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ABSTRACT. A Boundary Element Method (BEM) solver based on the satutitboundary integral
equations of potential and electric field has been develtpaimulate 3D electrostatic configu-
ration in gaseous detectors. Use of analytical solutiomefintegral equations governing electric
potential and field for estimating influence coefficientshaf BEM solver has empowered it to pro-
vide extremely precise estimates of the potential and fi@dfgiven geometry. The nearly exact
BEM (neBEM) solver has been implemented in order to simubdugsical and weighting poten-
tial and field configurations in several gaseous detecthesNiultiwire Proportional Counter and
Time Projection Chamber. The efficacy of the solver for satinty 3D electrostatic configuration
in composite systems containing both conductors and ldyaiedectrics has been demonstrated for
some of the MicroPattern Gas Detectors and Resistive PlaenGer. It should be noted that the
method treats the dielectric interfaces to be in a steadg stdh polarization charges only. The
reasons why the neBEM can be a preferred tool for electiostiaulation of gaseous detectors to
other 2D or 3D numerical solvers are discussed on the bagi®sént results.
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1. Introduction

A detailed study of electrostatic configuration in gaseoetectors is important to facilitate the
optimization of their design as well as interpretation @itlperformance. Apart from the analytical
approach to study the same, numerical methods like FingmEht Method (FEM) and Boundary
Element Method (BEM) are widely used for this purpose. Wailalytical approach offers the best
estimation, it can be employed only for a few simple 2D geoim&t FEM is the most widely used
approach because it can handle any arbitrary geometry aldhglielectrics. FEM solves for the
Laplace’s equation at nodal points of the volume elemerdsifipd by discretization or meshing
of the detector volume. However, its formulation leads torpaccuracy in estimation of potential
and electric field in certain critical zones despite consgntarge computational resources related
to efficient meshing. The major reasons behind this loss cfiracy can be summarized in the
following points.

Using a FEM solver, the solution of potential is obtainedeatain predetermined nodes which
is interpolated/extrapolated following a polynomial (maily of low order) to determine values
at non-nodal points. Estimation of electric field is carrma by differentiating the polynomial
used to represent the potential which leads to the repesamtof the field by an even lower
order polynomial. As a result, in regions where electrastattoperties change rapidly, the electric



field is of inadequate precision, specially at non-nodah{soi Another reason for FEM not being
suitable for field computation in gaseous detectors is ifficdity of treating wide variation in
dimension (from microns to meters) which is common to mostheke detectors. In fact, the
far-field region is quite commonly artificially truncatedarder to reduce computational expenses.
As a result, boundary conditions at the far-field region hg®ssibility of being inadequately
represented leading to detrimental effects on the oveshltisn.

BEM, on the other hand, solves boundary integral equatidaitéd from the solution of the
Poisson’s equation by numerically evaluating the poténtidield as an effect of charge distribu-
tion accumulated over boundaries or material surfaces asudt of applying certain potential to
the detector. The boundaries or the surfaces are disatatimea number of small elements, each
carrying an unknown charge distribution. These chargeibligions can be determined following
Green’s function technique while satisfying the given taany condition of Dirichlet or Neumann
or a mixed (Robin) type. Once the charge distributions oll¢he surfaces are known, the potential
and electric field at any point owing to these charge distidims can be determined by using the
same Green’s function technigue. The method is found to ke sdtable for the field computa-
tion in gaseous detectors where electric field is necesearg evaluated anywhere within the gas
volume where an avalanche can take pl@fe [1]. Working onwcestidimensional space (involving
only the surfaces of the detector instead of domain volunme@sred by FEM), BEM can evaluate
potential and electric field at any arbitrary point due toitifiences of surface charge distribution
on the detector boundaries with comparatively less contiput expense. However, the method
is less commonly used owing to the complicated mathemadiaicise it necessitates in its formu-
lation in order to handle numerical as well as physical diagties. It is also known to suffer from
inaccuracies near the boundaries which is referred tamiagerical boundary layei@, B].

In this work, we have used a new BEM solver, namely, the neadect BEM (neBEM) solver
to estimate the electrostatic configuration of gaseousctitgte The solver is based on a novel
formulation of the BEM that removes some of the major drawbaif usual BEM. Here, the use
of analytical solutions of the potential and electric fielfluenced by a uniform charge distribution
over a rectangulaf][4f 6] or trianguldt [7, 8] boundary elatr@lows nominally exact estimation
of potential and field within the device. The analytic clo$exdn expressions of the potential and
electric field for a single boundary element have been obtafrom symbolic integration of the
Green’s function due to uniform charge distribution oveement. As discussed in the following
sections, neBEM can work on geometries with wide variatiomimensions and configurations
having multiple dielectric layers without resorting to sjgé modeling effort. Since the detailed
simulation of gaseous detectors begins with the computatielectrostatic configuration within
a given device and depends very critically on the accuragph@festimated electric field at any
arbitrary point, the neBEM solver is expected to become gqoomant tool in carrying out thorough
analysis of gaseous detectors. The success of the solkrsamted below can be attributed to the
advantage of the Green’s function formulation for nondigistve system coupled with the use of
analytical solutions for estimating potential and electiéld at any arbitrary position.

