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ABSTRACT 
The paper analytically deals with plastic limit angular 

velocities of rotating hollow cylinders of nonlinear 
isotropic strain-hardening viscoplastic materials. 
Particularly, analytical solutions of plastic limit angular 
velocities and the onset of instability were derived and 
compared with numerical results. The corresponding 
stability condition was also obtained explicitly while the 
implicit form of the onset of instability was solved by the 
fixed point iteration. It is found that the analytical results 
have made it possible for rigorous comparison of its 
counterpart of numerical effort. 
Keywords: plastic limit angular velocity, rotating 
cylinder, von Mises criterion, nonlinear strain-hardening, 
viscoplasticity, fixed point iteration. 

1. INTRODUCTION 
Plastic limit angular velocities of cylinders are useful 

information requested frequently for structure optimal 
design and safety evaluation. Much effort [1-4] made to 
such important topics by investigating the elastic-plastic 
behavior and the fully plastic state. For investigating 
such problems of optimization features, the author and 
his coworker [5] have investigated analytically and 
numerically the rotating problems involving nonlinear 
isotropic hardening materials. Similar attention [6-10] is 
also paid to the limit angular velocities of disks. 

Based on the previously successful work [5, 11-13], 
the paper extends to investigate analytically the rotating 
cylinders problems involving nonlinear isotropic 
hardening viscoplastic materials. It is noted that such 
problems feature in involving hardening material 
properties and weakening behavior corresponding to the 
strain-rate sensitivity in addition to widening 
deformation [14]. Thus, the applicability of the CSSA 
algorithm is to be validated by its counterpart of 
analytical studies of thick-walled cylinders involving 
materials of the von Mises model with viscoplastic 
nonlinear isotropic hardening. Novelly, corresponding to 
the specific normalization condition adopted in the paper, 
the onset of instability and the existence of hardening 
phenomena before the weakening behavior are to be 
investigated analytically and explicitly. 

In the following sections, the paper is based on the 
concept of sequential limit analysis to deal with the 
rotating hollow cylinders of the von Mises materials with 
viscoplastic nonlinear isotropic strain-hardening. 
Particularly, analytical solutions of plastic limit angular 
velocity, the onset of instability and the stability 
condition are to be derived for rigorous comparisons and 
validation. 
 
2. PROBLEM STATEMENT AND 
RESULTS 
2.1 Analytical Solution 

We consider a plane-strain problem with a rotating 
hollow cylinder made of strain-hardening viscoplastic 
materials simulated by the von Mises model. The initial 
interior and exterior radii of the cylinder are denoted by 

0a  and 0b . Also, its current interior and exterior radii 
are denoted by a  and b . The behavior of viscoplastic, 
nonlinear isotropic hardening is as adopted by Haghi and 
Anand [15] 
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where 0σ  is the initial yield strength, ∞σ  is the 
saturation stress and h  is the hardening exponent, ε  
is the equivalent strain and ε&  the equivalent strain rate. 

0ε&  and m  are positive valued material parameters 
called the reference strain rate and strain rate sensitivity, 
respectively. 

Similar to the procedures adopted by the previous 
work of Leu [11-13], Leu and Chen [5], we derive the 
analytical solutions as follows. 

In the cylindrical coordinate system, the 
incompressibility condition requires that 

0=+
∂
∂

r
v

r
v                                   (2) 

where v  is the radial velocity at a point ( θ,r ). 
Accordingly, the radial velocity can be expressed as 
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where a , a&  are the interior radius and interior velocity, 
respectively. Accordingly, we can express the strain rates 
as 
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and from Eqs. (4)~(6) we obtain the equivalent strain rate 
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Accordingly, the equivalent strain is obtained as 

=ε ∫ ε& dt 2
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where 0r  is the initial radius to the location concerned. 
The components of the stress deviator, zr sss ,, θ , can be 
obtained by considering the flow rule and satisfying the 
yield condition. Thus, we obtain 
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0=zs                                      (11) 

Thus, the stresses are given as 

rr ss +=σ                                  (12) 

θθσ ss +=                                  (13) 

zz ss +=σ                                  (14) 

where s  is the mean normal stress. Substituting Eqs. 
(12)~(14) into the following equilibrium equation 
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Therefore, we obtain 
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Note that 3=h  is used in the derivation. Thus, with 
the boundary conditions 0)( == arrσ  and 

0)( == brrσ , the limit value of the angular velocity 

factor 2ρω  at the current radii ba,  is given by 
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If the angular velocity factor 2ρω  is normalized 

by 2
00 / bσ , then we have the normalized angular 

velocity factor 0
2

0
2 /σρω b  in the form as 
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For the case with 0=m  
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Thus, we reduce the viscoplasticity problems to rate 
independent plasticity problems [5] with the strain rate 
sensitivity 0=m , such that 
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For the case with 0σσ =∞ , we reduce to non-hardening 
power-law viscoplasticity problems such that 
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2.2 Onset of Instability 

To consider instability and then the existence of the 
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maximum value of the limit angular velocity during the 
whole widening process, we apply the necessary 
condition for the maximum of 0

