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Abstract

The Rayleigh–Ritz variational method is applied to the determination of the first four frequency coefficients for small

amplitude, transverse vibrations of circular plates with an eccentric, rectangular perforation that is elastically restrained

against rotation and translation on both edges. Coordinate functions are used which identically satisfy the boundary

conditions at the outer circular edge, while the restraining boundary conditions at the inner edge of the cutout are dealt

with directly through the energetic terms in the functional expressions. The procedure seems to show very good numerical

stability and convergence properties. As an added bonus, the method allows for increased flexibility in dealing with

boundary conditions at the edge of the cutout.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Although there is a large amount of papers on membrane vibration with holes in the open technical
literature, only relatively a few can be found for vibrating plates. A rather complete literature review on the
subject can be found in Ref. [1].

This paper focuses on a situation which may appear in real life vibrating systems. A degree of eccentricity in
an internal boundary may be required by a practical reason like passage of a cable or any other type of conduit
of smaller size than the circular plate. If, additionally, the cutout is meant to keep both sides of the plate
airtight, for example, then boundary conditions involving restraints against rotation and translation on both
edges of the plate will arise.

Previous work has shown that the use of coordinate functions that identically satisfy the boundary
conditions at the (outer) circular boundary has the added benefit of increased accuracy in finding the
frequency coefficients of vibrating circular plates with edges elastically restrained against rotation and
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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translation [2]. In this work, the problem of dealing with the restrained (inner) rectangular edges is tackled by
introducing the boundary restrains directly into the energetic terms of the functional expression, which
additionally provides a greater degree of flexibility. Rayleigh–Ritz procedure ensures that the approximated
solution will converge to the actual one for the system in hand. The numerical experiments seem to show a
greater degree of accuracy and an improvement in the convergence properties of the results.

2. Approximate analytical solution

In the case of normal modes of vibration of the vibrating system shown in Fig. 1, one takes

w0ðr0; y; tÞ ¼W 0ðr0; yÞeiot (1)

for the plate transverse displacement and then introduces the following approximation, convenient in the case
of both axisymmetric and antisymmetric modes of vibration, see for example Refs. [2,3]:

W 0ðr0; yÞ ffiW 0
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where a’s and b’s of each coordinate function are determined substituting each functional relation in the
governing boundary conditions at the external (circular) contour. For an elastically restrained edge against
rotation and translation, those conditions are:

kOW 0ða; yÞ ¼ Vrða; yÞ;
qW 0ðr0; yÞ

qr0
ða; yÞ ¼ fOMrða; yÞ, (3)

where Mr, Vr are the radial flexural-moment and shear-force, fO, kO are the elastic constants of the rotational
and translational springs at the outer circular boundary, and a is the radius of the circular plate.

Note that in Eq. (2) a term in sin(ky) has been not included. The reason is that, as shown in Ref. [4],
antisymmetric modes are already present in the cos(ky) term and, furthermore, when the analytical expressions
are written down for the geometry shown in Fig. 1 it is seen that any contribution to the functional coming
from the sinusoidal term vanishes due to the symmetry of the hole with respect to the x-axis.

The Rayleigh–Ritz variational approach requires minimization of the functional

J½W 0� ¼ UT ½W
0� � T ½W 0�, (4)
Fig. 1. Vibrating mechanical system. Case of an eccentric rectangular cutout with edges elastically restrained against rotation and

translation. In the figure, o and c are the centers of the circular plate and rectangular cutout, respectively.
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where T[W0] and UT[W
0] are the (maximum) kinetic and potential energies for the (true) displacement

amplitude W0 of the plate. The potential energy term in Eq. (4) can be written as

UT ½W
0� ¼ UP½W

0� þUB½W
0�, (5)

where UP[W
0] is the maximum strain energy of the plate and UB[W

0] is the sum of potential energies for the
translational and rotational springs at the outer boundary of the circular plate and the inner contour of the
rectangular cutout.

As has been shown elsewhere, see for example Ref. [5], in the case of a circular plate each term in Eq. (5) can
be written as
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where D is the flexural rigidity of the plate, m is its Poison ratio, and

T ½W 0� ¼
ro2h

2

ZZ
W 02r0 dr0 dy. (7)

The integrals in the expressions given in Eqs. (6) and (7) extend over the actual area of the double connected
plate under study, i.e. over the surface of the circular plate not including the inner rectangular hole of size a1
and b1 centered at x ¼ e, see Fig. 1.

The expressions for the potential energies of the restraining (linear) translational and rotational springs are
the well-known classical expressions
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where the first integration is to be taken along the path of the outer circular edge of the plate (OB) and the
second integral is to be taken along path of the inner boundary of the rectangular cutout (IB).