In section 2, we have briefly described the neBEM solver wihilgections 3 and 4, we have
discussed in brief the test cases considered in this woedtion 5, we present the results and dis-
cussions where the electrostatic configurations of six@asdetectors have been studied. Finally
in section 6, we have presented our conclusions. It may klrwre that we have compared exact



analytic solutions against solutions obtained using thigEM in order to illustrate the precision of
the latter. Existing numerical solutions obtained usingrgk simulation method (2D) and using
FEM (3D) have been used to illustrate the flexibility and rsthess of the present solver.

2. Brief descriptions of BEM and neBEM

Using BEM approach, the Poisson’s equation for potential

D%g(F) = —p(F) /&0

can be solved to obtain the distribution of charges whicldea a given potential configuration.
For a point chargg att’ in 3D space, the potentigi(r') atF is known to be
ATiEQ|T — 1|

For a general charge distribution with charge dene(nfl), superposition holds and results in

r) = '7_ G(r,r")p(r")d 2.1
o0 = [ JA<l (2.2)
where
= = 1
GFr)y=————
4nso\?—r]

is the free space Green'’s function for the Laplace operat@D with &, the permittivity of free
space. Similarly, the field for a general charge distributtan be written as

leading to

and, finally to,
A (P (P — 7
EF) = p(r’) (¥ r)dv
4mgp|F —r'|3

The charge distribution can be obtained from equatior] @ 1[.2) by satisfying the boundary
conditions known either in the form of potential (Dirichlair field (Neumann) or a mixture of
these two (Mixed/Robin) on material boundaries/surfacgesgnt in the domain.

Considering the Dirichlet problem only at present (for eafséiscussion), the following inte-
gral equation of the first kind can be set up.

2.2)

o(F) = /G?F (F)dv 2.3)

In the above equatiory(T) is the potential at a poifitin space ang(r’) is the charge density at an
infinitesimally small volumelV placed at’. The problem is, generally, to fir}d(?’) as a function
of space resulting the known distribution @fr). Once the charge distribution on the boundaries



and all the surfaces are known, potential and field at anyt poihe computational domain can be
obtained using the same equatipn](2.3) and its derivative.

The primary step of the BEM technique is to discretize thenblasies and surfaces of a given
problem. The elements resulting out of the discretizatimtgss are normally rectangular or tri-
angular though elements of other shapes are also used. ikeoidriangular shape can be used to
model geometries of any variety and, thus, is one of the nmantonly used in many approaches
of numerical simulation including FEM and BEM. The next stepo find out charge distribution
on the elements that satisfies equation|(2.3) following tilergboundary conditions. The charge
distribution is normally represented in terms of known dsnctions with unknown coefficients.
For example, in zero-th order formulations using constasisfunction (collocation approach),
which is also the maost popular one among all the BEM formafetibecause of a good optimiza-
tion between accuracy and computational complexity, ttergehdistribution on each element is
assumed to be uniform and equivalent to a point charge ldedtine centroid of the element. This
is the method that is referred to as tisual BEMin the rest of the paper. However, diverse va-
rieties of basis function have been exercised to develop/mmaore BEM formulations in order to
represent the charge distribution on an element more effigiso as to enhance the accuracy of
the method. Since the potentials on the surface elementgaven from the given potential con-
figuration, equation[(3.3) can be used to generate algebraiessions relating unknown charge
densities and potentials at the centroid of the elementg Uigue equation can be obtained for
each centroid considering influences of all other elememdisiding self influence and, thus, the
same number of equations can be generated as there are urskniomwmatrix form, the resulting
system of simultaneous linear algebraic set of equationdeanvritten as follows

K-p=¢ (2.4)

whereK is the matrix consisting of influences among the elementstalwmit charge density on
each of themp represents a column vector of unknown charge densitientbags of the elements
andg represents known values of potentials at the centroidssttielements. Each element of this
influence coefficient or capacity coefficient matrik,is a direct evaluation of an equation similar
to equations[(2]1) of (3.2) which represents the effect dhgles element on a boundary/surface
(obtained through discretization) on a point where a boondandition of the given problem is
known. While, in general, this should necessitate an iatémr of the Green'’s function over the
area of the element, this integration is avoided in most®BEM solvers through the assumption
of nodal concentration of singularities with known basisdtion. Since the right hand side ¢f (2.4)
is known, in principle, it is possible to solve the system Igearaic equations and obtain surface
charge density on each of the element used to describe tlictimy surfaces of the detector
following
p=K*to

Once the charge density distribution is obtained, equat{arl) and [(2]2) can be used to obtain
both potential and field at any point in the computational diom

The advantage of BEM technique in comparison to FEM may telippointed out as follows.

