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In reference [1], the authors presented the so-called non-dimensional dynamic in#uence
function method for membrane vibration. A regular formulation and singularity-free
method were obtained. Also, a symmetry and meshless formulation can be achieved. The
auxiliary system is a complementary solution instead of fundamental function. It is source
free in the in#uence function. Many successful examples of the Dirichlet types were
demonstrated. It seems that this method is very attractive. However, this method can be
treated as one kind of the Tre!tz method [2}4]. Based on the dual formulation developed
by Chen and Hong [5, 6], the in#uence function is nothing but the imaginary part of the
fundamental solution (;(s, x)"iH(1)

0
(kr)) [7]. The method by Kang et al. [1] can be treated

as a special case of the imaginary-part dual BEM. Also, the real-part dual BEM was
developed and many references can be referred [8, 9]. MRM formulation can also be viewed
as a real-part formulation and its occurrence of spurious eigenvalues have been found in
references [10}15]. It is well known that the real-part, imaginary-part formulations and
multiple reciprocity method all result in spurious eigensolutions. Particularly, the
imaginary-part formulation also results in an ill-posed problem since the condition number
for the in#uence matrix is very large. Many approaches have been employed to "lter out the
spurious solutions and extract the true solution, for example, residue method [11, 12],
singular-value decomposition (SVD) technique [9, 13}15], generalized singular-value
decomposition (GSVD) technique [16] and domain partition technique [17]. It is expected
that the Kang's method has the problems of spurious solutions and ill-conditioned behavior
since it is an imaginary-part formulation. However, no such information was addressed.
Some points will be discussed as follows.

(1) Spurious eigensolution: It is interesting to "nd that all the examples in reference [1]
are of the Dirichlet type. According to the theoretical derivation, the Neumann problem has
the problems of spurious solutions using the imaginary-part formulation. We will prove
that in the following.

As mentioned earlier, spurious eigenvalues occur in the real-part of MRM formulation
[9, 11, 12]. Also, the imaginary-part BEM results in spurious solutions [7]. Here, we will
derive the true and spurious solutions in the discrete system analytically for a circular
domain by using the non-dimensional in#uence function method [1] and the
imaginary-part dual BEM [7] in a uni"ed way. The degenerate kernels and circulants are
employed to study the discrete system in an exact form. The relation between the
non-dimensional in#uence function method and the imaginary-part dual BEM is also
addressed and is summarized in Table 1. The symbols in Table 1 follow the dual model of
Chen and Hong [6].
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TABLE 1

Comparisons of non-dimensional in-uence function method and the imaginary-part dual BEM

Non-dimensional
Imaginary-part dual BEM dynamic in#uence function

Method by Chen et al. [6] by Kang et al. [1]
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n
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¸M method: J
n
(ko)"0
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n
(ko)"0*
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*Example is available in reference [1].
sExample is not available in reference [1].
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If the imaginary-part dual BEM is employed, the dual boundary integral equations are
obtained as follows [7]:

0"P
B

¹I(s, x)u (s) dB(s)!P
B

;I(s, x)t(s) dB (s), (1)

0"P
B

MI(s, x)u (s) dB(s)!P
B

¸I(s, x)t (s) dB(s), (2)

where u and t are the potential and its normal derivative, the four imaginary-part kernels in
the dual formulation can be expressed in terms of degenerate kernels [7, 18, 19] as shown
below:
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in which J is the Bessel function of the "rst kind, x"(o, /) and s"(o, h).
For the non-dimensional in#uence function method, the representation for the solution

can be expressed as
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where A
j
and B

j
are the generalized unknowns using the;¸ and ¹M methods respectively.

For simplicity, we consider the same problem of a circular domain in reference [1]. By
superimposing 2N constant source distribution, u or t (or concentrated strength, A

j
or B

j
)

along the real boundary with radius o and collocating the 2N points on the boundary with
radius o, we have
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where [;I], M¹I], M¸I], and [MI] are the in#uence matrices with the elements shown
below:
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in which Dh"2n/2N, h
m
"mDh and

S"G
oDh for the imaginary-part dual BEM by Chen et al. [7],
1 for the non-dimensional influence function method by Kang et al. [1].

