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ABSTRACT 
In this paper, a novel numerical scheme (FDMFS), 

which combines the finite difference method (FDM) and 
the method of fundamental solutions (MFS), is proposed 
to simulate the nonhomogeneous diffusion problem. 
Although the time-dependent MFS is meshless, 
extendable for any dimensional problems and without 
transformation or difference discretization for the time 
domain, the MFS is only useful for dealing with 
homogeneous partial differential equations. Therefore, 
we proposed the FDM with Cartesian grid to handle the 
non-homogeneous term of the equations. The numerical 
solution in FDMFS is decomposed as a particular 
solution and a homogeneous solution. The particular 
solutions are constructed using the FDM in an artificial 
regular domain which contains the real domain, and the 
homogeneous solutions can be obtained by the 
time-space unification MFS. Besides, the Cartesian grid 
for particular solution is very simple to generate 
automatically. We proposed three different treatments for 
particular solution and compared these schemes with 
each other. Two numerical examples are chosen to 
validate the proposed numerical scheme and the 
numerical results are compared well with analytical 
solutions 
Keywords: non-homogeneous, diffusion, finite 
difference method, method of fundamental solutions, 
irregular domain. 

1. INTRODUCTION 
Many physical problems, such as heat transfer, 

pollution transports, chemical processes etc, are usually 
governed by diffusion equations. Some external input of 
energy is represented in the form of a forcing function by 
the nonhomogeneous term. Classical numerical methods, 
such as FDM, finite element method (FEM), finite 
volume method (FVM), had adopted to simulate the 
diffusion equations. However, all of they are 
mesh-dependent method and need mesh generation. 
Especially for irregular domain, the FDM needs the 
complicated transformations of coordinate. The 
associated bookkeeping of the elements and nodes is also 
cumbersome and expensive in the CPU time. Recently, a 

lot of attractive meshless or meshfree methods are 
developed and applied to solve diffusion equations. 

Meshless numerical method is clever at the problems 
in irregular domain. As the name implies, the meshless 
method is a kind of numerical scheme without mesh but 
require only nodes for boundary and initial conditions. 
There are a lot of researches on meshless methods for 
diffusion problems, such as radial basis function (RBF) 
collocation method or Kansa method [1], indirect radial 
basis function network (IRBFN) method [2], meshless 
local Petrov-Galerkin (MLPG) method [3], and the MFS 
[4-5].  

In this research, we applied the MFS based on 
time-dependent fundamental solutions. The MFS is also 
known as F-Treffz method or singularity method and was 
presented firstly by Kupradze and Aleksidze [6] in 1964. 
The MFS is applied widely to simulate physical 
problems, for example the Helmholtz equation [7-9], 
potential problem [10], Stokes flow [11-13] and diffusion 
problem [14-15]. In another words, the MFS is good at 
solving homogeneous partial differential equations 
(PDEs). In order to extend the MFS to solve 
nonhomogeneous PDEs, we have to combine MFS with 
other numerical scheme. 

When the PDEs have steady forcing functions, 
Burgess and Mahaherin [16] constructed the particular 
solutions by direct numerical domain integration. In 
1995, Chen [17] employed the quasi-Monte Carlo (QMC) 
quadrature as numerical integration to find the particular 
solutions. Golberg [18] suggested the MFS to solve 
Poisson's equation by approximating the forcing function 
by thin plate splines (TPSs). Henceforward, the MFS is 
extended for nonhomogeneous partial differential 
equations by combining the dual reciprocity method 
(DRM) where the forcing function is approximated by a 
finite series of radial basis functions (RBFs) [19-21].  

