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ABSTRACT 
In this paper, desingular meshless method (DMM) is 

applied to solve divergent problems which occurs in the 
Laplace equation with overspecified boundary conditions. 
The source points can be located on the real boundary by 
using the desingularization technique of adding-back and 
subtracting technique to regularize the singularity and 
hypersingularity of the kernel functions. The main 
contribution in this paper can be divided into two parts as 
follows. The first contribution: the accompanied ill-posed 
problem in the inverse problem has been remedied 
successfully by using the proposed regularization 
methods, truncated singular value decomposition method 
(TSVD), 0th-order and 1th-order Tikhonov regularization 
methods, respectively. The second contribution: in order 
to obtain the optimal parameter without comparing with 
analytical solution, L-curve and the novel developed 
adaptive error techniques are provided. The numerical 
evidences are given to verify the accuracy of the 
solutions after comparing with the results of analytical 
solution and discussed in the examples. Finally, the 
better regularization method and error estimation 
technique can be suggested in this paper. 
Keywords: desingular meshless method, TSVD method, 
Tikhonov regularization method, L-curve technique, 
adaptive error technique, adding-back and subtracting 
technique. 

1. INTRODUCTION 
Inverse problems are presently becoming more 

important in many fields of science and engineering [1, 2, 
3]. Sometimes, unreasonable results occur in the inverse 
problems subjected to the measured and contaminated 
errors on the over-specified boundary condition, because 
of the ill-posed behavior in the linear algebraic system [4, 
5, 6]. Mathematically speaking, the influence matrix in 
the inverse problem is ill-posed since the solution is very 

sensitive to the given data. Such a divergent problem 
could be avoided by using regularization methods [2, 7]. 
For examples, truncated singular value decomposition 
method (TSVD) [7] and Tikhonov regularization 
technique [2] have been applied to deal with divergent 
problems.  

For the inverse problem, the influence matrix is often 
ill-posed such that the regularization techniques which 
regularize the influence matrix is necessary. The TSVD 
transform the ill-posed matrix into a well-posed one by 
choosing an appropriate truncated number, i. Similarly, 
the 0th-order and 1th-order Tikhonov regularization 
techniques transform into a well-posed one by choosing 
an appropriate parameter for λ  [8]. In this paper, the 
novel meshless method in conjunction with the two 
regularization techniques is employed to solve the 
inverse problem by using the error estimation techniques. 
To obtain a better regularization method, the comparison 
of two regularization techniques is made. For parameter 
λ  (or i), if too much regularization, i.e. λ  (or i) is 
larger, the solution will be too smoothing. If too little 
regularization, i.e. λ  (or i) is small, the solution will be 
unreasonable by the contributions from the input data 
with perturbation error in measurements. The choice of 
the optimal parameter in regularization methods is vital 
for obtaining a reasonable and convergent solution. 

In the literatures [8, 9], L-curve technique is often 
implemented to can be determine an appropriate 
parameter according to a compromise point between 
regularization errors (due to data smoothing) and 
perturbation errors (due to noise disturbance). It is an 
adaptive technique for error estimation without 
comparing with analytical solution. In this paper, we 
employ the L-curve technique and a new developed 
technique, respectively, to obtain the optimal parameter. 
The new technique is called adaptive error estimation 
technique. Also, it belongs to an adaptive technique and 
does not need to compare the results with analytical 
solution. This new estimation technique will be 
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elaborated latterly. 
During the last decade, scientific researchers have paid 

attention to the method of fundamental solutions (MFS) 
for solving engineering problems [10, 11, 12] in which 
the mesh or element is free. The desingular meshless 
method (DMM) is one kind of modified MFS and has 
been extensively applied to solve some potential 
problems [13, 14, 15]. By employing the 
desingularization technique of subtracting and 
adding-back technique to regularize the singularity and 
hypersingularity of the kernel functions, the proposed 
method can distributes the observation and source points 
on the coincident locations of the real boundary and still 
maintains the spirit of the MFS. 

In this paper, we will employ the developed DMM [13, 
14, 15] in conjunction with the TSVD, 0th-order and 
1th-order Tikhonov regularization methods, respectively, 
to circumvent the ill-posed problems. The better 
regularization method is discussed in this paper. Also a 
better error estimation technique without comparing with 
analytical solution will be discussed in this paper. The 
results of the examples contaminated with artificial 
noises on the over-specified boundary condition are 
given to illustrate the validity of the proposed technique. 
 
