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ABSTRACT

In this paper, desingular meshless method (DMM) is
applied to solve divergent problems which occurs in the
Laplace equation with overspecified boundary conditions.
The source points can be located on the real boundary by
using the desingularization technique of adding-back and
subtracting technique to regularize the singularity and
hypersingularity of the kernel functions. The main
contribution in this paper can be divided into two parts as
follows. The first contribution: the accompanied ill-posed
problem in the inverse problem has been remedied
successfully by using the proposed regularization
methods, truncated singular value decomposition method
(TSVD), 0"-order and 1"-order Tikhonov regularization
methods, respectively. The second contribution: in order
to obtain the optimal parameter without comparing with
analytical solution, L-curve and the novel developed
adaptive error techniques are provided. The numerical
evidences are given to verify the accuracy of the
solutions after comparing with the results of analytical
solution and discussed in the examples. Finally, the
better regularization method and error estimation
technique can be suggested in this paper.
Keywords: desingular meshless method, TSVD method,
Tikhonov regularization method, L-curve technique,
adaptive error technique, adding-back and subtracting
technique.

1. INTRODUCTION

Inverse problems are presently becoming more
important in many fields of science and engineering [1, 2,
3]. Sometimes, unreasonable results occur in the inverse
problems subjected to the measured and contaminated
errors on the over-specified boundary condition, because
of the ill-posed behavior in the linear algebraic system [4,
5, 6]. Mathematically speaking, the influence matrix in
the inverse problem is ill-posed since the solution is very

sensitive to the given data. Such a divergent problem
could be avoided by using regularization methods [2, 7].
For examples, truncated singular value decomposition
method (TSVD) [7] and Tikhonov regularization
technique [2] have been applied to deal with divergent
problems.

For the inverse problem, the influence matrix is often
ill-posed such that the regularization techniques which
regularize the influence matrix is necessary. The TSVD
transform the ill-posed matrix into a well-posed one by
choosing an appropriate truncated number, i. Similarly,
the 0™-order and 1™-order Tikhonov regularization
techniques transform into a well-posed one by choosing
an appropriate parameter for 4 [8]. In this paper, the
novel meshless method in conjunction with the two
regularization techniques is employed to solve the
inverse problem by using the error estimation techniques.
To obtain a better regularization method, the comparison
of two regularization techniques is made. For parameter
2 (or i), if too much regularization, i.e. 2 (or i) is
larger, the solution will be too smoothing. If too little
regularization, i.e. 2 (or i) is small, the solution will be
unreasonable by the contributions from the input data
with perturbation error in measurements. The choice of
the optimal parameter in regularization methods is vital
for obtaining a reasonable and convergent solution.

In the literatures [8, 9], L-curve technique is often
implemented to can be determine an appropriate
parameter according to a compromise point between
regularization errors (due to data smoothing) and
perturbation errors (due to noise disturbance). It is an
adaptive technique for error estimation without
comparing with analytical solution. In this paper, we
employ the L-curve technique and a new developed
technique, respectively, to obtain the optimal parameter.
The new technique is called adaptive error estimation
technique. Also, it belongs to an adaptive technique and
does not need to compare the results with analytical
solution. This new estimation technique will be
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elaborated latterly.

During the last decade, scientific researchers have paid
attention to the method of fundamental solutions (MFS)
for solving engineering problems [10, 11, 12] in which
the mesh or element is free. The desingular meshless
method (DMM) is one kind of modified MFS and has
been extensively applied to solve some potential
problems [13, 14, 15]. By employing the
desingularization  technique of subtracting and
adding-back technique to regularize the singularity and
hypersingularity of the kernel functions, the proposed
method can distributes the observation and source points
on the coincident locations of the real boundary and still
maintains the spirit of the MFS.

In this paper, we will employ the developed DMM [13,
14, 15] in conjunction with the TSVD, 0™-order and
1"™-order Tikhonov regularization methods, respectively,
to circumvent the ill-posed problems. The better
regularization method is discussed in this paper. Also a
better error estimation technique without comparing with
analytical solution will be discussed in this paper. The
results of the examples contaminated with artificial
noises on the over-specified boundary condition are
given to illustrate the validity of the proposed technique.