Golberg and Chen [22] used the MFS based on 
modified Helmholtz fundamental solution to simulate the 
nonhomogeneous diffusion equations via associating 
with the DRM in 1998. Chebyshev interpolation [23] is 
also suggested to approximate the right-hand side of 
Helmholtz-type equations for diffusion problems. On the 
other hand, Young’s group concentrates on developing 
another scheme which uses the time-space unification 
diffusion fundamental solutions [4]. Young, Tasi and Fan 



中華民國力學學會第三十一屆全國力學會議                                   義守大學機械與自動化工程學系   96 年12 月21-22 
日 

The 31st National Conference on Theoretical and Applied Mechanics, December 21-22, 2007, ISU, Kaohsiung, Taiwan, R.O.C. 
[14] extended the time-dependent diffusion DRM-MFS 
(or MPSMFS) model to solve multidimensional 
nonhomogeneous diffusion problem and they also give a 
comparison between their proposed scheme and Golberg 
and Chen’s research [22]. Two years later, Young, Chen, 
Fan and Tsai [24] combined the MFS and eigenfunction 
expansion method (EEM) to simulate the same equation. 
Unfortunately, all of these methods can not be applied 
directly for diffusion problems with time-dependent 
forcing function. 

This research proposes a numerical scheme to extent 
the MFS for diffusion equation with unsteady forcing 
function. The solution of a nonhomogeneous PDE can be 
split into the summation of particular solution and 
homogeneous solution. We use the FDM to solve the 
particular solution in an artificial orthogonal grid which 
contains the physical domain and the time-dependent 
MFS to solve the homogeneous diffusion solutions. The 
concept is similar to the research of Chantasiriwan [25] 
who combined the FDM and MFS to solve the steady 
Poisson problem.  

The aim of this study is to demonstrate the capability 
of the proposed FDMFS for diffusion equation with 
unsteady forcing function. The governing equations and 
numerical method will be explained in sections 2 and 3, 
individually. The numerical results and conclusions will 
be provided in sections 4 and 5. There are two problems 
adopted in the paper and the results are compared well 
with the analytical solutions. 
 
2. GOVERNING EQUATIONS 

The diffusion equation with unsteady forcing 
function over the problem domain Ω  with boundary 
Γ can be written as follows: 

2( , ) ( , ) ( , )T x t k T x t F x t
t

∂
= ∇ +

∂
  (1)  

where x  is the general spatial coordinate, t  is the 
time, k is the diffusion coefficient, ( , )F x t is the 
forcing function, and ( , )T x t is the scalar variable to be 
determined. The initial condition of the problem is  

( )0 1( , )  in T x t f x= Ω  (2)  
with the Dirichlet and Neumann boundary conditions. 

( )2 1( , ) ,  in T x t f x t= Γ  (3)  

( )3 2( , ) ,  in T x t f x t
n
∂

= Γ
∂

 (4)  

where Ω  is the problem domain, 1 2+Γ Γ is equal to  
the boundary Γ , n is the normal direction and  

( ) ( ) ( )1 2 3,  , ,  ,f x f x t f x t are known functions. 
 
3. NUMERICAL METHOD 
 
3.1 Basic Numerical Scheme 

The solution ( , )T x t  can be written as the linear 

combination of homogeneous solution ( , )hT x t  and 

particular solution ( , )pT x t shown as follows:  

( , ) ( , ) ( , )h pT x t T x t T x t= +  (5)  
The nonhomogeneous equation governs the particular 

solution shown as follows: 

2( , )
- ( , )= ( , )p

p

T x t
k T x t F x t

t
∂

∇
∂

 (6)  

No boundary condition is needed and the initial 
condition can be set as an arbitrary function; the 
homogeneous equation governs the homogeneous 
solutions. 

2( , ) - ( , )=0h
h

T x t k T x t
t

∂
∇

∂
 (7)  

with the modified initial condition  
( )0 1 0( , ) -  ( , ) in h pT x t f x T x t= Ω  (8)  

and the modified Dirichlet and Neumann boundary 
conditions 

( )2 1( , ) , - ( , ) in h pT x t f x t T x t= Γ  (9)  

( )3 2( , ) , - ( , ) in h pT x t f x t T x t
n n
∂ ∂

= Γ
∂ ∂

(10)  

The numerical procedure starts from the particular 
solution. First of all, as shown in Fig. 1 (a)-(b), we need 
to distribute an orthogonal mesh which has to embed in 
the problem domain.  