() It is not necessary to interpolate/extrapolate to abfaitential at non-nodal points. (ii) It is also
not necessary to differentiate potential numerically ttaobfield at nodal and non-nodal points.



(iii) The boundary conditions at infinity is automaticallstisfied. It is not necessary to artificially
terminate the physical boundary of a problem and to devipeoppiate boundary conditions at an
artificial edge. In addition, since the influence coefficiardtrix can be shown to depend only on
the geometry of the detector, it can be inverted and stored and for all as long as the geometry
and its associated discretization does not change. Thua,diven detector geometry, it becomes
trivial to find charge distribution for different potentiabnfigurations once the matrix is obtained.

Despite the above advantages, usual BEM suffers from dadteabacks that have resulted
in its relative lack of popularity. Two of the most importamtes can be mentioned as follows.
() It is assumed that a surface distribution of charge dgmsi an element can be represented by
a nodal arrangement based on a chosen basis function. ifijaisumed that the satisfaction of
the boundary condition at a predetermined point (or, thinoilg use of known shape functions)
is equivalent to satisfying the same on the whole element dis@ibuted manner. The former
assumption leads to infamous numerical boundary layer dwehich the near-field solution in
regions close to an element becomes erroneous. Thus the#sti of potential and field in near-
field region close to the boundaries and surfaces by usual BEdInd to be inaccurate. This also
leads to complications in solving problems involving clgsspaced surfaces such as degenerate
surfaces, edges, corners and other geometrical singesariThe degenerate surface refers to a
boundary, two portions of which approach each other sudtthieaexterior region between the two
portions becomes infinitely thin. It is well known that théremdence of two boundaries gives rise
to an ill-conditioned problem. A number of special formidas has been developed to cope up
with these problems but, unfortunately, most of these fdatians are effective in a rather small
subset of problems related to potential and field that arallysiaced in reality.

This problem has been resolved to a great extent througtetleapment of the neBEM solver
that useexact integratiorof the Green’s function and its derivative in its formulatiorhese inte-
grations for rectangular and triangular elements havirifjprm charge density have been obtained
as closed-form analytic expressions using symbolic magéiiesn Thus they account for truly dis-
tributed nature of charge density on a given element. Theesgfons are too long and complicated
to be repeated here but are easily accessible ffpnf][5— 7jd&ethe fundamental change in the
way the influence coefficient matrix is computed and the fatind expressions used for evaluat-
ing potential and field at any point after the charge densgistar is solved for, most of the other
features of neBEM are similar to any other BEM solver. Theanapvantage achieved through
the use of the proposed closed-form expressions is thatctheaxy is enhanced throughout the
physical domain including near-field region without usimy @pecial formulation in any part of
the domain.

In order to estimate potential and field in composite systeamgaining dielectric material,
the above formulations have been extended followfihg [9]thenprocess, integral equations rep-
resenting potential due to total charge distribution ondemor-to-dielectric €D) interfaces and
polarization charge distribution (that are assumed to hteined steady state values) on dielectric-
to-dielectric DD) interfaces are used in conjunction with proper boundanmyditmns on these
interfaces. It should be noted here that while the value tdmi@l onCD is usually a known quan-
tity and constitutes the boundary condition on these iatesd, it is only the continuity of normal
component of displacement vector that can be guaranteedsaadD interface. It should also be
noted that the presented solver is also capable of estighaffacts of floating conductors as and



when necessary. In the following, a very brief discussiorit@napproach which is used to solve
composite systems that can be defined only by mixed boundagitions, i.e., partly Dirichlet
and partly Neumann, is presented.

Assume that there afd-p number ofCD interfaces andNpp number ofDD interfaces. The
n" DD interface is considered to be the one where dielectric fagépermittivity &, and &,_1
meet. It should be noted that while on e&h interface, total chargpr is the sum of free charge
and polarization charge, on eaflD interface, polarization charge constitutes the total ghar
As discussed above, each interface is discretized into afgganar rectangular and triangular
elements with a constant uniform charge density distribotgeer each element. Superposing effect
of all the elements on all the boundaries and interfacegnito® shown that

|\bD+NDD NCD+NDD
Z / G(F,1")pr ()d< (2.5)
S 4nso|?—r | ,
where . 1
G M) =—"
4110|T — 1|

is, once again, the free space Green'’s function for the kapigerator in 3D. In the abov§, is
the surface area of" interface andi< is the differential element of area dton §. The electric
field at any point away from an interface can be written as

NCD-‘rNDD Mdd
Zl 1) (2.6)
S 4n£o]r —r3
while the same for a point on an interface is
. Nep-+Nop (P —1 P
& Js Angr-r|3 29

wherertis the unit vector normal t§ atr. The positive side 0§ is defined as the side towards
which i points to. As in single dielectric case, any given problerthwiultiple dielectrics can be
solved by solving fopr satisfying a given set of boundary conditions.