Introducing the non-dimensional variables:

W ¼W 0=a; r ¼ r0=a, (9)

all equations can be recast in a non-dimensional form. In this case, the elastic constants kO and kI of Eq. (8)
are transformed into the non-dimensional counterparts:

kOa3=D and kI a3=D,

respectively. Likewise, the rotational-spring elastic coefficients (1/FO) and (1/FI) are transformed into:

a=ðFODÞ and a=ðFI DÞ,

respectively.
Minimizing the governing functional with respect to the Ajk’s expression (4) yields an (J�K) homogeneous,

linear system of equations in the Ajk’s. A secular determinant in the natural non-dimensional frequency

coefficients of the system Oi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
oia

2 results from the non-triviality condition.

The present study is concerned with the determination of the first four frequency coefficients, O1 to O4, in
the case of circular plates with an eccentric rectangular cutout with both the external boundary of the circular
plate and the inner edge of the rectangular cutout elastically restrained against rotation and translation.

3. Numerical results

All calculations were performed for circular plates of uniform thickness simply supported and
clamped at the outer edge r ¼ a while the inner edge of the eccentric rectangular perforation was taken to
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be elastically restrained against rotation and translation. In all cases, the Poisson coefficient was taken to
be m ¼ 0.3.

A total of eight tables are presented. Tables 1 and 2 show a comparison between this work and a finite
element calculation [6] for the first three frequency coefficients. As can been seen from the tables the agreement
looks very good. Tables 3–5 depict values for the first four frequency coefficients for a rectangular cutout of
size a1/a ¼ 0.15 and b1/a ¼ 0.1 when the center of the cutout is displaced along a radial line of the circular
plate. Likewise, Tables 6–8 depict values for the case in which a square cutout of size a1/a ¼ 0.3 is being
Table 1

A comparison of frequency coefficients for the first three modes with a finite element (FE) calculation for different values of the inner non-

dimensional elastic constants of the translational and rotational springs

Outer circular

border

kI a3/D at the

inner edge

a/(FID) at the

inner edge

Method O1 O2 O3

Simply supported 0 0 This work 4.901 13.89 25.50

FE 4.870 13.77 25.07

N This work 5.070 18.01 26.22

FE 5.010 16.11 25.27

N 0 This work 14.51 15.91 25.51

FE 14.63 16.41 25.12

N This work 17.10 19.10 26.26

FE 16.45 18.04 25.61

Clamped 0 0 This work 10.25 21.25 34.71

FE 10.08 20.94 33.92

N This work 10.56 26.09 35.84

FE 10.38 23.83 34.22

N 0 This work 22.32 23.93 34.72

FE 22.47 24.50 34.00

N This work 25.93 28.49 35.91

FE 25.04 26.75 34.77

Case of a circular plate with rectangular cutout of size a1/a ¼ 0.15, and b1/a ¼ 0.1 centered at e/a ¼ 0.0.

Table 2

A comparison of frequency coefficients for the first three modes with a finite element (FE) calculation for different values of the inner non-

dimensional elastic constants of the translational and rotational springs

Outer circular

border

kI a3/D at the

inner edge

a/(FID) at the

inner edge

Method O1 O2 O3

Simply supported 0 0 This work 4.874 13.88 25.95

FE 4.770 13.52 25.09

N N This work 10.75 24.43 35.52

FE 10.25 23.67 30.86

Clamped 0 0 This work 10.31 21.77 35.88

FE 10.12 20.88 33.24

N N This work 16.42 33.38 44.56

FE 15.64 32.16 40.63

Case of a circular plate with square cutout of size a1/a ¼ b1/a ¼ 0.3 centered at e/a ¼ 0.5.
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Table 3

Values of the first four frequency coefficients in the case of a circular plate with rectangular cutout of size a1/a ¼ 0.15, and b1/a ¼ 0.1

centered at e/a ¼ 0.1 for different values of the inner non-dimensional elastic constants of the translational and rotational springs

Outer circular

border

kI a3/D at the

inner edge

a/(FID) at the

inner edge

O1 O2 O3 O4

Simply supported 0 0 4.908 13.89 25.51 29.60

1 4.920 14.01 25.53 29.72

N 5.114 18.26 26.82 32.58

1000 0 10.96 15.22 25.58 36.18

1 10.99 15.33 25.60 36.21

N 11.94 19.15 27.13 37.57

N 0 13.02 17.63 25.83 39.94

1 13.08 17.70 25.84 39.94

N 14.89 20.71 27.40 40.23

Clamped 0 0 10.20 21.25 34.73 39.63

1 10.23 21.39 34.75 39.79

N 10.65 26.92 36.71 44.23

1000 0 16.81 22.96 34.85 45.66

1 16.84 23.08 34.87 45.71

N 17.84 27.96 37.21 48.04

N 0 20.02 26.46 35.30 51.00

1 20.09 26.56 35.33 51.01

N 22.61 30.45 37.95 51.54

Table 4

Values of the first four frequency coefficients in the case of a circular plate with rectangular cutout of size a1/a ¼ 0.15, and b1/a ¼ 0.1

centered at e/a ¼ 0.5 for different values of the inner non-dimensional elastic constants of the translational and rotational springs

