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(Point) Collocation Methods

I I
» Trefftz method

» Method of fundamental solutions
» Radial basis function collocation



Why Collocation Method?

-]l
» High accuracy (exponential error
convergence)

» Simplicity in formulation

» Meshless

» Boundary method (Tretftz, MFS)

» Solve ill-posed BVP without iteration

» Easy to adapt to n-dimensional problem






Considerations

1
» Is it suitable for engineering applications,
such as arbitrary geometry?

» Is it efficient? (CPU time)
» Is it accurate? (Coupled with efficiency)
» Is the theory easy to understand?

» Is it easy to write computer program?



- !
» Is it general enough to solve linear or
nonlinear, homogeneous or inhomogeneous,
constant or variable coefficients, and all
kinds of governing equations?

» Are commercial software widely available?

» Is there inertia (people are comfortable with
the method they use)?






Original Trefftz Method

] |
» Solve the Dirichlet problem

Vu=0 inQ
u=f(x) inl
» Utilize the Ritz method



Ritz Method

> Approximate the solution using a set of trial
functions ¢ (X) .

U(X)~ Y o ¢(X)
=1
» Minimize the functional
\ o5 au(I j
B = A TR e ([— fi
ERSTET

with respect to the trial functions

Walter Ritz
(1878-1909)



Trefftz’s Contribution

- !
» Require trial functions to
satisty the governing
equation

Vg =0
» The functional reduces to

n

n-—[3a % (;z(w s fjdx

r I=1

Erich Trefftz
(1888-1937)



Solution System

1
» Use harmonic polynomials

4 ={LXY,2,X - y*,y’ = 2°,xy,yz,%2,...,

» Linear solution system
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Other Formulations of Trefftz Method

e
» Trefftz-Herrera formulation

» Weighted residual formulation
» Collocation formulation
» Hybrid methods






Kupradze Formulation

» Solution given by

u(x)_—” f (X )a(;fé’(f;') dx’

+$‘UG(X')G(X,X') dx', XxeQ

where o(X") is found from
8G(x X )
H

Viktor Dmitrievich Kupradze
on(x’) (1903-1985)

+;_Ua(x')G(x,x') dxixe !



Von Karman Formulation

I
» Potential flow around | ‘

objects

n+l
U(X) =~UX +

L Z47zr(x X:)
n+1 5
Zai =0 — .
-
(b) Theodore von Karman

% Sy



Other Formulations

-]l
» Point collocation (Mathon & Johnson, 1997)

» Least square, optimization formulation
(Fairweather)

» Boundary integral equations
» Boundary element method.

Cheng, A.H.-D. and Cheng, D.T., “Heritage and early history of
the boundary element method,” ENGINEERING ANALYSIS WITH
BOUNDARY ELEMENTS, Vol. 29, No. 3, pp. 268-302, 2005.






Method of Weighted Residuals

N
» Governing equation

LU(X)}=f(x), xel

» Essential and natural boundary conditions

SU(X)}=0,(x), xely
N U(X)} = 0,(x), Xxel,



Minimizing Weighted Residual

» Approximation by trial functions

U(x)~ > 0 4(X)
» Minimizing the residual

I leuoos=toolw dx+ [[[$1u003 - 9,00]w, dx

+H[ [ 0003 - g,(0]W, dx=0

I'y

with respect to trial functions



Choosing Different Weight

1
» Galerkin method: Trial function as weight

W, =@
» Subdomain method: Step function
» Collocation method: Dirac delta function
VVi vy 5()(9 Xi)



A Simple Example
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h(0) = h1 and h(L) = he,
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Figure 8.3.1: Flow in a leaky aquifer.



Solution Strategy

-]l
» Approximate solution

h~h=ay+ a1z + agff;g + 033.%‘3 + a,4.ff;4.

» Solved by collocation, subdomain, and
Galerkin method

» Integration performed exactly



Solution Error

error (m)
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Figure 8.3.3: Comparison of error of the approximate three solutions. Short
dash line: collocation method; medium dash line: subdomain method; and

long dash line: Galerkin method.



Lessons Learned

I
» We observe that Galerkin method is the
most accurate, and collocation the least.

» Integration distributes the error and point
collocation concentrates the error.

» So why do we claim the point collocation
has the highest accuracy?






FEM “Mistakes”

]
» FEM interpolate “physical variables”

u(x) =~ ZZU N.

e=1 Ii=

» It is only feasible to interpolate physical
variable locally, not globally

» Elements are introduced

» Elements approximate geometry; hence
loses accuracy



FEM Mistakes

- !
» Low degree polynomials are used for
interpolation.