Next, we can use the FDM to simulate the particular 
solution by Eq.(6). As the fully explicit central difference 
scheme, 
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=

⎧ ⎫⎡ ⎤+⎪ ⎪⎢ ⎥+Δ ⎨ ⎬
⎢ ⎥Δ⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫⎡ ⎤+⎪ ⎪⎢ ⎥+Δ ⎨ ⎬
⎢ ⎥Δ⎪ ⎪⎣ ⎦⎩ ⎭

⎡ ⎤+Δ ⎣ ⎦
 (11)  

where pt tΔ =Δ  is the time step size for particular 

solution, xΔ  is the mesh size in x  direction and yΔ  
is the mesh size in y  direction. Indeed, the implicit 
finite difference scheme also can be adopted to obtain the 
particular solution 
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 (12)  
The initial condition of the particular solution can be 

assumed as an arbitrary function and the boundary 
condition of the particular solution is not required. By 
the advantage of explicit FDM, the particular solution 
can be obtained in a very short time and no matrix solver 
is needed. 

After the particular solution is obtained, the meshless 
MFS is considered to solve the homogenous solution. 
The homogeneous solution satisfies the linear diffusion 
equations, Eq. (7), and the modified initial and boundary 
conditions, Eq. (8)-(10). In MFS, the diffusion solution 
can be represented as the linear combination of the 
diffusion fundamental solutions with different intensities. 
The fundamental solution of the linear diffusion equation 
is governed by  

( )

( ) ( ) ( )2

, ; ,

, ; ,

G x t

t
k G x t x t

ξ τ

ξ τ δ ξ δ τ

∂

∂

= ∇ + − −

 (13)  

where ( ), ; ,G x t ξ τ  is the fundamental solution of the 

diffusion equation. ( , )x x y=  and =( , )ξ ξ η  are the 
spatial coordinates of the field point and source point, as 
t  and τ  are the temporal coordinates of the field point 
and source point. ( )δ  is the well-known Dirac delta 
function. 

By taking the Fourier transform and the inverse 
Fourier transform of the above equation, the free-space 
Green’s function or the fundamental solution of the 
diffusion equation can be obtained as: 

( )
( )

( )( )
( )

2

4

2
, ; ,

4

x

k t

d
eG x t H t
k t

ξ

τ

ξ τ τ
π τ

−
−

−

= −
−

  (14)  
where d  is the number of spatial dimension and equal 
to two in this study. ( )H  is the Heaviside step 
function. 

 Based on the time-dependent MFS, the 
homogeneous solution can be expressed as the linear 

combination of the diffusion fundamental solutions  

( ) ( )
hN

1

, , ; ,h j j j
j

T x t G x tα ξ τ
=

=∑  (15)  

where hN  is the number of source point. In our 
numerical experiments, the numbers of field points and 
source points are chosen as the same, hN N= . jα  is 
the unknown coefficient which denotes the intensities of 
the corresponding fundamental solutions.  

The initial and boundary conditions of homogeneous 
solution are modified by the particular solution: 

( )
0 0 0

1 0

( , ) ( , ) - ( , )

- ( , ) in 
h p

p

T x t T x t T x t

f x T x t

=

= Ω
 (16)  

( )2 1

( , ) ( , ) - ( , )

, - ( , )  in 
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p

T x t T x t T x t

f x t T x t

=

= Γ
 (17)  

( )3 2

( , ) ( , ) - ( , )
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p
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n n n

f x t T x t
n

∂ ∂ ∂
=

∂ ∂ ∂
∂
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∂

 (18)  

Applying the concept of the MFS, a matrix form is 
obtained as follows: 

( )
( )
( )

{ }
0

1 0

2

3

, ; , ( , )
, ; , ( , )

( , )
, ; ,

j j

j j j

j j

G x t f x t
G x t f x t

f x t
G x t

n

ξ τ

ξ τ α

ξ τ

⎡ ⎤
⎢ ⎥ ⎧ ⎫⎢ ⎥ ⎪ ⎪⎢ ⎥ = ⎨ ⎬
⎢ ⎥ ⎪ ⎪

⎩ ⎭∂⎢ ⎥
⎢ ⎥∂⎣ ⎦

 (19)  

Solving the above matrix, the coefficients jα are 
obtained, and then the homogeneous solutions can be 
acquired by Eq. (15). Lastly, the numerical solutions can 
be obtained by summing up the particular and 
homogeneous solutions, Eq. (5).  