2. FORMULATION
2.1 Govening equation subject to over-specified
boundary conditions

The inverse problem for the Laplace equation subject
to over-specified boundary conditions as shown in Fig. 1
can be modeled by:

v2¢(x)=0, xeD, 1)
subjected to the boundary condition on B, as

¢(X):$l xeBy, (2)
¢y(x)=¢y ! XEBlv (3)

where v? is the Laplacian operator, D is the domain
of interest, 4,(x)=a¢(x)/dy, B, is the known boundary

(B,) of B in which B is the whole boundary which
consists of boundary (B,) with specified BCs, and the
boundary (B, ) with unknown BCs.

2.2 Method of fundamental solutions
2.2.1 Review of conventional
fundamental solutions

By employing the radial basis function (RBFs) concept
[10, 11, 12], the representation of the solution for interior
problem can be approximated in terms of the strengths

method of

a; of the singularities s; as
900)= Ay @)
V()= 5B, x)er ©)

where  A(s;.x) IS RBF,  B(s;,x)=0A(s;.x)/on,

w(x)=0¢(x)/on, inwhich n, isthe normal vector at x,

a; 1s the jth unknown coefficient (strength of the

J
singularity), s; is the jth source point (singularity), x;

is the ith observation point. N and M are number of the
boundary points on B, and B, , respectively. The

chosen RBFs of Egs. (4) and (5) in this paper are the
double-layer potentials in the potential theory as

A(Sjvxi)=_<(xi_sj)!nj>/ri12! (6)
B(s;, %) =2<(X —s;).n, ><(xi—sj),n_i>/rij4

v ()

where <, > is the inner product of two vectors, r; is

is the normal vector at s;, and n, is the

o 2
—<nj,n >/

|sj7xi|, n;
normal vector at ;.

When the collocation point x, approaches to the
source point s;, Egs. (4) and (5) become singular. Egs.
(4) and (5) for the interior problems need to be
regularized by using the subtracting and adding-back
technique [13, 14] as follows:

) =3 AD(Gs x)a - 3 AS (s X 8)
j=1 ! = !
in which
N+M
Z A(E)(wai)aizol XiEB, (9)
=l :

where the superscript (1) and (E) denotes the inward and
outward normal vectors, respectively. The detailed
derivation of Eq. (9) is given in reference [13]. Therefore,
we can obtain
#(x) = EA(I)(siji)aj +NiM A(I)(Sjvxi)aj

= i

j=i+l

10
+[”§” A(')(sm,x.)—A")(s.,xi)}a. ¢
m=1
Similarly, the boundary flux is obtained as
w(x) = NiM B(l)(sj Y Xi)aj _ NiM B(E)(Sj %) (11)
j=1 j=1
in which
N+M
Y B®(s;,x) =0, x,eB. (12)
j=1

The detailed derivation of Eq. (12) is given in the
reference [10]. Therefore, we can obtain
p(x) =SBV (s, x)a;+ 5 BO(s;,x)a

j=1 j=i+l
13
_[NiMB(I)(vaxi)_B(I)(Sivxi):|ai ( )
According to the dependence of the normal vectors for

inner and outer boundaries [13, 14], their relationships
are

A (s, %) =—-AB(s;,x), i
{A<”(s],-,xi>=A(E)(s,-',xi), i- (14)
B (s,,x)=B®(s,,x), i j
{B“>(s:,xi)= BO(s, x). ] (15)

where the left-hand and right-hand sides of the equal sign
in Egs.(14) and (15) denote the kernels for observation
and source point with the inward and outward normal
vectors, respectively.

By using the proposed technique, the singular terms in
Eqgs. (4) and (5) have been transformed into regular terms

N+M N+M

[ > A(”(sm,xi)—A‘”(si,xi)} and —[ ) B“>(sm,xi)—B‘”(si,xi)}

in Egs. (10) and (13), respectively. The terms of
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A0, x) and 'Y B"(s,,x) are the adding-back
m=1 m=1

terms and the terms of Al(s,x,) and B")s,x,) are the
subtracting terms in two brackets for the special
treatment technique. After using the abovementioned
method of regularization of subtracting and adding-back
technique [13, 14], we are able to remove the singularity
and hypersingularity of the kernel functions.