(17)

For the non-dimensional in#uence function method, S is reduced to one since
distribution is lumped on the concentrated point. The matrices, [;I], M¹I], M¸I] and [MI],
are found to be in circulant forms since rotation symmetry for the in#uence coe$cients
exists. By introducing the following bases for the circulants [20]: I, C1

2N
, C2

2N
,2, C2N~1

2N
, we
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can expand the four matrices into
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where the superscript &&I'' denotes imaginary part and [I] is a unit matrix and
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Based on the similar properties of the matrices of [;I], M¹I], M¸I], MMI] and [C
2N

] the
eigenvalues can be derived as shown below:
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where jl , kl , ll and dl are the eigenvalues for [;I], M¹I], M¸I] and [MI] respectively, and
al are the eigenvalues for the matrix [C

2N
]. It is easily found that the eigenvalues, a

n
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eigenvectors, M/N
n
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] are the roots for a2N"1 as shown below:
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Substituting equation (27) into equation (23), we have
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According to the de"nition for a
m

in equations (3) and (13) we have
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Substituting a
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in equation (13) into equation (31), we can transform the Riemann sum to
the following integral:

jl+
2N~1
+

m/0

cos(mlDh); (mDh, 0)S"P
2n

0

cos(lh); (h, 0)o dh
S

oDh
(32)

as N approaches in"nity. By using the degenerate kernel for ;I(s, x) in equation (3),
equation (32) reduces to
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where kl , ll and dl are the eigenvalues of [¹I], [¸I] and [MI] matrices respectively. Since
the wave number k is imbedded in each element of the circulant matrices, the corresponding
eigenvalues for the four matrices are also functions of k. Finding the eigenvalues for the
Helmholtz eigenproblem or "nding the zeros for the determinant of the circulants is equal
to "nding the zeros for the multiplication of all their eigenvalues. The determinant can be
obtained as follows:
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Since the alternating properties for the Bessel function can be obtained, i.e.,
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Equation (37)}(40) can be reduced to
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The squared terms in equations (43)}(46) imply that double roots occur for jl when
l"1, 2,2, N!1. In order to verify that either Jl (ko)"0 or J@l(ko)"0 is a true
eigenequation, the dual formulation (UT#LM or UL#TM) is needed to distinguish the
true and spurious solutions.

The possible (true or spurious) eigenvalues occur at

Jl (ko)Jl (ko)"0, l"0,$1,$2,2, $(N!1), N (47)

for the Dirichlet problem using the ;¹ method [7] or the ;¸ method [1] since the
determinant of [;I] matrix is zero using equations (33) and (37).

For the ¸M method [7] or the ¹M method [1], the possible (true or spurious)
eigenvalues occur at

Jl (ko)J@l (ko)"0, l"0,$1,$2,2, $(N!1), N (48)

for the Dirichlet problem since the determinant of [¸] matrix is zero using equations (35)
and (39).

After comparing the results from the dual formulation in equations (47) and (48), we can
determine the true and spurious eigenequation for the Dirichlet problem as follows:

True eigenequation: Jl(ko)"0, l"0,$1,$2,2, $(N!1), N, (49)

Spurious eigenequation: J@l (ko)"0, l"0,$1,$2,2, $(N!1), N. (50)

Equation (47) indicates that the Kang's method fortunately results in a spurious solution
which is the same as the true solution for the Dirichlet problem. The reason why Kang et al.
did not "nd the spurious solution is that only the Dirichlet cases were considered. However,
it is not the case for the Neumann problem. Similarly, we can extend the Dirichlet problem
to the Neumann problem for demonstrating that the spurious solutions occur in the Kang's
method.
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After comparing the results obtained by the dual formulation, we can summarize the
spurious eigenequations for both the Dirichlet and Neumann problems:

Jl (ko)"0 using the ;¹ or the ;¸ equation, (51)

J@l(ko)"0 using the ¸M or the ¹M equation. (52)

The true eigenequations using the ;¹(;¸) or the ¸M(¹M) method are found to be

Jl (ko)"0 for the Dirichlet problem, (53)

J@l (ko)"0 for the Neumann problem. (54)

To demonstrate the above points, Figure 1(a) shows the condition number versus k using
the real-part BEM (N"5) for the Dirichlet problem. A spurious eigenvalue can be found
from the position where the local maximum of condition number occurs. For the
imaginary-part BEM, no spurious eigenvalues occur as shown in Figure 2(a) using N"5.
For the Neumann problem, Figure 3(a) also shows that spurious eigenvalues appear using
the real-part BEM (N"5). It is emphasized that the imaginary-part BEM (N"5) results in
spurious eigenvalues for the Neumann problem as shown in Figure 4(a). This interesting
case was not found in Kang's paper since they did not deal with the Neumann cases. As
N becomes large, ill-posed behavior occurs and will be discussed analytically in the
following.