2. FORMULATION 
2.1 Govening equation subject to over-specified 
boundary conditions 

The inverse problem for the Laplace equation subject 
to over-specified boundary conditions as shown in Fig. 1 
can be modeled by: 

( ) 0x2 =∇ φ , Dx ∈ , (1) 
subjected to the boundary condition on 1B  as 

( ) φφ =x ,  1Bx∈ , (2) 
( ) yy φφ =x , 1Bx∈ , (3) 
where 2∇  is the Laplacian operator, D is the domain 

of interest, yxxy ∂∂= /)()( φφ , 1B  is the known boundary 
( 1B ) of B in which B is the whole boundary which 
consists of boundary ( 1B ) with specified BCs, and the 
boundary ( 2B ) with unknown BCs. 

 
2.2 Method of fundamental solutions 
2.2.1 Review of conventional method of 
fundamental solutions 

By employing the radial basis function (RBFs) concept 
[10, 11, 12], the representation of the solution for interior 
problem can be approximated in terms of the strengths 

jα  of the singularities js  as 
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where ),( ij xsA  is RBF, 
ixijij nxsAxsB ∂∂= /),(),( , 

ixii nxx ∂∂= /)()( φψ  in which xn  is the normal vector at x, 

jα  is the jth unknown coefficient (strength of the 
singularity), js  is the jth source point (singularity), ix  

is the ith observation point. N and M are number of the 
boundary points on 1B  and 2B , respectively. The 
chosen RBFs of Eqs. (4) and (5) in this paper are the 
double-layer potentials in the potential theory as 
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where < , > is the inner product of two vectors, ijr  is 

ij xs − , jn  is the normal vector at js , and in  is the 
normal vector at ix . 

When the collocation point ix  approaches to the 
source point js , Eqs. (4) and (5) become singular. Eqs. 
(4) and (5) for the interior problems need to be 
regularized by using the subtracting and adding-back 
technique [13, 14] as follows: 
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where the superscript (I) and (E) denotes the inward and 
outward normal vectors, respectively. The detailed 
derivation of Eq. (9) is given in reference [13]. Therefore, 
we can obtain 
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Similarly, the boundary flux is obtained as 
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The detailed derivation of Eq. (12) is given in the 
reference [10]. Therefore, we can obtain 
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According to the dependence of the normal vectors for 
inner and outer boundaries [13, 14], their relationships 
are 
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where the left-hand and right-hand sides of the equal sign 
in Eqs.(14) and (15) denote the kernels for observation 
and source point with the inward and outward normal 
vectors, respectively. 

By using the proposed technique, the singular terms in 
Eqs. (4) and (5) have been transformed into regular terms 
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in Eqs. (10) and (13), respectively. The terms of 
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terms and the terms of ( )( )ii
I x,sA  and ( )( )ii

I x,sB  are the 
subtracting terms in two brackets for the special 
treatment technique. After using the abovementioned 
method of regularization of subtracting and adding-back 
technique [13, 14], we are able to remove the singularity 
and hypersingularity of the kernel functions. 

 
2.2.2 Derivation of diagonal coefficients of 
influence matrices 

We can obtain the following linear algebraic system 
after collocating N observation points on 1B  and M 
observation points on 2B , { } MN

1iix +
= , in Eq. (10) as 
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In a similar way, Eq. (13) yield 
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in which 
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2.2.3 Derivation of influence matrices 

Rearrange the influence matrices of Eqs. (16) and (20) 
into the linear algebraic system as 
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The linear algebraic system in Eq. (24) can be 
generally written as 

CXD = . (25) 
For the inverse Laplace problem, the influence matrix 

C  is often ill-posed such that the regularization 
technique in section 2.3 elaborately which regularizes the 
influence matrix is necessary. 

 
2.3 Regularization techniques 
2.3.1 TSVD method 

In the singular value decomposition (SVD), the 
matrix C  is decomposed into 

[ ][ ][ ]TVUC Σ= , (26) 
where [ ] [ ]muuuU ,,, 21 K=  and [ ] [ ]mvvvV ,,, 21 K=  are 
column orthonormal matrices, with column vectors 
called left and right singular vectors, respectively, T 
denote the matrix transposition, and 
[ ] ( )mdiag σσσ ,,, 21 K=Σ  is a diagonal matrix with 
nonnegative diagonal elements in nonincreasing order, 
which are the singular values of C . 