In case of composite systems containing both conductorslighettrics, boundary conditions
are of mixed type, Dirichlet on the conductor interf&® and Neumann on the dielectric interface
DD. The potential remains a constant on e&ib interface and forms the Dirichlet boundary
condition. Denoting the potential gff' CD interface byg;, it can be written as follows.

|\k:D+NDD d§
Z S 47180\?— r/\

As discussed earlier, continuity of the displacement wemtooss eacBD interface constitutes the
following Neumann condition on any givddD interface.

(2.8)

€ —Nep + Ej+1-Nep P)+ Neo oo ( )d§
Z| S 4n£

(2.9)
ZEO(EJ*NCD - EJ'Jrl*NCD 0

F—ri2

wherer is on j!" DD interface § = Nep+1,Ncp + 2, . .., Nep + Npp) under consideration antis
outward pointing unit vector. Using equatioris [2.8) ang)dt is once again possible to construct



a system of algebraic equations as[in](2.4). After obtaititg charge densitpr from this set of
equations, potential and field at any point for a given pnobban be easily obtained by evaluating
equations[(2]5)[(2.6) anfl (R.7). As in single dielectrisegahe expressions in both setting up the
influence coefficient matrix and subsequent evaluation t#r@l and field are exact solutions as
discussed above.

3. Physical potential and field distributions

The precision, flexibility and robustness of neBEM solvevehbeen demonstrated by simulating
potential and field distributions of several gaseous detedf diverse nature. The MultiWire Pro-
portional Counter (MWPC) is one of the major gaseous deteabearlier generation with many
variants of it still being implemented in various experirteeThe analytic solutions used for calcu-
lating electric field in a MWPC are valid for only 2D geometlyd] and thus not expected to deliver
realistic estimates where the 3D effect is significant. TEBBEM solver has been used to study in
detail the potential and electric field distributions colesing several geometrical variations, par-
ticularly the inclusion of side plates and change of detelgogth. Comparison with analytical
values has been made in order to demonstrate the accurasflas\the advantage of using a 3D
solver like neBEM.

The other class of gaseous detectors studied in this workvisgeneration MicroPattern Gas
Detectors (MPGDs) where simulation of electrostatic camfigjion is particularly crucial owing
to their multiple dielectric configuration and presence afltiple length scales. Three popular
types of MPGDs, namely MicroStrip Gas Chamber (MSGC), nitiEsh GAseous Structure (mi-
croMEGAS) and MicroWire Detector (MWD) have been dealt wittorder to simulate their elec-
trostatic configurations. The accuracy of the results has lbenfirmed by comparing them with
existing 2D BEM for MSGC [11] and with 3D FEM results for midd&EGAS and MWD [1R].

The presence of closely spaced surfaces in gaseous dstedtftormultiple dielectrics like Re-
sistive Plate Chamber (RPC) is known to give rise to numkciaaplexities in conventional BEM
calculation. Special formulations are devised out to hautlé difficulties, whereas the neBEM
does not need any such manipulation. The efficacy of the isbhs&been demonstrated by compar-
ing its results to that produced by several such formulationa multiple dielectric geometry [13].
The accuracy of the solver has been confirmed by comparimgsitsts for weighting potential and
field to the analytic solutions for configuration with onelddric layer [1#] before extending it to
simulate the electrostatic configuration for a detailedisgéa geometry of RPC.

4. Weighting potential and field distributions

The neBEM solver has as well been implemented in studyinghtigig potential and field in sev-
eral detectors. The weighting field calculation turns odtg@qually important in terms of accuracy
when signal generation in a gaseous detector is studiemhiioly Shockley-Ramo theorer ]15] 16].
According to the theorem, current induced on an electrodéeanritten as

i(t) = eN(t)Vb (t).Ew(X(t)) (4.1)
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Figure 1. Potential contours on the centbaY-plane at 2000 in MWPC

when a charge clustesN(t) moves with a drift velocity (t) = X(t) whereEy(X(t)) is the weight-
ing field due to specific electrode under study at a locatigh@tlusteX(t). It is to be noted here
that the weighting field can be obtained when the readoutrete is set to unit voltage keeping
all other electrodes grounded.