2.2.2 Derivation of diagonal coefficients of
influence matrices

We can obtain the following linear algebraic system
after collocating N observation points on B, and M

observation pointson B,, {x}":", in Eq. (10) as

& o
¢N — [Al]Nx(N+M) aN (16)
bu A Mx(N+M) arfu ,
T PR I ) ya
where
N+M
YAy, —a, &
N+M
[Ai]: az mz_:laz,m —@,
ang an,2 , (17)
N A Nem
N AP R
N+M
zaN,m_aN,N o AnNsem
m=1 Nx(N+M)
N+M
anag ZaNﬂ,m GO
. . m=1 .
[A.]=
Ansma aAnam N+ :
: (18)
ANsN+M
Y
DI IRV : NIV VIRY
m=1 Mx(N+M)
in which
a; =AY (s;,x), i,j=12,N+M . (19)
In a similar way, Eq. (13) yield
41 a,
VN _ [Bl]Nx(N+M) ay (20)
Vi B, Mx(N+M) ar\.m '
a
Ynem ) omya NMI T (nemya
where

N+M
Shana] o
m=1
N+M
[Bl]: by _[ r"Z::1|32,m _bz,z}
bN,l bN,z ’ (21)

b1 N ) bl,N+M
b, b2,N+M

N+M
bN+1,1 ’|:mzzlbw+1,m*bw+1.N+1}
AR r |
bN+M,1 bN+M,N+1
’ (22)
bN+1,N+M
' N+M '
: _{ sz+M‘m_bN+M,N+Mi|
m=1 Mx(N+M)
in which
b, =BY(s,.x,), i,i=12,....N+M. (23)

2.2.3 Derivation of influence matrices
Rearrange the influence matrices of Eqgs. (16) and (20)
into the linear algebraic system as

{%}?ﬂ } [Al]Nx(N+M)i|{a}(N+M><1 ) (24)

[Bl]Nx(N+M)
The linear algebraic system in Eq. (24) can be
generally written as
D=CX . (25)
For the inverse Laplace problem, the influence matrix
c is often ill-posed such that the regularization
technique in section 2.3 elaborately which regularizes the
influence matrix is necessary.

2.3 Regularization techniques
2.3.1 TSVD method

In the singular value decomposition (SVD), the
matrix C is decomposed into
c=UMT, (26)
where  [U]=[u,up,....up] and  NM]=pvo....vn] are
column orthonormal matrices, with column vectors
called left and right singular vectors, respectively, T
denote the matrix transposition, and
[=]=diag(o1,0,....0,m) IS @ diagonal matrix with
nonnegative diagonal elements in nonincreasing order,
which are the singular values of c .

A convenient measure of the conditioning of the
matrix C is the condition number defined as
Cond =0y /op, (27)
where oy is the maximum singular value and o, is
the minimum singular value i.e. the ratio between the
largest singular value and the smallest singular value. By
means of the SVD, the solution a® can be written as

k
a¥ = _zl(ude loiWi (28)
i=
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where k is the rank of ¢, u; is the element of the left
singular vector and v; is the element of the right
singular vector. For an ill-conditioned matrix, there are
small singular values, therefore the solution is dominated
by contributions from small singular values when the
noise is present in the data. One simple remedy to treat
the difficulty is to leave out contributions from small

singular values, i.e. taking aP as an approximate
solution, where aP is defined as
2
aP =yl d/oi, (29)
i=
where p<k is the regularization parameter, which

determines when one starts to leave out small singular
values. Note that if p=k, the approximate solution is

exactly the least squares solution. This method is known
as TSVD in the inverse problem community [7].

2.3.2 Tikhonov regularization technique

Tikhonov [2, 9] proposed a method to transform an
ill-posed problem into a well-posed one. Instead of
solving Eqg. (25) directly, the solution of Tikhonov
regularized as following:

f2(X3)= xmiRnM f1(X), (30)
where the 2 is the regularization parameter and f; is
the kth order Tikhonov function as given

2
fg(X):"CX7D||2+22“R(k)X“ . R® R _ioxm - (31)
Solving vf (x)=0, we can obtain the Tikhonov

regularized solution X, of the Eq. (30) is given as the
solution of the regularized equation

[CTC+,12R(k)TR(k)jx =c"p, (32)

where T denotes matrix transposition.