A convenient measure of the conditioning of the 
matrix C  is the condition number defined as 

mCond σσ /1= , (27) 
where 1σ  is the maximum singular value and mσ  is 
the minimum singular value i.e. the ratio between the 
largest singular value and the smallest singular value. By 
means of the SVD, the solution 0a  can be written as 
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where k is the rank of C , iu  is the element of the left 
singular vector and iv  is the element of the right 
singular vector. For an ill-conditioned matrix, there are 
small singular values, therefore the solution is dominated 
by contributions from small singular values when the 
noise is present in the data. One simple remedy to treat 
the difficulty is to leave out contributions from small 
singular values, i.e. taking pa  as an approximate 
solution, where pa  is defined as 

∑=
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)/( σ , (29) 

where kp ≤  is the regularization parameter, which 
determines when one starts to leave out small singular 
values. Note that if kp = , the approximate solution is 
exactly the least squares solution. This method is known 
as TSVD in the inverse problem community [7]. 
 
2.3.2 Tikhonov regularization technique 

Tikhonov [2, 9] proposed a method to transform an 
ill-posed problem into a well-posed one. Instead of 
solving Eq. (25) directly, the solution of Tikhonov 
regularized as following: 
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where the λ  is the regularization parameter and λf  is 
the kth order Tikhonov function as given  
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Solving 0)( =∇ Xfλ , we can obtain the Tikhonov 
regularized solution λX  of the Eq. (30) is given as the 
solution of the regularized equation 
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where T denotes matrix transposition. 
In this paper, the zeroth-order and first-order Tikhonov 

regularization method are considered, respectively. The 
matrix )0(R  and )1(R  of zeroth-order and first-order 
Tikhonov regularization method is given by 
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An ill-posed matrix will be transformed into a well a 
one by employing the proposed regularization techniques. 
If too much regularization, i.e. λ  is larger, the solution 
will be too smoothing. If too little regularization, i.e. λ  
is small, the solution will be unreasonable by the 
contributions from the input data with perturbation error 
in measurements. The choice of the parameter λ  in Eq. 
(32) is vital for obtaining a reasonable and convergent 
solution and this is obtained on next section. 

 
2.4 Error estimation techniques 

2.4.1 L-curve technique 
The L-curve [2, 5, 9] is a log-log plot of the norm of 

a regularized solution versus the norm of the 
corresponding residual norm. The norm of a regularized 
solution is defined as 

2DCXLog − , (35) 
and norm of the corresponding residual norm as 
following 

2XLog , (36) 
Because of the corner point of the L-curve is not a 

local minimum norm. Therefore, the optimal 
regularization parameter need carefully chosen. 

 
2.4.2 Adaptive error technique 

The DMM in conjunction with adaptive error 
technique can be obtained optimal parameter )(ae

optλ  
without analytical solution. This technique is a log-log 
plot of error as the y-axis versus regularization parameter 

)(aeλ  as the x-axis. The error is defined as 

∫ −=−= 1
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where )(1 xφ  is original known boundary condition on 

the boundary 1B  and )(1 xφ  is result of calculated again 
by using DMM. The use steps of Eq. (37) are 
1. )(1 xφ  and )(1 xψ  are original known boundary 

conditions on the boundary 1B . 
2. Used boundary condition )(1 xφ , we can obtain the 

unknown boundary condition )(2 xφ  on the boundary 
2B  by using the DMM in conjunction with Tikhonov 

regularization method. 
3. We can employ boundary conditions )(1 xψ  and )(2 xφ  

to obtain new boundary condition )(1 xφ  on the 
boundary 1B  by using DMM and compute error by 
using Eq. (37).  

4. Repeated step 1 to step 3 and drafting, we can obtain 
optimal parameter )(ae

optλ  on the corner of curved line. 
 

To express the formulation in the section 2.1 to section 
2.4, the flowchart of solution procedures is shown in Fig. 
2. 
 
3. NNMERICAL EXAMPLES 

To show the accuracy and validity of the proposed 
method and obtain a better regularizationr technique and 
error estimation technique, two cases containing the 
square domain and infinite strip domain with finite 
thickness subjected to the overspecified boundary 
conditions, are considered, respectively.  