The 3D weighting potential and field distributions have beardied in a Time Projection
Chamber (TPC) for a realistic geometry. Results for a sifiepli2D strip detector neglecting
presence of anode wires altogether having an analyticisolare often used as an estimate for
Ew. This, however, can not be considered to be accurate fostieal PC geometries. Another
set of expressions most commonly used for design and asalf/piad chambers is obtained using
conformal mapping methods and semiempirical techniques €guation (7) of[[17]). While they
turn out to be very useful for most of the circumstances threyimited by certain assumptions,
for example, the presence of two cathode planes on eitherogidnode wire plane. The presence
of anode wires, cathode wire plane and the effect of openosed geometry have been studied to
examine 3D effect on the weighting field configuration. A $amstudy has been carried out for a
RPC which may be useful in simulating induced signal of theade

5. Results and discussions

5.1 Multiwire Proportional Counter (MWPC)

A MWPC consists of an anode plane made of very thin equispa@ed. On both sides of anode,
cathode planes equipped with readout pads or strips arecpléchigh voltage is applied to anode
plane while cathodes are maintained at ground potentighelpresent calculation, geometry of the
MWZPC consists of 11 anode wires with diametepn®and pitch 2nm stretched iXX Z-plane. Two
continuous conducting cathode plates, parallel to ancaleesl have been placed at a gaprof2
with respect to anode on either sides. The dimension of ttextie is 24nmx 4mmx 100cm, with



length much larger with respect to other dimensions toraftBi behavior at centra{Y-plane. The
potential contours on centr&lY-plane across anode or cathodes are shown in fijure 1 asatattul
with neBEM at anode voltagek¥.

350

‘ ‘ | | | The variation of electric field in close

A e wihe: X = omm proximity to anode wires has been studied

soo0f neseM: Cortral e = o with neBEM. The field values in this region
are crucial since they determine avalanche

[
Third wire: X = 6mm a
Edge wire: X = 10mm °

With sides,Edge wire: X = 10mm ~~&--

3 size in active volume of the MWPC. The
u% results of electric field calculated within a
S¥eq, range of 1- 40um near an anode wire have
w00l “’8§§§g§§gﬁw | been compared with that produced by ana-
I . lytic solutions using GARFIELD[[10]. In
X T 2w 3 0 3 w0 a5 w0 figure [2, variation of normal component of
v m electric field on centraXY-plane at anode
Figure 2. Normal component of electric field on the cenvoltage XV is plotted. The values are de-
tral XY-plane at RV in MWPC picted for three different wires, namely, the

central, third and fifth wire (edge) on right
hand side. It is evident from figufé 2 that the field values arieeceven (within 015%) for all the
wires except the edge wires where an increase of about 9%sé&\ail with respect to the central
or the third wire. The neBEM has produced an excellent agea¢mithin Q001% to 2D analytical
values at centre of the geometry (for central wire) whiledHference is less than@% at edge.

The electrostatic field values have been studied for a widati@n of aspect ratio} (length

divided by breadth), ranging from 4Dto 125. However, no significant effect of aspect ratio on the
field has been observed for the present geometry. To studsfféwt of closed geometry, grounded
plates on the right, left, front and back sides of the detegpgmmetry have been considered. The
results of field calculation are same as before for all thesvexcept the one at edge. The values
at edge for closed box geometry (illustrated by open box syrmbfigure [2) are larger by.2%
with respect to earlier results observed in case of open geggmThe presence of side plate is
presumably the reason of increase in field values observadeatkge wire. The other results are
not included in the figure to avoid too many data points.

5.2 MicroStrip Gas Chamber (MSGC)

MSGC is a detector in which wires of the standard MWPC areasal by lithographically pro-
duced strips on solid substrates. The geometry of a typicaGK consists of many anode and
cathode strips laid alternately on a substrate. A drift nauis added before electrodes with a
drift electrode placed above. High voltage is supplied thha@des and drift electrode in order to
generate a drift field. In the present calculation, 10 cagharad 9 anode strips have been consid-
ered stretched iX Z-plane with a pitch of 300m. The width of the strips are 1@6n and 1Qum
respectively for the cathode and anode. Two conductingglat dimension mx 2mm parallel

to anode-cathode plane, have been included as drift plashdark plane at a distance ofmén
on either sides. The cathode strips and drift plane have pemided with—0.6kV and —1kV
respectively while anodes and back plane with ground pialefithe potential contours on central
XY-plane as calculated by neBEM with a vacuum substrate @diedeconstant D) is presented
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Figure 3. Potential contours on the centbaY-plane with a vacuum substrate in MSGC

Substrate | Thickness| neBEM | 2D [[L]
(M) | (kv/mm) | (kv/mm)

Vacuum 500 32.70 32.7
100 35.47 35.6

Glass 500 32.73 325
100 36.91 36.9

Table 1. Comparison of total electric field at the centre of the anodd$GC

in figure[3. A comparative study of electric field has been maeteveen the present results and
2D calculation following charge simulation meth¢d][11].the geometry, two different substrates,
namely vacuum and glass (dielectric consta@),chave been considered each with two different
thickness, 10@m and 50um. The cross-sections used in the neBEM calculation have ineeie
identical to that used in 2D calculation ih [11]. The drifapk is placed dmaway from anode-
cathode plane and provided with a voltage-8kV. The electric field values at the centre of the
anode for different geometrical conditions are tabulatedable[]. It is evident from the table
that electric fields estimated by charge simulation methatlyy neBEM are almost identical. The
maximum relative deviation is aboutf@s with respect to the earlier 2D calculation. This small de-
viation can be attributed to the facts that the present tatlon is 3D in nature and the formulations
of two methods are significantly different.

