis of the square
hole of the cathode mesh in MWD

FEM results yield the following. (i) Overall
trend of variation is similar for both the re-
sults. (ii) In near-field region, neBEM over-
estimates by 8.23% (w.r.t.FEM) on positive
side and by 13.22% on negative side of an-
ode strip. (iii) In far-field region, neBEM
once again overestimates electric field in
comparison to FEM solution. (iv) Finally,
variation in neBEM results is found to be
smooth and free from the jaggedness evi-
dent in FEM solution (please refer to MWD
figurecenterfield.gifin [12]).

The difference between neBEM and
FEM can be attributed to several factors. For example, in [12, 19] Neumann boundary condi-
tion has been used on lower boundary of FEM computational domain. Similarly, upper boundary
of FEM domain has been artificially terminated by drift planeheld at a constant voltage. In ad-
dition, symmetry condition on other boundaries has been assumed implying an infinite number of
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Figure 6. Total electric field contours on the centralXY-plane in microMEGAS

microwire units on a plane. On the other hand, in our model, wehave no artificial truncation of
boundary in any direction. Instead of invoking symmetry andreducing the problem to a periodic
one, we have considered a 3×3 matrix of microwire units and retained 3D nature of the problem.
Finally, in order to estimate potential and field at any arbitrary point, closed form analytic influence
coefficients have been used without taking resort to any interpolation or extrapolation or numerical
differentiation.

5.4 microMEsh GAseous Structures (microMEGAS)

The microMEGAS is another example of micropattern gaseous detector where a thin metal grid is
used as a cathode at a very small distance above an anode readout electrode. Before the micromesh,
a drift volume is added by using a drift electrode on the top. Avery high electric field is generated
across the gap between cathode mesh and strip. Regularly spaced supports of insulating fibers or
pillars are used to guarantee uniformity of the gap. One caseof microMEGAS from [12, 19] has
been taken under consideration for studying its electrostatic configuration using the neBEM. The
planes of anode readout and cathode mesh have been considered to lie inXZ-plane. A single anode
strip of thickness 5µm placed on an epoxy substrate of dielectric constant 3.5 and cathode mesh
with 7 holes across and 21 along the anode strip have been considered in neBEM calculation. A
drift electrode placed 425µm away from mesh with a voltage−0.51kV has been considered in
order to produce a drift field 2kV/cmapproximately, following the FEM model. The contours of
total electric field in centralXY-plane across anode or cathode plane are illustrated in figure 6.
Along axis of the mesh hole variation of electric field for several values of amplification gap is
depicted in figure 7. In addition, figure 8 shows the plot of field values on anode surface as a
function of amplification gap. A quantitative comparison between the two sets of results can be
made from figure 8. The maximum difference between two results occurs when amplification
gap is the smallest (−5.9%) w.r.t FEM result. Two results are almost identical when the gap is in
medium range while at the largest amplification gap of 85µm, the difference is found to be 3.9%
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Figure 7. Normal electric field along the axis of the central mesh hole in microMEGAS
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Figure 8. Normal electric field at the centre of the anode surface in microMEGAS

w.r.t FEM result. The disagreement between the values can beattributed to reasons similar to those
discussed in the earlier subsection.

5.5 Time Projection Chamber (TPC)

The weighting potential of a TPC is normally calculated following a simple closed-form expression
that exists for a 2D strip detector which consists of two conducting plates separated by a distance,
d, and one of the plates segmented with strips of widtha with no gap among them [20]. It can be
written as

φ(x,y) =
1
π

(arctan(tanh(β ) · tan(γ))−arctan(tanh(α) · tan(γ))) (5.1)

where

α = π
x−a/2

2d
;β = π

x+a/2
2d

;γ = π
y

2d
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Figure 9. Weighting potential distribution on the centralXY-plane in TPC

The width of strip is laid alongX-direction. This formulation neglects the presence of anode wires
altogether and can not be accurate for the geometry of a realistic TPC. The weighting potential
for idealized geometry of a strip detector calculated by neBEM has agreed perfectly with analytic
expression. However, when a wire plane is inserted inbetween the plates, weighting potential dis-
tribution in centralXY-plane has been found to be significantly different throughout, the difference
being very large near anode wire. It should also be noted thatwhen upper cathode plane is replaced
by a wire plane, it does not affect weighting potential distribution of figure 9 along the chosen
direction passing through a grounded cathode wire. The comparison of weighting potential for
idealized as well as realistic geometry with analytic solution is depicted in figure 9. In the realis-
tic geometry, altogether 11 strips on lower cathode lying inXZ-plane have been considered, each
having a width of 5mmwith no gap inbetween them. The distance between two cathodeplanes is
10mm. The dimension of each of the planes has been made 55mm×15cm in order to achieve 2D
characteristics in the mid-section of the device. A wire plane containing 11 wires with diameter
25µm and pitch 5mm, each passing through middle of the strips, has been considered as an anode
plane placed between the cathode planes. The upper cathode is made of similar wire plane with
thick wires of diameter 100µm. The 3D effect has been presented in terms of weighting potential
estimates obtained at edge of the geometry (X = 2.5cm). The result is included in figure 9 which
shows a significant edge effect.