Outer circular

border

kI a3/D at the

inner edge

a/(FI D) at the

inner edge

O1 O2 O3 O4

Simply supported 0 0 4.935 13.91 25.67 29.67

1 5.006 13.92 25.69 29.79

N 6.751 14.52 26.25 32.98

1000 0 7.530 18.72 29.22 30.92

1 7.571 18.73 29.25 30.99

N 8.808 19.17 29.62 33.17

N 0 8.375 20.78 30.53 34.79

1 8.390 20.79 30.56 34.79

N 9.314 21.45 32.52 35.07

Clamped 0 0 10.23 21.35 35.02 39.73

1 10.33 21.39 35.04 39.81

N 13.05 23.24 35.80 42.27

1000 0 12.12 25.51 38.15 41.46

1 12.17 25.55 38.17 41.48

N 14.00 27.06 38.96 42.69

N 0 13.22 28.28 39.62 45.31

1 13.24 28.30 39.64 45.31

N 14.51 29.61 41.50 45.55

P.A.A. Laura, D.R. Avalos / Journal of Sound and Vibration 312 (2008) 906–914910
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Table 5

Values of the first four frequency coefficients in the case of a circular plate with rectangular cutout of size a1/a ¼ 0.15 and b1/a ¼ 0.1

centered at e/a ¼ 0.75 for different values of the inner non-dimensional elastic constants of the translational and rotational springs

Outer circular

border

kI a3/D at the

inner edge

a/(FID) at the

inner edge

O1 O2 O3 O4

Simply supported 0 0 4.932 13.90 25.64 29.71

1 5.041 14.02 25.72 29.73

N 7.182 18.47 28.77 32.51

1000 0 6.207 16.57 27.70 31.61

1 6.235 16.62 27.73 31.64

N 7.247 18.82 28.90 33.48

N 0 6.731 18.01 28.38 33.65

1 6.740 18.03 28.39 33.66

N 7.323 19.21 29.01 34.50

Clamped 0 0 10.19 21.25 34.92 39.81

1 10.26 21.41 35.07 39.87

N 11.81 25.64 38.06 43.90

1000 0 10.65 22.59 36.30 40.83

1 10.68 22.66 36.35 40.87

N 11.82 25.68 38.07 44.00

N 0 11.14 24.10 37.37 42.70

1 11.14 24.12 37.38 42.72

N 11.84 25.78 38.11 44.26

Table 6

Values of the first four frequency coefficients in the case of a circular plate with square cutout of size a1/a ¼ 0.3, centered at e/a ¼ 0.1 for

different values of the inner non-dimensional elastic constants of the translational and rotational springs

Outer circular

border

kIa
3/D at the

inner edge

a/(FID) at the

inner edge

O1 O2 O3 O4

Simply supported 0 0 4.759 13.78 25.11 30.21

1 4.857 14.08 25.21 30.66

N 5.828 23.02 30.50 41.14

1000 0 13.29 18.11 25.68 39.74

1 13.48 18.31 25.80 39.77

N 17.27 24.89 31.59 42.07

N 0 15.72 22.57 26.86 40.14

1 15.89 22.69 27.02 40.17

N 20.15 27.30 33.54 42.50

Clamped 0 0 10.27 21.09 34.13 40.81

1 10.42 21.43 34.26 41.30

N 12.32 33.41 42.42 54.41

1000 0 20.55 26.96 35.27 50.66

1 20.73 27.15 35.44 50.72

N 24.94 35.23 43.93 54.59

N 0 24.12 33.09 37.98 51.37

1 24.35 33.18 38.25 51.41

N 30.23 38.98 48.48 55.32

P.A.A. Laura, D.R. Avalos / Journal of Sound and Vibration 312 (2008) 906–914 911
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Table 7

Values of the first four frequency coefficients in the case of a circular plate with square cutout of size a1/a ¼ 0.3, centered at e/a ¼ 0.5 for

different values of the inner non-dimensional elastic constants of the translational and rotational springs