(2) Ill-conditioned behavior: The Kang's approach is an ill-posed model since the
determinant is found to be very small of order, 10~40, 10~100, 10~120, using the direct
search method as shown in Figures 4, 7 and 12 in reference [1] respectively. The inverse for
the SM matrix may be di$cult to computation. The range of k is set to be 2(k(9,
4(k(11 and 3(k(7 in Figures 4, 7 and 12 of reference [1], respectively. According to
the analytical study for a circular case, the ill-posed problem occurs seriously if the range of
k is small since the condition number can be determined analytically by

C
n
"

max(h
1
, h

2
,2, h

N
)

min(h
1
, h

2
,2, h

N
)
, (55)

where h can be j, k, l or i as shown in Eqs. (33)}(36). The ill-conditioned behavior becomes
more serious when the number of elements, 2N, is larger. The ill-posed problem was not
signi"cant in reference [1] since the maximum number of elements was only 24. Also,
a smaller increment for k value will make the determinant deteriorate more seriously. For
the Dirichlet problem, Figure 1(b) shows that the real-part BEM is not sensitive for the
condition number while the ill-conditioned behavior occurs using the imaginary-part BEM
(N"15) in Figure 2(b). It is fortunate that the numerical instability was not found in
Kang's paper since the maximum number of elements is 24 (N"12) only. For the
Neumann problem, similar results can be found in Figures 3(b) and 4(b). The local
maximum disappears in Figures 2(b) and 4(b) since the numerical instability occurs due to
ill-conditioned behavior for N"15. To overcome the ill-posed problem for larger values of
N, GSVD technique is one alternative [16].

(3) Multiplicity: To "nd the eigenvalues, the direct search method was employed in
reference [1]. Therefore, the multiplicity cannot be identi"ed. For the double roots, more
e!ort is required to "nd the non-trivial vector of A

j
. To solve this problem, the SVD



Figure 1. Condition number versus k using the real-part BEM for the Dirichlet problem. (a) N"5, (b) N"15:
T*true eigenvalue; s*spurious eigenvalue.
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technique can be employed to "nd the number of zeros for the singular values. The number
of zeros is the multiplicity. The boundary modes can be extracted from the unitary matrix in
SVD. To determine the true multiplicity, dual BEM is one alternative. More details can be
found in references [7, 9, 15]. However, the spurious multiplicity occurs since spurious
solution happens to be true for the Dirichlet case in reference [1].

(4) ¸imitation2 failure when applied to problems with a multiply connected domain: Since
the Kang's method has only the bases of J

0
(kr), we wonder whether the problem with

a multiply connected domain can be solved successfully. For the problems with impedance
boundary conditions and exterior problems with radiation conditions, the Kang's method



Figure 2. Condition number versus k using the imaginary-part BEM for the Dirichlet problem. (a) N"5:
T*true eigenvalue, (b) N"15.
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fails since no complex information is imbedded. We will prove the failure of the Kang's
method when applied to solve an annular example [21] in Figure 5. The inner and outer
radii are b and a respectively. For an annular domain with the Dirichlet boundary
condition, u

1
"0 and u

2
"0, the discretizing equation is reduced to

C
A

C

B

DD G
t
1
t
2
H"G

0

0H , (56)



Figure 3. Condition number versus k using the real-part BEM for the Neumann problem. (a) N"5, (b) N"15:
T*true eigenvalues; s*spurious eigenvalue.

166 LETTERS TO THE EDITOR
where A, B, C and D are found to be circulants in a similar way as in equations (9)} (12).
Similarly, we can decompose the four matrices into

[A]"[R][AM ][R]~1, [B]"[R][BM ][R]~1, (57, 58)

[C]"[R][CM ][R]~1, [D]"[R][DM ][R]~1, (59, 60)



Figure 4. Condition number versus k using the imaginary-part BEM for the Neumann problem. (a) N"5:
T*true eigenvalue, s*spurious eigenvalue, (b) N"15.
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where

[R]"[/
0
, /

1
,2, /

2N~1
] (61)

and AM , BM , CM and DM are the diagonal matrices with the following elements:

j *A+
l

"