The components of weighting electric field as per idealized and realistic geometries are illus-
trated in figure 10. Comparison with analytic solution demonstrates a significant departure of field
values in both cases when the realistic geometry is considered.

5.6 Resistive Plate Chamber (RPC)

The expressions for weighting potential and electric field have been derived for an infinite plane
condenser comprising of one or three homogeneous dielectric layers [14]. The analytic representa-
tion of weighting potential for a single dielectric configuration with a dielectric layer sandwiched
between two conducting planes one of which is segmented intonumber of strips can be expressed
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Figure 10. Weighting electric field components on the centralXY-plane in TPC

as

φ(x,y) =
V
π

[

arctan

(

cot

(

yπ
2D

)

tanh

(

π
x+w/2

2D

))

−arctan

(

cot

(

yπ
2D

)

tanh

(

π
x−w/2

2D

))]

(5.2)
wherew is the width of a strip alongX-direction andD the height of dielectric layer inY-direction.
It is assumed that strips are placed in a continuous manner with no gap inbetween them.V is the
potential applied to the specific strip for which weighting potential and field would be studied with
all other electrodes kept at ground potential. It may be noted here that the equation (5.2) is same
as equation (5.1) which is valid for a 2D strip detector. The reason of the difference between two
expressions is related to geometry of the systems. In case ofRPC, lower electrode is segmented
whereas in TPC, it is the upper one that contains the strips. Consequently, components of the
electric field can be written as

Ex =
V
2D

[

sin(yπ/D)

cosh(π(x−w/2)/D)−cos(yπ/D)
−

sin(yπ/D)

cosh(π(x+w/2)/D)−cos(yπ/D)

]

(5.3)

Ey = −
V
2D

[

sinh(π(x−w/2)/D)

cosh(π(x−w/2)/D)−cos(yπ/D)
−

sinh(π(x+w/2)/D)

cosh(π(x+w/2)/D)−cos(yπ/D)

]

(5.4)

The solver has been validated by estimating weighting potential for a single dielectric geometry for
which analytic representation of weighting potential is available from equation (5.2). The geometry
has comprised of two conducting plates separated by a distance 2mm. Altogether 3 strips of width
3cm have been considered inXZ-plane with length 50cm in Z-direction. The nature of dielectric
is irrelevant to mention since it has no effect on weighting potential. The comparison of weighting
potential on centralXY-plane across dielectric layer, as calculated by neBEM, to its analytical rep-
resentation following equation (5.2) is depicted in figure 11. A close agreement (within 0.0001%)
between two results has been observed.

Similarly, the variation of weighting field components along width of the strip has been com-
pared to their analytical representations expressed in equations (5.3) and (5.4). The results are
illustrated in figure 12 which demonstrates that neBEM can produce weighting field values in cen-
tral plane with an accuracy about 0.0001% for a system having single dielectric layer.

– 15 –



2
0
0
7
 
J
I
N
S
T
 
2
 
P
0
9
0
0
6

Figure 11. Weighting potential contours on the centralXY-plane in RPC
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Figure 12. Weighting electric field components on the centralXY-plane in RPC

A common geometry of a RPC containing more than three dielectric layers has been consid-
ered for studying its electrostatic configuration using neBEM. In the calculation, a gaseous layer
(permittivity 1.000513, equivalent to Argon gas) of thickness 2mmsandwiched between two glass
layers (permittivity 7.75, equivalent to float glass) of same thickness has been considered. A thin
coating of graphite 150µm thick has been applied on outer side of glass layers to maintain a high
voltage between the layers. It should be noted here that resistivity of graphite layer is normally
chosen so that this surface does not shield discharge signalfrom external readout strips but is small
compared to the resistivity of glass to provide a uniform potential across entire surface. For cal-
culation of weighting potential and field, graphite layer has been considered as a dielectric with
permittivity 12.0 whereas it has acted as a conductor in case of physical potential and field com-
putation. Outside graphite layers, readout strips have been considered to be lain on both sides at a
distance of 100µm from graphite layer. InX-readout plane, total 5 strips of width 3cmhave been
laid in XZ-plane with length 50cm in Z-direction with inter-strip space 1mmwhile theY-readout
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Figure 13. Normal weighting electric field on the centralXY-plane in RPC

Figure 14. Physical normal electric field on the centralXY-plane at 8.5kV in RPC

plane has been considered continuous. Variation of normal component of weighting electric field
on centralXY-plane is shown in figure 13.