As shown in Fig. 1 (c), the meshless MFS requires 
only field points for boundary and initial conditions 
without mesh. The locations of field and source points of 
MFS are illustrated as Fig. 2. The field and source points 
are located at the same spatial positions but different 
time levels. The parameter,λ , shown in Fig. 2 is chosen 

as 0.5= R
kλ in this study and R is the maximum 

length in the domain of the problem.  
Although, the time increment of FDM scheme, ptΔ , 

should satisfied the stability condition, the homogeneous 
solution doesn’t need to be solved at each time step. In 
other words, the time interval for the MFS can use a 
large one. In this paper, we adopt 

10h pt tΔ = Δ or 100h pt tΔ = Δ . Therefore, the CPU 
time of the simulation can be shortened. In order to 
demonstrate the idea of FDMFS more simply and 
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clearly, the illustration of numerical procedure is shown 
as Fig. 3. 
 
3.2 Manipulation in irregular domain 

The present numerical scheme can solve problems 
with irregular domain directly. For solving particular 
solutions by FDM, we set a simple uniform Cartesian 
mesh, CΩ , which covers the whole real problem domain 
Ω  as a computational domain for particular solution. 
The Cartesian mesh CΩ can be divided into two parts. 
One is the interior of the problem C

iΩ  domainΩ . The 

other one is exterior of the problem C
eΩ  domainΩ .The 

particular solution at each point is governed by Eq. (6). 
However, we have a trouble that the unknown forcing 
function on C

eΩ  is unknown in most practical problems. 
Therefore, we proposed three different schemes 
illustrated as Fig. 4 to overcome this issue. The accuracy 
and efficiency of these methods are compared with each 
other in section 4. 

 
3.2.1 Method 1(M1) 

Provided that the forcing function of the problem is 
spatial-independent or the forcing function on exterior 

C
eΩ  of the problem domain is known, the governing 

equation, Eq (6), can be applied doubtless. In other 
words, we use the same FDM to discretize the 
nonhomogeneous diffusion equation to obtain the 
particular solution on both  C

eΩ  and C
iΩ . The FDM 

scheme is the same as the FDM for a nonhomogeneous 
diffusion problem with a rectangular domain. 

The idea of this method is simple and no extra 
computer code is required. This method has high 
accuracy due to no unreasonable assumptions. The 
virtual Cartesian mesh for particular solution can be 
constructed automatically by known maximum and 
minimum value on each coordinate. This work won’t 
affect the efficiency of the numerical scheme. However, 
this method is only suitable for the case which the 
forcing function is spatial-independent or the forcing 
function on the exterior C

eΩ  of the problem domain is 
known. Otherwise, we need to consider M2 or M3. 

 
3.2.2 Method 2(M2) 

We can assume that this forcing function exterior the 
problem domain is equal to a constant, zero or a known 
physical value on the boundary. Therefore, the forcing 
function will appear a discontinuity near the boundary. 
Due to the nature of the FDM, the discontinuity will 
produce errors near the boundary and pollute the 
numerical results.  Hence, we interpolate the forcing 
functions on the exterior domain C

eΩ   in order to 

smooth the forcing function on the Cartesian mesh CΩ . 
If the forcing function on the computational domain for 

particular solution CΩ  is discontinuous, numerical 
error would be produced. To put it simply, the basic idea 
of M2 is to create a smooth forcing function to make the 
numerical scheme for particular solution can be applied 
successfully.  

In most practical problem, the problem domain is 
usually irregular and the forcing function outside the 
problem domain Ω  is unknown definitely. The M2 is 
developed to deal with this kind of problems. The 
unknown forcing function on the exterior domain C

eΩ  
is set as a constant. The constant value can be defined 
through the system program and interpolations can be 
adopted to smooth the forcing function. This work needs 
to add computer code and set a rule to avoid 
discontinuous forcing function on the computational 
domain CΩ  for the particular solution. The scheme 
would increase the CPU time of the simulation. However, 
this one conforms to the practice problem mostly.  