2
0

2 /σρω b , namely the 
following mathematical expression with the current 
interior radius a 
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inherent in the von Mises model. Particularly, we recall 
the normalization condition ∫ =⋅D dAru 1vv  adopted in 
the computational procedure as detailed in [14] or later in 
the paper. Accordingly, it implies that rrbbaa &&& ==  is a 
constant in the computations in the paper. Thus, 
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We can reorganize the equation in the form as 
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To solve the nonlinear equation, we apply the method 
of fixed point iteration [16] to acquire the onset of 
instability in terms of 0/ aa . Thus, the nonlinear 
equation is reorganized as  
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And get the solution of 0/ aa  in the form ready for 
the method of fixed point iteration [16] 
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Finally, we come to consider the condition of 
stability, namely the existence of hardening phenomena 
before the weakening behavior. Mathematically, it is to 
consider the case expressed in the form 
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Certainly, the condition expressed by Eq. (27) is 
equivalent to see if there is the solution 1/ 0 >aa  to Eqs. 
(26). Therefore, corresponding to the viscoplastic 
strain-hardening behavior with the hardening exponent 

3=h , we can get the stability condition by Eqs. (26) as 

2
0

+>∞ m
σ
σ                                   (28) 

Therefore, if the viscoplastic strain-hardening 
behavior adopted by Haghi and Anand [15] with the 
hardening exponent 3=h , then there exists 
strengthening phenomenon if the rotating cylinders are 
made of hardening materials with 2/ 0 +>∞ mσσ . 

 
2.3 Numerical Formulation 

Limit analysis is a conventional but yet convenient 
and comparable tool [17-29], especially in conjunction 
with finite element methods [30] and computational 
optimization techniques [31]. Providing efficiently the 
plastic limit loads with simple input data, limit analysis 
plays the role of a snapshot look at the structural 
performance. Furthermore, sequential limit analysis is to 
conduct a sequence of limit analysis problems with 
updating local yield criteria in addition to the 
configuration of the deforming structures. Accordingly, it 
has been illustrated widely that sequential limit analysis 
is an accurate and efficient tool for the large deformation 
analysis [32-38]. 

The hollow cylinder is considered to rotate about its 
axis at a constant angular velocity ω . It is assumed that 
the angular acceleration is negligible. In the beginning, 
we consider a general plane-strain problem with the 
domain D  consisting of the static boundary Ds∂  and 
the kinematic boundary Dk∂ . The problem is then to 
search for the maximum allowable angular velocity 
factor ( )σρω2  subjected to constraints of static and 
constitutive admissibility such that 

maximize  ( )σρω 2  

subject to  02 =+⋅∇ rvρωσ  in D              (29) 
       0σσ ≤

∨
     in D  

where ρ  is the constant material density of the rotating 
hollow cylinders, ω  is the angular velocity, rv2ρω  is 
the centrifugal force with rv  the position vector, 
σ

∨
denotes the von Mises primal norm on stress tensor 

σ  and 0σ  is a material constant. Therefore, this 
constrained problem is simply to maximize the angular 
velocity factor ( )σρω2  representing the magnitude of 
the driving load. Obviously, the problem statement leads 
naturally to the lower bound formulation seeking the 
extreme solution under constraints of static and 
constitutive admissibility. The statically admissible 
solutions satisfy the equilibrium equation and the static 
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boundary condition. The constitutive admissibility is 
stated by the yield criterion in an inequality form. 

As detailed by the author [14], we can transform the 
lower bound formulation to the upper bound formulation 
stated in the form of a constrained minimization problem 
as 

minimize  ( )uv2ωρ  

subject to  ( )uv2ωρ = ∫ ∨−D
dAεσ &0            (30) 

∫ =⋅
D

dAru 1vv      in  D  

0=⋅∇ uv       in  D  
kinematic boundary conditions on  Dk∂  

where ∫ =⋅D dAru 1vv  is the normalization condition and 
0=⋅∇ uv  is the incompressibility constraint inherent in 

the von Mises model. 
Therefore, the upper bound formulation seeks 

sequentially the least upper bound for each step on 
kinematically admissible solutions. Accordingly, the 
primal–dual problems (29) and (30) are convex 
programming problems following the work of Huh and 
Yang [24] and Yang [38] and as demonstrated by Yang 
[27-28, 39]. Thus, for each step, there exist a unique 
maximum and minimum to problems (29) and (30), 
respectively. 

As detailed in the previous work [14], rigorous upper 
bounds are then computed sequentially and effectively 
based on a combined smoothing and successive 
approximation (CSSA) algorithm incorporated with an 
inner and outer iterative sequence. The CSSA algorithm 
is comparable for its simple implementation, 
unconditional convergence. All the abovementioned 
procedures have been summarized as the flowchart 
shown in the previous work by Leu and Chen [5]. 

 
3. ILLUSTRATIVE COMPARISONS 

The paper is based on the concept of sequential limit 
analysis to investigate the plastic limit angular velocity 
of hollow cylinders involving strain-hardening 
viscoplastic materials in plane-strain conditions. 
Analytical solutions for the limit angular velocity have 
been derived. To be complete, the onset of the instability 
and the stability condition are also investigated 
analytically. Comparisons between analytical solutions 
and numerical results are then to be made. 