The normal component of real or physical field of realistic configuration described above has
been computed with neBEM. The 3D representation of the field is illustrated in figure 14 calculated
at a high voltage of 8.5kV.

Precision of the neBEM solver has been amply demonstrated bysolving the MWPC, TPC and
RPC problems where we have compared the solver with exact analytic solutions. Since analytic
results are derived considering 2D geometries, we have modeled the problems such that the two
dimensionality is maintained despite the use of neBEM whichis a 3D solver. Since the prob-
lems are very precisely stated while deriving analytic solutions, it has been relatively easy for us
to replicate the conditions. The exact match between analytic solutions and neBEM results (dif-
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ferences< 0.01%) with quite coarse discretization testifies to the excellent accuracy achievable
using neBEM. Flexibility and robustness of the solver have been demonstrated by comparing its
results with other numerical solutions, namely, charge simulation method (2D) and FEM (3D). In
these cases, it is difficult to replicate computational models used in other solvers exactly because of
differences in formulation and features that are characteristic of specific methods. In addition, we
did not feel it necessary to make meticulous copy of the othermodels because the precision of the
solver has already been demonstrated and it was not necessary to reproduce the exact numbers ob-
tained using the other solvers. In these comparisons, we have tried to show that neBEM can solve
complicated realistic configurations and obtain reasonable results using moderate computational
resources as mentioned below.

5.7 Computational resources

The computation of electric potential and field of various gaseous detectors has been carried out
in a 64−bit AMD Athlon Desktop with 1.8GHzclock speed, 2.0GB RAM, running Fedora Core
5. The GNU Scientific Library has been used to carry out calculations involving complex numbers
and gnuplot to generate the figures. It may be noted that we have not used any commercial packages
in any part of the work.

6. Conclusions

Using neBEM solver, it has been possible to estimate 3D potential and electric field in several
gaseous detectors. The accuracy, flexibility and robustness of the solver have been demonstrated
by comparing its results with existing analytic, 2D BEM and 3D FEM results. Despite having large
length scale variation (1 : 104) in complicated configurations having multiple dielectriclayers, the
solver has yielded results that are precise and reliable using commonly available computational
hardware resources and free open source software. It shouldbe mentioned here that without invok-
ing any symmetry or using any memory or computation time saving technique in neBEM, detailed
3D results with competing accuracy could be achieved with moderately coarse discretization for
all these gaseous detectors. Since detailed simulation of gaseous detector begins with computa-
tion of electrostatic configuration within the device and depends very critically on the accuracy of
estimated electric field at any arbitrary point within a given device, neBEM solver is expected to
contribute significantly in carrying out thorough analysisof gaseous detectors. This is even more
true for new generation gaseous detectors equipped with multiscale geometry as well as various di-
electrics where FEM calculation can produce erroneous results due to the use of stringent boundary
conditions applied on artificially truncated boundaries that may affect near-field estimates as well.
FEM estimates of potential and field for complicated geometry can also negatively be influenced by
its nodal nature of solution and the necessity of polynomialinterpolation and differentiation. This
is even more true in the regions of interest of gaseous detector where these properties are liable to
change very fast. The neBEM being a solver based on BEM can take into account the influence of
all the components present in a realistic geometry and studytheir effect on the final electric field
which leads to more reliable results. The advantage of BEM formulation coupled with the accuracy
made available by analytic solutions of potential and electric field used in the neBEM has empow-
ered this solver to excel in terms of precision and flexibility for electrostatic simulation of gaseous

– 18 –



2
0
0
7
 
J
I
N
S
T
 
2
 
P
0
9
0
0
6

detectors compared to other existing solvers. The solver can also compute 3D weighting potential
and field which facilitate simulation of charge/signal induced on any electrode of a detector due to
the passage of an ionizing particle through a detector. The other relevant factors like drift veloc-
ity, avalanche multiplication etc. can be estimated using HEED, MAGBOLTZ, GARFIELD [10]
which can lead to a complete simulation of the performance ofany gaseous detector.

The difficulty with the present method is the solution of a fully populated matrix which can be
solved by using various techniques. This aspect is under study to still reduce current computational
expense.
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