5.3 MicroWire Detector (MWD)

MWD is one of the various micropattern gaseous detectoisetmerged with advent of printed
circuit technology. It is made of a lithographically proédccathode mesh of square holes on
one side of a kapton foil and anode strips on the other, rgnaiong the middle axis of cathode
mesh holes. The kapton is used in a manner to provide a meah#int between anode strips and

—10 -
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Figure 4. Total electric field contours on the centiY-plane in MWD

cathode mesh of square holes. The detailed structure afe¢téstor has been described|[in [L2, 18].
In the present work, the same geometry as discuss¢d]in [$2jéen used to pursue the calculation
using neBEM, the only difference being the shape of kaptdnlfdnas been considered rectangular
instead of trapezoidal as can be found(if [12]. A drift plae been considered 788 away from
anode strip with a voltage 1.11kV following [[L3]. The total electric field contours in centdéy-
plane across anode or cathode plax¥-plane) are shown in figufg 4. The variation in total electric
field along the axis passing through the mesh hole is illtestran figure[p. The FEM calculation
(using ANSYS) [1P] for the same is depicted as well in the figur

200 ‘ ‘ ‘ ‘ ‘ ‘ ‘ The comparison between neBEM and
w0 | "FEM - | FEM results yield the following. (i) Overall
160 | 1 trend of variation is similar for both the re-
140 ¢ sults. (i) In near-field region, neBEM over-
estimates by 3% (w.r.t.FEM) on positive
side and by 122% on negative side of an-
ode strip. (i) In far-field region, neBEM
once again overestimates electric field in

120
100 -

E (kV/cm)

80 r

60 -

40 r

20 1 \\\ 1 comparison to FEM solution. (iv) Finally,
%0 o 100 20 00 a0 oo s 700 variation in neBEM results is found to be
v smooth and free from the jaggedness evi-
Figure 5. Total electric field along the axis of the squarélent in FEM solution (please refer to MWD
hole of the cathode mesh in MWD figure centerfield.gifin [[L2]).

The difference between neBEM and
FEM can be attributed to several factors. For example[ih [[8 Neumann boundary condi-
tion has been used on lower boundary of FEM computationalaidtenSimilarly, upper boundary
of FEM domain has been artificially terminated by drift pldmdd at a constant voltage. In ad-
dition, symmetry condition on other boundaries has beennasd implying an infinite number of
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Figure 6. Total electric field contours on the cent¥aY-plane in microMEGAS

microwire units on a plane. On the other hand, in our modelhaxge no artificial truncation of
boundary in any direction. Instead of invoking symmetry asducing the problem to a periodic
one, we have considered a3 matrix of microwire units and retained 3D nature of the feoh
Finally, in order to estimate potential and field at any aabit point, closed form analytic influence
coefficients have been used without taking resort to anygotation or extrapolation or numerical
differentiation.

5.4 microMEsh GAseous Structures (microMEGAS)

The microMEGAS is another example of micropattern gaseetectbr where a thin metal grid is
used as a cathode at a very small distance above an anodatretbtrode. Before the micromesh,
a drift volume is added by using a drift electrode on the towe#y high electric field is generated
across the gap between cathode mesh and strip. Reguladgdspapports of insulating fibers or
pillars are used to guarantee uniformity of the gap. One oasgicroMEGAS from [1R,[19] has
been taken under consideration for studying its electtiostanfiguration using the neBEM. The
planes of anode readout and cathode mesh have been codgimkedn X Z-plane. A single anode
strip of thickness Fm placed on an epoxy substrate of dielectric constahta®d cathode mesh
with 7 holes across and 21 along the anode strip have beerdewts in neBEM calculation. A
drift electrode placed 428m away from mesh with a voltage 0.51kV has been considered in
order to produce a drift fieldk¥/ /cm approximately, following the FEM model. The contours of
total electric field in centraKY-plane across anode or cathode plane are illustrated ireffur
Along axis of the mesh hole variation of electric field for el values of amplification gap is
depicted in figurd]7. In addition, figui¢ 8 shows the plot ofdfiehlues on anode surface as a
function of amplification gap. A quantitative comparisortvibeen the two sets of results can be
made from figurd]8. The maximum difference between two resadturs when amplification
gap is the smallest{5.9%) w.r.t FEM result. Two results are almost identical whas gap is in
medium range while at the largest amplification gap gfi@bthe difference is found to be ®%
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Figure 8. Normal electric field at the centre of the anode surface imroMEGAS

w.r.t FEM result. The disagreement between the values cattfileuted to reasons similar to those
discussed in the earlier subsection.