In this paper, the zeroth-order and first-order Tikhonov
regularization method are considered, respectively. The
matrix R® and R® of zeroth-order and first-order
Tikhonov regularization method is given by

1 0 --- 0

ROZT TN (33)
6 O iMxM
-1 1 0 - 0

N (34)
00 - -1 afy

An ill-posed matrix will be transformed into a well a
one by employing the proposed regularization techniques.
If too much regularization, i.e. 1 is larger, the solution
will be too smoothing. If too little regularization, i.e. 2
is small, the solution will be unreasonable by the
contributions from the input data with perturbation error
in measurements. The choice of the parameter 4 in Eq.
(32) is vital for obtaining a reasonable and convergent
solution and this is obtained on next section.

2.4 Error estimation techniques

2.4.1 L-curve technique
The L-curve [2, 5, 9] is a log-log plot of the norm of
a regularized solution versus the norm of the
corresponding residual norm. The norm of a regularized
solution is defined as
Log||cX — D||2 , (35)
and norm of the corresponding residual norm as
following
Logl[x], (36)
Because of the corner point of the L-curve is not a

local minimum norm. Therefore, the optimal
regularization parameter need carefully chosen.

2.4.2 Adaptive error technique
The DMM in conjunction with adaptive error

technique can be obtained optimal parameter Ag%‘i)

without analytical solution. This technique is a log-log
plot of error as the y-axis versus regularization parameter

(@) as the x-axis. The error is defined as

"4, xeB,, 37)

where 4(x) is original known boundary condition on

error =

‘%(x) —4()

= I‘E(x) —4()

the boundary B, and g4(x) is result of calculated again

by using DMM. The use steps of Eq. (37) are

1. 4(x) and y,(x) are original known boundary
conditions on the boundary B, .

2. Used boundary condition #(x), we can obtain the
unknown boundary condition ¢,(x) on the boundary
B, by using the DMM in conjunction with Tikhonov
regularization method.

3. We can employ boundary conditions w;(x) and g (x)

to obtain new boundary condition Z(x) on the
boundary B, by using DMM and compute error by
using Eq. (37).

4. Repeated step 1 to step 3 and drafting, we can obtain
optimal parameter /1&‘,? on the corner of curved line.

To express the formulation in the section 2.1 to section
2.4, the flowchart of solution procedures is shown in Fig.
2.

3. NNMERICAL EXAMPLES

To show the accuracy and validity of the proposed
method and obtain a better regularizationr technique and
error estimation technique, two cases containing the
square domain and infinite strip domain with finite
thickness subjected to the overspecified boundary
conditions, are considered, respectively.

Case 1: Square domain

The square domain of the inverse problem and
overspecified boundary conditions are given as shown in
Fig. 3. The length of square domain is L=1.0. To found
out a better regularization method, the L2 norm error
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estimation comparing with analytical solution is
implemented to determine the optimal parameter in this
case. The L2 norm error is defined as

norm error :||¢7¢exact": J‘:|¢7¢exact|2dx ’ (38)
where ¢ and ¢, are the numerical result and

analytical solution, respectively. The L2 norm against
regularization parameter, 4 (or i) is shown in Fig. 4
(a)~(c) by using the proposed regularization techniques,
TSVD method, 0"-order and 1"™-order Tikhonov
regularization methods, respectively, after distributing
400 nodes. The optimal values are 194, 0.0018 and 11.7,
respectively. The results for the three optimal values are
plotted in Fig. 5. From Fig. 5 the result by using the
1"-order Tikhonov regularization method is more
accurate better than other methods. The result of absolute
error with the exact solution is shown in Fig. 6. To see
convergent analysis as shown in Fig. 7 and convergent
result is obtained after over 200 points are distributed. In
this case, the better method can be obtained to remedy
ill-posed problems and it is the 1™-order Tikhonov
regularization method.