In the numerical formulation, the centrifugal force 
associated with the angular velocity is the driving load to 
cause the rotating cylinders fully plastic. In the 
computations, the behavior of viscoplastic, nonlinear 
isotropic hardening is as adopted by Haghi and Anand 
[15] as shown in Eq. (1). 

In the illustrated examples, the initial inner and outer 
radii are denoted as 0a  and 0b , respectively. The 
angular velocity required to keep the deforming cylinder 
fully plastic is then computed sequentially by using the 
CSSA algorithm [14]. In the following case studies, we 
adopt the following parameters of consistent dimensions: 

0.50 =a , 0.100 =b , 3=h , 0.10 =ε&  and a constant 
step size 0.1=Δt . 

Firstly, we consider the rotating cylinder with various 
values of the strain-rate sensitivity m . For the case with 

0=m , the problem is then reduced to a rate independent 
plasticity problem involving strain-hardening materials 
as investigated in the previous work [5]. Parametric 
studies are performed with various values of the strain 
rate sensitivity m  together with the value of the yield 
strength ratio 0.2/ 0 == ∞ σσR . The results of the 
normalized plastic limit angular velocity factor 

0
2

0
2 /σρω b  are summarized in Figure 1. All the 

computed upper bounds agree very well with the 
analytical solutions. 

Secondly, parametric studies are performed with 
various values of the yield strength ratio 0/σσ∞=R  
associated with the values of the strain rate sensitivity 

1.0=m . The results of the normalized plastic limit 
angular velocity factor 0

2
0

2 /σρω b  are summarized in 
Figure 2. All the computed upper bounds match very 
well with the analytical solutions. 

On the other hand, there may be a strengthening 
phenomenon before the weakening phenomenon as 
shown in Figures 1~2 depending on the values of the 
hardening exponent h  and the strain rate sensitivity 
m . For some values of the hardening exponent h and 
the strain rate sensitivity m , rotating hollow cylinders 
are strengthened due to the strain-hardening until the 
onset of instability. Following that, however, the 
weakening phenomenon is observed while the effect of 
strain-rate sensitivity and widening deformation 
counteracts that of the strain-hardening. Note that, the 
onset of instability concerned is about the plastic 
instability marked by the rotating speed maximum while 
dealing with thick-walled cylinders, see the work by 
Rimrott [4], Chakrabarty [40]. Namely, the strengthening 
due to material hardening is exceeded by the weakening 
resulting from the widening deformation and 
viscoplasticity. 

The onset of instability is then acquired in terms of 
the inner radius 0/ aa  by using fixed point iteration. 
Figure 3 shows the relationship between the onset of 
instability and the yield strength ratio 0/σσ∞=R  with 
various values of the strain-rate sensitivity m . Again, 
the computed results for the onset of instability are in 
good agreement with the analytical solutions as shown in 
Figures 1~3. On the other hand, it is found that the 
strengthening phenomena exist only for the cases with 

2/ 0 +>∞ mσσ . Note that, considering the viscoplastic 
strain-hardening behavior with the hardening exponent 

3=h , the stability condition for the widening problem 
of rotating hollow cylinders is obtained analytically as 

2/ 0 +>∞ mσσ . 
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Figure 1 Effect of strain-rate sensitivity m  on the 
normalized plastic limit angular velocity factor 
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Figure 2 Effect of yield strength ratio 0/σσ∞=R  on 
the normalized plastic limit angular velocity factor 

0
2

0
2 /σρω b  with strain-rate sensitivity 1.0=m  

 

1

1.05

1.1

1.15

1.2

1.25

1.3

1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1

Yield Strength Ratio

In
ne

r R
ad

iu
s

m=0.001
m=0.01
m=0.1
m=0.2
m=0.3
m=0.4
m=0.5

 
Figure 3 Effect of strain-rate sensitivity m  and yield 
strength ratio 0/σσ∞=R  on the onset of instability in 
terms of the inner radius 0/ aa  
 
4. CONCLUSION 

Plastic limit angular velocities of cylinders are useful 
information for structure optimal design or safety 
evaluation. The paper is based on the concept of 
sequential limit analysis to investigate analytically the 
plastic limit angular velocity of rotating hollow cylinders 

made of nonlinear isotropic strain-hardening viscoplastic 
materials. 

Particularly, analytic solutions of the plastic limit 
angular velocity as well as the onset of instability and the 
stability condition corresponding to the hardening 
exponent 3=h  were also derived in the paper for 
rigorous comparisons. The onset of instability was 
novelly acquired in terms of the inner radius 0/ aa  by 
using fixed point iteration. The computed upper-bound 
results are in good agreement with analytical solutions. 

Especially, it is found numerically and analytically 
that the strengthening phenomena exist only for the cases 
with 2/ 0 +>∞ mσσ  considering the viscoplastic 
strain-hardening behavior with the hardening exponent 

3=h  and the strain-rate sensitivity m . 
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