 
Case 1: Square domain 

The square domain of the inverse problem and 
overspecified boundary conditions are given as shown in 
Fig. 3. The length of square domain is 0.1=L . To found 
out a better regularization method, the L2 norm error 
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estimation comparing with analytical solution is 
implemented to determine the optimal parameter in this 
case. The L2 norm error is defined as  

∫ −=−= b
a exactexact dxerrornorm 2φφφφ , (38)

where φ  and exactφ  are the numerical result and 
analytical solution, respectively. The L2 norm against 
regularization parameter, λ  (or i) is shown in Fig. 4 
(a)~(c) by using the proposed regularization techniques, 
TSVD method, 0th-order and 1th-order Tikhonov 
regularization methods, respectively, after distributing 
400 nodes. The optimal values are 194, 0.0018 and 11.7, 
respectively. The results for the three optimal values are 
plotted in Fig. 5. From Fig. 5 the result by using the 
1th-order Tikhonov regularization method is more 
accurate better than other methods. The result of absolute 
error with the exact solution is shown in Fig. 6. To see 
convergent analysis as shown in Fig. 7 and convergent 
result is obtained after over 200 points are distributed. In 
this case, the better method can be obtained to remedy 
ill-posed problems and it is the 1th-order Tikhonov 
regularization method. 

 
Case 2: Infinite strip domain 

The infinite strip region of the inverse problem and 
overspecified boundary conditions are given as shown in 
Fig. 8 and the square wave is specified on the bottom of 
infinite strip region is given. To obtain the optimal 
parameter λ  of the 1th-order Tikhonov regularization 
method (the better regularization method in case 1), the 
analysis of error estimation is shown in Fig. 9 (a)~(b) by 
employing the proposed techniques after by distributing 
200 nodes. The optimal parameters are 0.00025 and 
0.00086, respectively, for the different error estimation. 
A better result is observed in Fig. 10. We can find the 
result of the adaptive error estimation technique is more 
accurate better then the L-curve technique. The results of 
absolute error with exact solution are shown in Fig. 11. 
To see convergent analysis as show in Fig. 12 and 
convergent result is obtained after over 200 points are 
distributed. In this case, the better error estimation 
technique is the adaptive error estimation technique to 
obtain the optimal parameter of the 1th-order Tikhonov 
regularization method, if analytical solution is not 
employing. 

 
4. CONCLUSION 

In this paper, we successfully applied the desingular 
meshless method to solve inverse problems with Laplace 
equation. The source and collocation points can be 
located on real boundary at the same time by using the 
proposed desingularization technique. The better 
regularization method and error estimation technique are 
obtained by giving the numerical evidences.  
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Figure 1 Problem sketch for inverse Laplace 
problem. 
 

Figure 2 Flowchart of solution procedures. 

 

Figure 3 Problem sketch for the case 1. 
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Figure 4 (a) 
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Figure 4 (b) 
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Figure 4 Optimal truncated number and 
regularization parameter for (a) TSVD method, (b) 
0th-order Tikhonov method, (c) 1th-order Tikhonov 
method. 
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Figure 5 Numerical result of employing TSVD 
method, 0th-order and 1th-order Tikhonov methods, 
respectively, by using 400 nodes for the case 1. 
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Figure 6 Absolute error with the exact solution of 
employing three regularization techniques by using 
400 nodes for the case 1. 
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Figure 7 The norm error along the boundary versus 
the number of nodes by using 1th-order Tikhonov 
method for the case 1. 
 
 
 

Figure 8 Problem sketch of infinite strip with finite 
thickness problem for the case 2. 
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Figure 9 Optimal regularization parameters by using 
(a) L-curve technique, (b) adaptive error technique,  
for the case 2. 
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Figure 10 Numerical result of employing L-curve and 
adaptive error techniques, respectively, by using 200 
nodes for the case 2. 
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Figure 11 Absolute error with the exact solution of 
employing L-curve and adaptive error techniques, 
respectively, by using 200 nodes for the case 2. 
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Figure 12 The convergent analysis by using adaptive 
error technique for the case 2. 
 
去奇異無網格法結合正規化方法之自
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摘要 

本文是應用去奇異無網格法求解含過定邊界條件之

拉普拉斯方程的發散問題。本法可將奇異源直接放在

真實邊界上，藉由一加一減的技巧來正規化處理奇異

及超奇異核函數。本文的主要貢獻是由兩部分所組

成。第一貢獻：在反算問題中會發生的病態問題將被

治療成功，分別使用建議的正規化方法－截取奇異值

分解法、第零階與第一階 Tikhonov 正規化方法。第二

貢獻：Ｌ曲線技術與新發展的自適性誤差評估技術提

供在不與解析解比較的情況下獲得最佳參數。數值結

果在與解析解做比較及討論後將證明此結果的正確

性。最後，最好的正規化方法與差評估技術將在本文

中提出。 

關鍵詞：去奇異無網格法，截取奇異值分解法，

Tikhonov 正規化法，L 曲線技術，自適性誤差評估，

一加一減法。 
  