» Poor continuity between elements

» FEM error is

5~O(hk)






What is Exponential Convergence?



Power of Exponential Convergence

- !
» Its accuracy is impossible for FEM, FDM, or
any other methods that uses local, rather
than global interpolation, to match.

» Using Trefftz method, Li solved Motz
problem to an accuracy of 10-° using about
30 terms

» Using RBF collocation, a Poisson equation

was solved to an accuracy of 10-1°> using a
20x20 grid.



How Accurate is That?

» Assume that using a modest mesh, FEM/FDM can
solve a problem to an accuracy of 0.1%.

» Using a quadratic element or central difference,
the error estimate is h.

» To reach an accuracy of 10-1°, the FEM result needs
to be improved 10-12 fold.

» h needs to be refined 10° fold in linear dimension,
meaning that between any two nodes, one million
nodes need to be inserted.



]
> In a 3D problem, this means 108 fold more
degrees of freedom.

» The effort of solution will be between 1036 to 105*
fold

» The fastest computer in the world (not yet
delivered) has just reached petaflop (102 flops
per second).

» If the original problem requires 1 floating point
operation (CPU=10-14 sec), the CPU time needed
will be between 1017 to 103° years

> The age of universe is 2 x 1019 years!






Intuitive Derivation

N
» Governing equation

L(u)=f(x), xeQd

» Boundary condition

BU)=g(X), xeTl



Approximate Solution

-]l
» Assume approximate solution is given by

100 =3 o, ()

where ¢ (X) are basis functions and ¢,
are constants to be determined.



$(X)

Choices of Basis Functions

e e,e,,S,—,Se
» Monomial

» Chebyshev polynomial

» Fourier series

» Wavelet

» Fundamental solutions (MFS)

» Non-singular general solution (Trefftz)
» Radial basis function (RBF)






Continuous Solution

- ]
» Trial functions:

> harmonic polynomials,
> translation of harmonic function

» Weighted residual formulation: Error bounded by
quadrature error

» Point collocation: Exponential error bound
g~O(/1N), 0<A<l
» Condition number
Cond~O("), B>1
» Effective condition number much better



Weakly and Strongly Singular Problem

] |
» Weakly singular problem:
No treatment of
singularity, using only
local mesh refinement,
logarithmic error
convergence

» Strongly singular problem:
No treatment of
singularity, no
convergence.




-]l
» Harmonic polynomial is not suitable when

singularity is present (polygonal region).
» Should use local particular solution.

Li, Z.-C., Lu, T.-T,, Hu, H.-Y. and Cheng, A.H.-D., “Particular
solutions of Laplace’s equations on polygons and new
models involving mild singularities,” ENGINEERING ANALYSIS
WITH BOUNDARY ELEMENTS, Vol. 29, No. 1, pp. 59-75, 2005.






Comparison with Trefftz

1
» AS R — oo the sources behave as harmonic
polynomials.

» Error bound of MFS can only be at best as

good as Trefftz method. (Bogomolny,
Schabck, ].T. Chen, Zi-Cai Li)

» Condition number of MFS is much worse
that Trefftz






Example: Multiquadric

» Inverse multiquadric

where

= (X=X + (Y =y + (2= )]




Point Collocation

-]l
> Select n; points, {X;,X,, -+, X, } €2, on which
the governing equation is satisfied.

X(G(Xj)):"g(_zn:aiﬁ(xj)j
S a L (hx)= X)) for j=1...n

each is a linear equation in «,



A
> Select nj, points, {X,,;, X, .. X €IL, on
which the boundary conditions are satisfied.

ﬁ(a(xj))zﬁ(iai ¢|(X1)j

:iaiﬁ(qﬁi(xj))= g(x;); for j=n+1..,n



S
» Linear solution system

[A]ia} = ibj

» Once {a} is solved, the solution is a
continuous function

|
ke A1 C

» The function is infinitely smooth




Test Problem
I e

1 2
Viu(z, y) = _Dolx sin 2 sin e sin STy sin Ty

144 6 4 4 4

Tr? T Tmx . 3wy . by
+—— cos — €08 —— Ssin —— sin ——

12 6 4 4 4

1572 7 3 5)
" sin ng sin ZCB cos Zy COS Zy? (z,y) €10, 1]%, (7)

subject to the Dirichlet type boundary conditions

u(0,y) = 0, (8a)
.o . UIm . 3wy . 0wy

u(l,y) = sin 5 Sin - sin —= sin —=, (8b)

u(z,0) = 0, (8¢)
T Tmxr | 37 Hr

u(x,1) = sin 5 Sin—,— sin—= sin—- (8d)

T mx . 3wy . dwy




Exact Solution




Solution method

]
» Approximation by inverse multiquadric

T
ﬁ 1
T = E g
i=1 \/?“E—I-EE

Watch out for the “c”




What Is the Role of ¢?