!S

oDh
n2aJ2

l
(ka), j *B+

l
"

!S

oDh
n2bJ

l
(ka)J

l
(kb), (62, 63)



Figure 5. Helmholtz eigenproblem for an annular domain region.
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j *C+
l
"

!S

oDh
n2aJ

l
(ka)J

l
(kb), j *D+

l
"

!S

oDh
n2bJ2

l
(kb). (64, 65)

Then the determinant of the matrix

C
A

C

B

DD
can be obtained:

det K C
A

C

B

DD K"det K
AM
CM

BM
DM K det D[R]~1[R] D (66)
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"
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<
l/0
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l

j *C+
l

j *B+
l

j *D+
l
K

"

2N~1
<
l/0

S2

o2(Dh)2
(n2)2(ab)2J

l
(ka)J

1
(kb) K

J
l
(ka)

J
l
(ka)

J
l
(kb)

J
l
(kb) K .

Then we can obtain the possible eigenequations,

J
l
(ka)"0, J

l
(kb)"0, J

l
(ka)J

l
(kb)!J

l
(ka)J

l
(kb)"0. (67}69)

The three eigenequations, equations (67)} (69), are spurious since the true eigenequation
is [21]

J
l
(kb)>

l
(ka)!>

l
(kb)J

l
(ka)"0. (70)
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Particularly, equation (69) is found to be trivial. Obviously, only the imaginary-part bases
cannot solve the multiply connected problems. To deal with this problem, either the
complex-valued dual BEM or the real-part dual BEM can be employed to solve the true
eigensolutions. More details can be found in reference [22].

Concluding remarks: As mentioned by Kang et al. [1], the non-dimensional in#uence
function method can be &&expectably'' applied to the multiply connected problems and cases
with general boundary conditions. Based on the theories of degenerate kernels and
circulants, we have proved that the Kang's method fails for the two cases. For the multiply
connected domain problem of an annular region, three spurious eigenequations including
one trivial case were obtained. For the Neumann problem of simply connected domain, the
Kang's method was proved to have the problems of spurious eigensolutions. Also, the
ill-posed problems and multiplicity for the true eigenvalues were addressed. In order to deal
with the above di$culties, a series of works by NTOU-BEM Group can be found in greater
details from the references.

REFERENCES

1. S. W. KANG, J. M. LEE and Y. J. KANG 1999 Journal of Sound and <ibration 221, 117}132.
Vibration analysis of arbitrary shaped membranes using non-dimensional dynamic in#uence
function.

2. J. JIROUSEK and A. WROBLEWSKI 1996 Archives of Computational Methods in Engineering 3,
325}435. T-elements: state of the art and future trends.

3. Y. K. CHEUNG, W. G. JIN and O. C. ZIENKIEWICZ 1989 Communication Applied Numerical
Methods 5, 159}169. Direct solution procedure for solution of harmonic problems using complete
nonsingular Tre!tz functions.

4. Y. K. CHEUNG, W. G. JIN and O. C. ZIENKIEWICZ 1991 International Journal for Numerical
Methods in Engineering 32, 63}78. Solution of Helmholtz equation by Tre!tz method.

5. H.-K. HONG and J. T. CHEN 1988 Journal of Engineering Mechanics 114, 1028}1044. Derivations
of integral equations of elasticity.

6. J. T. CHEN and H.-K. HONG 1999 ¹ransactions of ASME, Applied Mechanics Reviews 52, 17}33.
Review of dual integral representations with emphasis on hypersingular integrals and divergent
series.

7. J. T. CHEN, S. R. KUO and K. H. CHEN 1999 Journal of Chinese Institute of Engineers 12, 1}11.
A nonsingular integral formulation for the Helmholtz eigenproblems of a circular domain.

8. J. T. CHEN 1998 Proceedings of the 4th=orld Congress on Computational Mechanics (E. Onate and
S. R. Idelsohn, editors), Argentina, 106. Recent development of dual BEM in acoustic problems,
keynote lecture.

9. J. T. CHEN, C. X. HUANG and K. H. CHEN 1999 Computational Mechanics 24, 41}51. Determination
of spurious eigenvalues and multiplicities of true eigenvalues using the real-part dual BEM.

10. W. YEIH, J. T. CHEN, K. H. CHEN and F. C. WONG 1998 Advances in Engineering Software 29,
7}12. A study on the multiple reciprocity method and complex-valued formulation for the
Helmholtz equation.