Case 2: Infinite strip domain

The infinite strip region of the inverse problem and
overspecified boundary conditions are given as shown in
Fig. 8 and the square wave is specified on the bottom of
infinite strip region is given. To obtain the optimal
parameter 4 of the 1™-order Tikhonov regularization
method (the better regularization method in case 1), the
analysis of error estimation is shown in Fig. 9 (a)~(b) by
employing the proposed techniques after by distributing
200 nodes. The optimal parameters are 0.00025 and
0.00086, respectively, for the different error estimation.
A better result is observed in Fig. 10. We can find the
result of the adaptive error estimation technique is more
accurate better then the L-curve technique. The results of
absolute error with exact solution are shown in Fig. 11.
To see convergent analysis as show in Fig. 12 and
convergent result is obtained after over 200 points are
distributed. In this case, the better error estimation
technique is the adaptive error estimation technique to
obtain the optimal parameter of the 1™-order Tikhonov
regularization method, if analytical solution is not
employing.

4. CONCLUSION

In this paper, we successfully applied the desingular
meshless method to solve inverse problems with Laplace
equation. The source and collocation points can be
located on real boundary at the same time by using the
proposed desingularization technique. The better
regularization method and error estimation technique are
obtained by giving the numerical evidences.
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=9
= {W(X)=W

Overspecified boundary

Figure 1 Problem sketch for

problem.

Boundary conditions are given (Egs. (2) and (3))

vV

Choose the double-layer potential kernels, A and B, as RBF
(Eqs. (6) and (7))

vV

Construct the linear algebraic equation (Egs. (16) and (20))

ol ad (£l

Construct the linear algebraic system (Eq. (24))

ofel- el

V/

Treatment of ill-posed problem

V2 \

inverse Laplace

TSVD method (Eq. (26)) 0"-order Tikhonov method (Eg. (33))

1"-order Tikhonov method (Ea. (34))
v

Find the truncated number igpt
(section 2.4.1)

Find the optimal regularization
parameters Al()l) and /15,2)
pt pt
(section 2.4.1)

2 N
Choose the best regularization method
W/

Obtain optimal regularization parameter A
V/ W
Using L-curve Using adaptive
technique (/1('0)) error technique
(Eas. @) and (36)) | [ (2®)) (Eq. (37))
W/ /
Obtain unknown coefficient {a}
\/
Find the unknown boundary data (Eq. (8))
\/

Find the field solution (Eq. (4))

Figure 2 Flowchart of solution procedures.
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Norm error

y . _
A 3 =w(x,L)=cos(x)sinh(L) +sin(x) cosh(L)

42 =4(L.Y)
y) =cos(L)cosh(y) +sin(L)sinh(y)
vZ24=0 o
w2 =y(LY)

=—sin(L)cosh(y) + cos(L)sinh(y)

» X

4 =$(x.0) = cos(x)

Figure 3 Problem sketch for the case 1.
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For 1™-order Tikhonov method

Norm error

Figure 4 Optimal truncated number and
regularization parameter for (a) TSVD method, (b)
0"-order Tikhonov method, (c) 1"-order Tikhonov
method.

analytical solution
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Figure 5 Numerical result of employing TSVD
method, 0™-order and 1™-order Tikhonov methods,
respectively, by using 400 nodes for the case 1.
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Figure 6 Absolute error with the exact solution of
employing three regularization techniques by using
400 nodes for the case 1.
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Figure 7 The norm error along the boundary versus
the number of nodes by using 1"™-order Tikhonov
method for the case 1.
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Figure 8 Problem sketch of infinite strip with finite
thickness problem for the case 2.
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Figure 9 Optimal regularization parameters by using
(a) L-curve technique, (b) adaptive error technique,
for the case 2.

analytical solution
[—E—£1 Using L-curve technique (1%,,=0.00025)

16 —
/A—7/——A\ Using adaptive error technique (2.¢,,=0.00086)

o(x)

Figure 10 Numerical result of employing L-curve and
adaptive error techniques, respectively, by using 200
nodes for the case 2.
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Figure 11 Absolute error with the exact solution of
employing L-curve and adaptive error techniques,
respectively, by using 200 nodes for the case 2.
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Figure 12 The convergent analysis by using adaptive
error technique for the case 2.
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