Outer circular

border

kI a3/D at the

inner edge

a/(FID) at the

inner edge

O1 O2 O3 O4

Simply supported 0 0 4.874 13.88 25.95 29.38

1 5.077 14.05 26.06 29.67

N 8.491 16.58 28.31 36.17

1000 0 8.443 20.69 30.74 34.06

1 8.514 20.71 30.87 34.09

N 10.46 22.79 33.79 37.03

N 0 9.025 22.00 31.90 36.34

1 9.087 22.03 32.00 36.38

N 10.75 24.43 35.52 40.35

Clamped 0 0 10.31 21.77 35.88 39.66

1 10.52 22.01 36.03 39.95

N 15.32 27.43 39.27 45.71

1000 0 13.36 28.34 39.74 44.24

1 13.45 28.37 39.85 44.29

N 16.09 31.51 43.18 47.31

N 0 14.14 30.26 40.85 47.17

1 14.22 30.32 40.96 47.20

N 16.42 33.38 44.56 51.60

Table 8

Values of the first four frequency coefficients in the case of a circular plate with square cutout of size a1/a ¼ 0.3, centered at e/a ¼ 0.75 for

different values of the inner non-dimensional elastic constants of the translational and rotational springs

Outer circular

border

kI a3/D at the

inner edge

a/(FID) at the

inner edge

O1 O2 O3 O4

Simply supported 0 0 4.902 13.87 25.81 29.64

1 5.163 14.20 26.06 29.80

N 8.103 20.97 29.74 36.51

1000 0 6.782 18.17 28.41 33.56

1 6.829 18.23 28.44 33.58

N 8.108 21.01 29.75 36.68

N 0 7.163 19.19 28.84 35.15

1 7.192 19.23 28.86 35.17

N 8.131 21.18 29.76 37.28

Clamped 0 0 10.13 21.31 35.21 39.96

1 10.26 21.52 35.35 40.04

N 12.77 28.09 38.79 47.09

1000 0 11.19 24.29 37.39 42.74

1 11.24 24.37 37.43 42.78

N 12.77 28.10 38.79 47.13

N 0 11.62 25.57 37.95 44.65

1 11.66 25.63 37.97 44.69

N 12.78 28.15 38.79 47.39

P.A.A. Laura, D.R. Avalos / Journal of Sound and Vibration 312 (2008) 906–914912
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Table 9

Values of the first four frequency coefficients in the case of a circular plate with square cutout of size a1/a ¼ 0.5, centered at e/a ¼ 0.5 for

different values of the inner non-dimensional elastic constants of the translational and rotational springs

Outer circular

border

kI a3/D at the

inner edge

a/(FI D) at the

inner edge

O1 O2 O3 O4

Simply supported 0 0 4.659 14.11 26.86 28.21

1 5.123 14.83 27.39 28.64

N 9.507 19.19 32.37 40.32

1000 0 9.503 22.38 32.79 35.72

1 9.701 22.46 33.08 35.78

N 12.02 25.46 36.95 41.15

N 0 10.10 24.43 34.16 39.47

1 10.29 24.54 34.46 39.60

N 12.52 27.81 39.42 44.01

Clamped 0 0 10.22 22.58 37.11 40.78

1 10.47 23.09 37.36 41.36

N 15.99 27.42 42.14 51.14

1000 0 14.87 31.08 41.71 45.84

1 15.10 31.15 42.00 45.94

N 17.99 34.18 46.14 52.18

N 0 15.61 33.79 43.21 51.04

1 15.84 33.92 43.52 51.18

N 18.99 37.96 48.26 57.10
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displaced along a radial line. Finally, Table 9 shows values for the frequency coefficients for a square hole at a
fixed position e/a ¼ 0.5 of its center.

For the double series, Eq. (2), up to 96 terms have been taken (J ¼ 16 and K ¼ 6) for all situations.
Although satisfactory convergence is already achieved for J ¼ 8 and K ¼ 4, such high values of J and K have
been used taking advantage of the speed of modern desktop computers. As usual, special care has been
taken to manipulate the numerical solving of the involved determinants and 80 bits floating point variables
(IEEE-standard temporary reals) have been employed to satisfy accuracy requirements. It is worth noting that
computations are very stable and all frequency coefficients uniformly converge as the number of terms in the
double series is increased.

As stated above, the methodology has the added benefit of providing a great degree of flexibility in dealing
with different types of boundary conditions at the edge of the cutout and it could be generalized to rectangular
cutouts of arbitrary orientation or even cutouts of any polygonal shape. In these cases terms in sin(ky) should
be added to Eq. (2). As a general conclusion one may say that the mathematical model seems to be quite
realistic and accurate, within the realm of the classical theory of vibrating plates.
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