11. J. T. CHEN and F. C. WONG 1997 Engineering Analysis with Boundary Elements 20, 25}33.
Analytical derivations for one-dimensional eigenproblems using dual BEM and MRM.

12. J. T. CHEN and F. C. WONG 1998 Journal of Sound and <ibration 217, 75}95. Dual formulation of
multiple reciprocity method for the acoustic mode of a cavity with a thin partition.

13. W. YEIH, J. T. CHEN and C. M. CHANG 1998 Engineering Analysis with Boundary Elements 23,
339}360. Applications of dual MRM for determining the natural frequencies and natural modes
of an Euler}Bernoulli beam using the singular value decomposition method.

14. W. YEIH, J. R. CHANG, C. M. CHANG and J. T. CHEN Advances in Engineering Software 30,
459}468. Applications of dual MRM for determining the natural frequencies and natural modes
of a rod using the singular value decomposition method.

15. J. T. CHEN, C. X. HUANG and F. C. WONG 2000 Journal of Sound and <ibration 230, 203}219.
Determination of spurious eigenvalues and multiplicities of true eigenvalues in the dual multiple
reciprocity method using the singular value decomposition technique.



170 LETTERS TO THE EDITOR
16. Y. C. WU 1999 Master thesis of Department of Harbor and Reiver Engineering, ¹aiwan Ocean
;niversity. Applications of the generalized singular value decomposition method to the
eigenproblem of the Helmholtz equation.

17. J. R. CHANG, W. YEIH and J. T. CHEN 1999 Computational Mechanics 24, 29}40. Determination
of natural frequencies and natural modes using the dual BEM in conjunction with the domain
partition technique.

18. J. T. CHEN 1998 Mechanics Research Communications 25, 529}534. On "ctitious frequencies using
dual series representation.

19. J. T. CHEN and S. R. KUO 2000 Mechanics Research Communications. 27, 49}58. On "ctitious
frequencies using circulants for radiation problems of a cylinder.

20. J. L. GOLDBERG 1991 Matrix ¹heory with Applications. New York: McGraw-Hill.
21. C. R. WYLIE and L. C. BARRET 1995 Advanced Engineering Mathematics. New York:

McGraw-Hill, sixth edition.
22. S. R. KUO, J. T. CHEN and M.L. LIOU 1999 Proceeding of the 23th National Conference on

¹heoretical and Applied Mechanics. A study of the true and spurious eigenvalues for the
Helmholtz eigenproblem of an annular domain. (in Chinese).
doi:10.1006/jsvi.2000.3145
AUTHORS' REPLY

S. W. KANG, AND J. M. LEE

Department of Mechanical Design and Production Engineering, Seoul National ;niversity 151-742,
Korea

(Received 28 October 1999, and in ,nal form 6 January 2000)
The authors take a great interest in Dr Chen's comment in which various problems related
to the application of our paper [1] have been addressed. The problems have been settled in
our own way immediately after publishing the paper. Correspondingly, the concerned
papers were submitted and will be soon published in well-known journal papers. Our
review opinion on the comment is as follows. Dr Chen largely pointed out the four
problems from our paper. (1) Spurious eigensolutions: it is correct that the spurious
eigensolutions are produced when the method using the non-dimensional dynamic
in#uence function has been extended to the Neumann problems. But in paper [1], the
subject of analysis of interest was limited within membranes, for which the Neumann
boundary condition is generally meaningless. In addition, how we settle this spurious
problem in acoustic cavities with the Neumann boundary will be addressed in a paper to be
published soon. (2) Ill-conditioned behavior: it is apparent that the NDIF method yields the
ill-conditioned behavior when the boundary nodes are increased to obtain higher order
modes. Note, however, that this problem is produced in the low-frequency range where
lower order modes exist, not in the high-frequency range. The reason is that too excessive
boundary nodes have been used to obtain lower order modes. Concretely speaking, in such
a case when too many nodes are used, the ill-conditioned behavior is observed in only the
low-frequency range and is out of the question because the converged eigenvalues for lower
order modes are obtained when decreasing the number of nodes. (3) Multiplicity: The
singular-value decomposition method has already been used in our past works (but the
results were omitted in paper [1]). In this case the capability of search of eigenvalues was
not good in the low-frequency range in comparison with the determinant searching method
( 2000 Academic Press
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