5.5 Time Projection Chamber (TPC)

The weighting potential of a TPC is normally calculateddeling a simple closed-form expression
that exists for a 2D strip detector which consists of two aatithg plates separated by a distance,
d, and one of the plates segmented with strips of walthith no gap among thenf [R0]. It can be
written as

o(X,y) = 7—1T(arctar‘(tanh(B) -tan(y)) — arctan(tanh(a) - tan(y))) (5.1)
where
. x—a/2 ,  x+a/2 Yy
A=Tag P=mog V="
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Figure 9. Weighting potential distribution on the centb&Y-plane in TPC

The width of strip is laid alongK-direction. This formulation neglects the presence of eneites
altogether and can not be accurate for the geometry of sstiealiPC. The weighting potential
for idealized geometry of a strip detector calculated byEEBhas agreed perfectly with analytic
expression. However, when a wire plane is inserted inbatilee plates, weighting potential dis-
tribution in centralXY-plane has been found to be significantly different throughihe difference
being very large near anode wire. It should also be notedithah upper cathode plane is replaced
by a wire plane, it does not affect weighting potential disttion of figure[pP along the chosen
direction passing through a grounded cathode wire. The adsgn of weighting potential for
idealized as well as realistic geometry with analytic soluis depicted in figurg]9. In the realis-
tic geometry, altogether 11 strips on lower cathode lyini #xplane have been considered, each
having a width of jamwith no gap inbetween them. The distance between two catpledes is
10mm The dimension of each of the planes has been maderb515cmin order to achieve 2D
characteristics in the mid-section of the device. A wirengl@ontaining 11 wires with diameter
25um and pitch $nm each passing through middle of the strips, has been coadids an anode
plane placed between the cathode planes. The upper cathodgde of similar wire plane with
thick wires of diameter 1Q0m. The 3D effect has been presented in terms of weighting faten
estimates obtained at edge of the geomeXry=(2.5cm). The result is included in figurgé 9 which
shows a significant edge effect.

The components of weighting electric field as per idealizedi r@alistic geometries are illus-
trated in figurd 30. Comparison with analytic solution destoates a significant departure of field
values in both cases when the realistic geometry is coreider

5.6 Resistive Plate Chamber (RPC)

The expressions for weighting potential and electric fiedtlehbeen derived for an infinite plane
condenser comprising of one or three homogeneous dieldayérs [14]. The analytic representa-
tion of weighting potential for a single dielectric configtion with a dielectric layer sandwiched
between two conducting planes one of which is segmentechimaber of strips can be expressed
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Figure 10. Weighting electric field components on the centplane in TPC

as

) — \7—/T [arctan<C0t<g—g> tanh<7TX +2\|IDV/2> ) _ arctan<cot<g—g> tanh(’TX _2\|IDV/2> 25]2)

wherew is the width of a strip alon&-direction and the height of dielectric layer iM-direction.

It is assumed that strips are placed in a continuous manremeigap inbetween thenV. is the
potential applied to the specific strip for which weightingigntial and field would be studied with
all other electrodes kept at ground potential. It may bedbtre that the equatiof (b.2) is same
as equation[(5.1) which is valid for a 2D strip detector. Téason of the difference between two
expressions is related to geometry of the systems. In caR®6f lower electrode is segmented
whereas in TPC, it is the upper one that contains the stripsséuently, components of the
electric field can be written as

£ _ l{ sin(yrt/D) B sin(yrt/D) ] (5.3)
X 2D | cosi{m(x—w/2)/D) —cogyrn/D)  coshm(x+w/2)/D) — cogym/D) '
£ _ 2 sinh(ri(x—w/2)/D) sinh(ri(x+w/2)/D) (5.4)
Y7 D [cosr(n(x—w/Z)/D) —cogyr/D)  cosHm(x+w/2)/D) —cos(yn/D)} '

The solver has been validated by estimating weighting piaiefor a single dielectric geometry for
which analytic representation of weighting potential iaitable from equatior{ (5.2). The geometry
has comprised of two conducting plates separated by a destémm Altogether 3 strips of width
3cm have been considered ¥iZ-plane with length 56min Z-direction. The nature of dielectric
is irrelevant to mention since it has no effect on weightingeptial. The comparison of weighting
potential on centraKY-plane across dielectric layer, as calculated by neBEMstanalytical rep-
resentation following equatiof (%.2) is depicted in figuile A close agreement (within@01%)
between two results has been observed.

Similarly, the variation of weighting field components ajonidth of the strip has been com-
pared to their analytical representations expressed iatems [5.B) and[(514). The results are
illustrated in figurd 12 which demonstrates that neBEM camlpce weighting field values in cen-
tral plane with an accuracy abouf001% for a system having single dielectric layer.
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A common geometry of a RPC containing more than three digtdetyers has been consid-
ered for studying its electrostatic configuration using B&B In the calculation, a gaseous layer
(permittivity 1.000513, equivalent to Argon gas) of thicknessrisandwiched between two glass
layers (permittivity 775, equivalent to float glass) of same thickness has beeldeved. A thin
coating of graphite 150m thick has been applied on outer side of glass layers to maiathigh
voltage between the layers. It should be noted here thadtirétsi of graphite layer is normally
chosen so that this surface does not shield discharge $ignakxternal readout strips but is small
compared to the resistivity of glass to provide a uniformeptill across entire surface. For cal-
culation of weighting potential and field, graphite layesthseen considered as a dielectric with
permittivity 120 whereas it has acted as a conductor in case of physicaltigbtend field com-
putation. Outside graphite layers, readout strips hava beasidered to be lain on both sides at a
distance of 10Qm from graphite layer. IrX-readout plane, total 5 strips of widtlti® have been
laid in XZ-plane with length 50min Z-direction with inter-strip spacerdmwhile theY-readout
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Figure 14. Physical normal electric field on the centkY-plane at 8&kV in RPC