 
3.2.3 Method 3(M3) 

In M3, we divide the numerical scheme into two 
parts. One is for nodes on the interior domain C

iΩ . The 
particular solution is obtained by the original governing 
equation, Eq. (6). The other one is for nodes on the 
exterior domain C

eΩ . The particular solution is equal to 
previous step without calculating. We don’t care the 
particular solution on the non-real domain C

eΩ  in this 
method. However, some numerical error is caused by the 
inaccurate particular solution on the boundary.  

This method can speed up the numerical scheme due 
to no calculating the particular solution on the non-real 
domain C

eΩ .  
.After the brief introduction of the three methods, we can 
expect that the M1 has high accuracy; M2 is the most 
useful one; M3 can obtain the rough numerical results in 
a short time. The detailed comparison of these three 
methods will be performed in the following section. 
 
4.NUMERICAL EXPERIMENTS  and 
RESULTSN 

To illustrate the advantages of the proposed meshless 
scheme, there are two cases tested with irregular domains. 
Case 1 demonstrates the application of FDMFS for 
circular domains. A twin circle domain problem is 
adopted in case 2. 

 
Case 1 

We consider the forcing function is dependent on x, y, 
and t. The analytical solution is shown as follows: 

( ) ( ) ( )
( )( )( )( )

2, Sin(  ) Sin(  ) Exp

1 1 1 1 Sin(2  ) 10

T x t x y k t

x x y y t

π π π

π

= + −

+ + − + − +
 (20)  

and the forcing function is 
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( )( ) ( )

( ) ( )

2 2

2 2

( , ) 2 1 1 Cos 2  

2 2  Sin 2  

F x t x y t

k x y t

π π

π

= − −

− + −
 (21)  

The forcing function is dependent on x, y and t. Fig. 
5 (a) plots the time history of numerical results at 
(x,y)=(0.5,0.5) by M1, M2 and M3 and shows good 
agreement with analytical solutions. Fig. 5(b) shows that 
the maximum relative errors of M1, M2 and M3 are all 
less than 0.1%. The contour maps are shown in Fig. 6 for 
k=1 at t=0.1 ant t=0.25.These three methods for handling 
the irregular domain can produce reasonable results for 
arbitrary domain problem. 

 
Case 2  

The second case is considered to simulate problem 
with a twin circle domain. The analytical solution is 
chosen the same as case 1 and k=1. The maximum 
relative error is depicted in Fig. 7 and all of them are less 
than 0.1%.  Moreover, Fig. 8 shows the contour maps 
via M1, M2 and M3 when t=0.10 and t=0.25. From this 
figure, we find the M3 has some error due to the 
discontinuity of the forcing function near the boundary. 

 
5. CONCLUSIONS 

The proposed FDMFS which is the combination of 
the conventional FDM and the meshless MFS is used to 
solve the diffusion equation with unsteady forcing 
function. The solutions are assumed as the combination 
of particular solutions and homogeneous solutions. The 
particular solutions are solved by the conventional FDM 
with a simple Cartesian grid which covers the whole 
physical domain. On the other hand, the homogeneous 
solution which is governed by the linear diffusion 
equation is solved by time-dependent MFS. Finally, the 
numerical solutions are obtained by summing the 
particular solutions and homogeneous solutions. The 
present numerical scheme can solve the diffusion 
equation with a time-dependent forcing function 
successfully. In addition, the boundary conditions for 
particular solution are needless and the initial conditions 
for particular solution can be assumed as an arbitrary 
function in the present scheme. 
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Figure 1:  (a) FDM mesh (b) Problem domain 
(c) Node distribution of MFS 
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                  (b) 
Figure 2:  Schematic diagram of source and 
field points for the MFS based on diffusion 
fundamental solution (a) in a time-space 
coordinate (b) in a space coordinate 
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Figure 3:  The illustration of the proposed numerical scheme (FDMFS) 
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Figure 4:  The illustration of three suggestions (M1, M2 and M3) for dealing with the particular solutions. 
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(a)                                              (b) 

Figure 5: Time history of (a) temperature at (0.5, 0.5) and (b) maximum relative error for case 1 for k=1 
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Figure 6: Contour maps of temperature for case 1 
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Figure 7:  Time history of maximum relative error for case 2 
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Figure 8: Contour maps of temperature for case 2 using different methods for particular solution 