-~ !
» People observe that as c increases, error
decreases

» It is generally believed that as ¢ —, € —0

» [f this is true, we have a dream method:
higher and higher precision without paying
a price

» However, matrix ill-condition gets in the
way; the dream cannot be fulfilled.



-]l
» What if we can compute with infinite

precision?
» Then, is it true that as ¢ — o, € —07?
» (Or, is it true that for MFS, as R —o0, € —07?)

» We can find out about these by using the
infinite (arbitrary) precision computation
capability of Mathematica and high
precision capability of Fortran



» Use 6x6 mesh (h = 0.2, 4x4 interior collocation)

collocation nodes (x-governing eqn, o-bc)

15— ‘ ‘ | ‘ ‘ ‘ ‘ ‘ &
0.9-
0.85 x x x . o
0.7 -
0.6 x x x . o
0.5-
0.4 x x x . o
0.3-
0.20 x x . . o
0.1-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1



Result: h=1/5

h Emax Erms Condition Number
0.2 0.1 436x 107" 1.40x 107" 4.95 x 10192
0.2 1.1 249 %1072 9.08 x 107 8.89 x 10707
02 12T 1.92x107% 6.93x107% 2.94 x 10108
02 1.3 1.94x107% 512x107% 9.22 x 10198
0.2 147 1.99x 10792 4.24 x 1079 2.76 x 10709
02 15 208x107% 494 x107% 7.92 x 10799
0.2 2.0* 337x107% 1.85x 107 8.49 x 1011
0.2 3.0 9.64x107%% 584 x107% 1.09 x 1071?
0.2 100 6.10x 107% 419 x 1079 6.38 x 10121
0.2 100.0 1.11x10" 7.82x 107" 9.15 x 10142




Result: h=1/10

h C € max Erms Condition Number
0.1 0.1 867x107% 289 x 107" 2.19 x 10793
0.1 25 6.88x107" 1.74 x 107" 2.88 x 10127
0.1 40" 1.88x1079% .23 x107Y7 6.40 x 10134
0.1 4.17* 221 x107%  6.09 x 1077 1.57 x 1012
0.1 100 1.5x107% 1.11x10~™ 482 5 1049
0.1 100.0  6.24 x 10" 4.56 x 10Y 3.49 x 10187




Result: h=1/20

Emax

Erms

7.0

7.

7.7
8.0

9.0

2.22 x 10715
1.91 x 1071
2.37 x 10719
2.88 x 10715
3.58 x 1071
3.75 x 10715

7.86 x 10716
9.60 x 1010
9.26 x 1010
8.87 x 1016
1.06 x 1071
41.2 x 10715




Find Error Estimate Constants by Data Fitting

I
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Fig. 2. Fitting for error estimate for IMQ solution of Poisson equation: composite
plot of a large number of cases with different h and ¢ values.
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Our Findings: Error Estimate
1 |

o o O(eaCB/Q ACl/Qh—l).

» 0<A<1,a>0



Optimal ¢

I
» If the error estimate

o~ O(BGCB/Q ACI/Qh—l).

is true, then there exists an optimal ¢ where
error 1s minimum

In A
Cmax — — S{Ihj



Revised Error Estimate

I
» If we can always use optimal ¢ with a given
mesh, what is the new error estimate?

e~ O,

()\ e—]ﬂkﬁ) v/ —InA/3a

"}f:

0 <y <1



Effective Error Estimate

If ¢, Is Used
-]

>»h=1/5e~ 107
>»h=1/10,e ~10°
>»h=1/20,e~ 101>







Madych

-]l
» Madych (1992): For the interpolation of a
class of “essentially analytic functions’,
which are “band limited”, using a class of
interpolants that include the multiquadric,
Gaussian, ..., he proved

g:O(eaC/IC”‘); 0<A<l, a>0

> This means,as C—> 0, &—0



» Madych also stated that for a “non-band-
limited” function,

5=O(eacz/1”h); 0<A<l, a>0
InA

» In this case, there exista Cot =7
DAl

where g=¢ .