plane has been considered continuous. Variation of nororaponent of weighting electric field
on centralX Y-plane is shown in figurg 113.

The normal component of real or physical field of realistiofagguration described above has
been computed with neBEM. The 3D representation of the filtlistrated in figuré 14 calculated
at a high voltage of 8kV.

Precision of the neBEM solver has been amply demonstratsdlising the MWPC, TPC and
RPC problems where we have compared the solver with exabttiansolutions. Since analytic
results are derived considering 2D geometries, we have leddee problems such that the two
dimensionality is maintained despite the use of neBEM wiich 3D solver. Since the prob-
lems are very precisely stated while deriving analytic sohs, it has been relatively easy for us
to replicate the conditions. The exact match between doagtutions and neBEM results (dif-

—17 —



ferences< 0.01%) with quite coarse discretization testifies to the dgoélaccuracy achievable
using neBEM. Flexibility and robustness of the solver hagerbdemonstrated by comparing its
results with other numerical solutions, namely, chargauttion method (2D) and FEM (3D). In
these cases, itis difficult to replicate computational niedeed in other solvers exactly because of
differences in formulation and features that are charetieiof specific methods. In addition, we
did not feel it necessary to make meticulous copy of the atihealels because the precision of the
solver has already been demonstrated and it was not negéssaproduce the exact numbers ob-
tained using the other solvers. In these comparisons, we thigd to show that neBEM can solve
complicated realistic configurations and obtain reasanadsults using moderate computational
resources as mentioned below.

5.7 Computational resources

The computation of electric potential and field of variouseyaus detectors has been carried out
in a 64— bit AMD Athlon Desktop with 18GHzclock speed, DGB RAM, running Fedora Core

5. The GNU Scientific Library has been used to carry out catauis involving complex numbers
and gnuplot to generate the figures. It may be noted that weer@wsed any commercial packages
in any part of the work.

6. Conclusions

Using neBEM solver, it has been possible to estimate 3D fiatesind electric field in several
gaseous detectors. The accuracy, flexibility and robustatthe solver have been demonstrated
by comparing its results with existing analytic, 2D BEM aridl BEM results. Despite having large
length scale variation (1 : #pin complicated configurations having multiple dielectagers, the
solver has yielded results that are precise and reliablggusimmonly available computational
hardware resources and free open source software. It sheuttkentioned here that without invok-
ing any symmetry or using any memory or computation timergatechnique in neBEM, detailed
3D results with competing accuracy could be achieved witldenately coarse discretization for
all these gaseous detectors. Since detailed simulatioms#ays detector begins with computa-
tion of electrostatic configuration within the device angeleds very critically on the accuracy of
estimated electric field at any arbitrary point within a givdevice, neBEM solver is expected to
contribute significantly in carrying out thorough analysfsgaseous detectors. This is even more
true for new generation gaseous detectors equipped wittiscale geometry as well as various di-
electrics where FEM calculation can produce erroneoudtsasue to the use of stringent boundary
conditions applied on artificially truncated boundariest tmay affect near-field estimates as well.
FEM estimates of potential and field for complicated geoynedin also negatively be influenced by
its nodal nature of solution and the necessity of polynommigrpolation and differentiation. This
is even more true in the regions of interest of gaseous aetedtere these properties are liable to
change very fast. The neBEM being a solver based on BEM caniniédk account the influence of
all the components present in a realistic geometry and ghaly effect on the final electric field
which leads to more reliable results. The advantage of BEihftation coupled with the accuracy
made available by analytic solutions of potential and elefield used in the neBEM has empow-
ered this solver to excel in terms of precision and flexipildr electrostatic simulation of gaseous
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detectors compared to other existing solvers. The solveatsn compute 3D weighting potential
and field which facilitate simulation of charge/signal icdd on any electrode of a detector due to
the passage of an ionizing particle through a detector. Ther melevant factors like drift veloc-
ity, avalanche multiplication etc. can be estimated usifiEB, MAGBOLTZ, GARFIELD [10]
which can lead to a complete simulation of the performanangfgaseous detector.

The difficulty with the present method is the solution of dyfglopulated matrix which can be
solved by using various techniques. This aspect is unddy $tustill reduce current computational
expense.
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