min

> If we can use the ¢, then ¢~ Q(/ll/hz)






Examples of |lI-Posed Problems

» Harbor wave field




» Groundwater field



Current
Source

Elecirodes

; ' ' . Current Flow
Thraugh Subsuface



» Non-Destructive Testing
I




Well- and IlI-Posed Boundary Value

Problems
e

» Governing equation
Viu=f(x), xeQ

» Boundary conditions
Uu=g,(x), xelj
ou

%: g,(x), xel

» Interior condition

u(x;)=u;, Jj=1...,m, Xx;eQ



Difference between well-posed

and ill-posed problems
] |

» Well-posed problem
B UL e [yl =Y
2D m=20

» Ill-posed problem
IR s T oy #0

m=0



Problem 1: Onishi (1995) FEM

N
» Governing equation

Vau(x,y)=0;, y=0

» BC

u(x,3)=x"-9; u(0,y)=-y* u(3,y)=9-)"°

» Internal values: u(1,1) =0, u(2,1) =3, u(1,2)
=-3,u(2,2)=0



Collocation Nodes

Dirichlet condition

3.0 - ® ® ® '3
- X X X *
c20-¢ ° X @ &
=
=
(@]
. A d b4 X X *
Q
4 o
O
010 ¢ ® X ° r'e
Py X X X *
00 -¢ * % % *
0.0 1.0 2.0 3.0

Unknown boundary condition

uonIpuod i8|yduId



Result
e

Method Potential value Percent error
(%)
Exact solution 2.250 0
Onishi, FEM 36 elements 2.323 3.2
Onishi, FEM 144 elements 2.341 4.0
RBF, 49 collocation nodes (¢ =3) 2.296 2.0
RBF, 49 collocation nodes (¢ =4) 2.251 0.04

Table 1: Comparison of error of potential at the pomnt (1.5, 0).



Problem 2: Lesnic (1998) BEM

Neumann Dirichlet

None
-
Both Dirichlet & Neumann
None
N
Both Dirichlet & Neumann

Dirichlet Dirichlet

Neumann None

None
w
Both Dirichlet & Neumann
None
1N
Both Dirichlet & Neumann

Neumann Both Dirichlet & Neumann

Figure 4: Four cases of Cauchy problems for steady state heat conduction with different
boundary conditions (refer to Table 2 for boundary values).



Lesnic Result
e

Case 1 Case 2 Case 3 Case 4

Number of elements 40 160 160 160
Number of iterations 100 1000 1000 10000
Error in temperature (%) 0.4 0.5 0.3 13
Error in heat flux (%) 2 6 1.5 50

Table 3: Percentage error of Lesnic’s iterative BEM solution at the middle point of left
side boundary, (0, 0.5).



RBF Result

Grid c Case 1 Case 2 Case 3 Case 4
(%) (%0) (%) (%)
6x06 3 0.04 0.1 1.0 0.5
6x6 4 0.5 0.6 1.7 0.4
8x 8 3 0.2 0.02 0.03 0.1
8x 8 4 0.1 0.009 0.009 0.06
10x10 3 0.05 0.009 0.009 0.02
10x10 4 0.009 0.000 0.009 0.02

Table 4: Percentage error of RBF collocation solution for temperature at the middle point
of left side boundary, (0, 0.5), for different grids and ¢ values.

Grid ¢ Case 1 Case 2 Case 3 Case 4
(%) (%) (%) (%)
6x6 3 0.02 0.8 2.8 6.2
6x6 4 32 0.2 34 4.0
8x8 3 1.5 0.06 0.1 0.6
&x8 4 0.6 0.06 0.06 0.06
10x10 3 0.6 0.04 0.02 0.1
10x10 4 0.1 0.02 0.2 0.2

Table 5: Heat flux percentage error of RBF collocation solution at the middle pomt of
left side boundary, (0, 0.5), for different grids and ¢ values.



Problem 3: “Groundwater”

3.0

Exact
potential
9 data given




Kriging




Solving Ill-Posed Problem







Point Collocation
-~ !
» No geometric approximation error.
» No quadrature error.
» Exponential error convergence,
& ~ O(/ll/hkzl; 0<A<l

» Convergence is the best if we make the

interpolants as flat as possible.

» Meshless
» Solve ill-posed problem without iteration
» Solve n-D problem



