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A numerical method based on an integro-differential formulation is proposed for solving a one-dimensional
moving boundary Stefan problem involving heat conduction in a solid with phase change. Some specific
test problems are solved using the proposed method. The numerical results obtained indicate that it can
give accurate solutions and may offer an interesting and viable alternative to existing numerical methods for
solving the Stefan problem. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 24: 939–949,
2008
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I. INTRODUCTION

A moving boundary Stefan problem of interest requires solving the differential equations

∂2T (x, t)

∂x2
+ xR(t)

dR(t)

dt

∂T (x, t)

∂x
= R2(t)

∂T (x, t)

∂t
for x ∈ [0, 1] and t ≥ 0, (1)

and

R(t)
dR(t)

dt
= −Ste

∂T (x, t)

∂x

∣∣∣∣
x=1

for t ≥ 0, (2)

subject to the initial conditions

R(0) = 0 and T (x, 0) = 0 for x ∈ [0, 1], (3)

and the boundary conditions

αT (0, t) + β
∂T (x, t)

∂x

∣∣∣∣
x=0

= f (t) and T (1, t) = 0 for t > 0, (4)
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where T (x, t) is the temperature, R(t) ≥ 0 gives the position of the moving boundary, Ste denotes
a constant known as the Stefan number, and the constants α and β (not both zero) and the function
f (t) are assumed to be suitably prescribed such that R(t) is an increasing function of t . Note that
(2) is known as the Stefan condition.

Equations (1)–(4) arise in the formulation of the one-dimensional moving boundary problem
for the liquid region of a melting solid at the phase change temperature. They are derived from the
original formulation of the Stefan problem to immobilize the solution domain from the physical
region given by [0, R(t)] to the nondimensionalized interval [0, 1] (Rizwan-uddin [1]). A semi-
analytical technique known as the nodal integral method for solving the problem for the special
case α = 1 and β = 0 was proposed by Rizwan-uddin [2]. Caldwell, Savović, and Kwan [3], and
Savović and Caldwell [4] presented a finite-difference method for determining T (x, t) and R(t)

numerically, also for α = 1 and β = 0. The more general boundary condition at x = 0 as in (4)
(with α2 + β2 �= 0) allows for the heat flux to be specified at x = 0, as may occur when heat
transfer takes place through convective process on the boundary. Reviews on numerical methods
for solving various one-dimensional Stefan problems were recently given by Caldwell and Kwan
[5] and Javierre, Vuik, Vermolen, and van der Zwaag [6]. Other earlier related references which
may be of interest here include Asaithambi [7, 8], Crank [9], Kutluay, Bahadir, and Özdeş [10],
and Lesaint and Touzani [11].

In the present paper, an alternative numerical method based on an integro-differential equation
of (1) is proposed for solving the Stefan problem defined in (1)–(4). Together with the boundary
conditions in (4), the integro-differential equation is reduced to a system of algebraic-differential
equations by approximating T (x, t) through the use of local interpolating spatial functions. The
system contains functions of t giving the unknown temperature at selected nodal points, the
boundary heat flux functions (at x = 0 and x = 1) and the unknown position R(t) of the
moving boundary. The first-order time derivatives of the nodal temperature functions are approx-
imated using quadratic functions of t in order to further reduce algebraic-differential equations
to purely algebraic equations. A predictor–corrector approach is used to solve the nonlinear alge-
braic equations and (2). The numerical procedure here does not require the boundary heat flux
to be approximated using a finite-difference formula for the first order spatial derivative of the
temperature. Instead, the heat flux function at either x = 0 or x = 1 is to be determined directly
as a function of t , if it is not known. To test its validity, the proposed numerical method is applied
to solve some specific test problems.

The integro-differential approach offers an interesting and viable alternative to more conven-
tional numerical techniques like the finite-difference method for solving initial-boundary value
problems in engineering and physical science. The main advantage in using the approach for the
numerical solution of (1)–(4) is that the formulation does not contain any spatial derivative of
the unknown function in the interior of the solution domain. Thus, it is not necessary to approxi-
mate any spatial derivative using finite-difference formulae. For some examples of problems
solved using integro-differential formulations, one may refer to Ang [12, 13] and Chen and
You [14].

II. INTEGRO-DIFFERENTIAL FORMULATION

Integrating (1) partially with respect to x over the interval 0 ≤ x ≤ η (with 0 < η < 1) yields

∂T (η, t)

∂η
− ∂T (x, t)

∂x

∣∣∣∣
x=0

=
∫ η

0

[
R2(t)

∂T (x, t)

∂t
− xR(t)

dR(t)

dt

∂T (x, t)

∂x

]
dx. (5)
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Equation (5) is now partially integrated with respect to η over the interval 0 ≤ η ≤ ξ (with
0 < ξ < 1) to obtain

T (ξ , t) − T (0, t) − ξ
∂T (x, t)

∂x

∣∣∣∣
x=0

=
∫ ξ

0

∫ η

0

[
R2(t)

∂T (x, t)

∂t
− xR(t)

dR(t)

dt

∂T (x, t)

∂x

]
dx dη. (6)

Interchanging the order of integration in the double integral on the right-hand side of (6) leads to

T (ξ , t) − T (0, t) − ξ
∂T (x, t)

∂x

∣∣∣∣
x=0

=
∫ ξ

0
|x − ξ |

[
R2(t)

∂T (x, t)

∂t
− xR(t)

dR(t)

dt

∂T (x, t)

∂x

]
dx. (7)

If the exercise above is repeated using the intervals η ≤ x ≤ 1 and ξ ≤ η ≤ 1 in place of
0 ≤ x ≤ η and 0 ≤ η ≤ ξ respectively, one obtains

T (1, t) − T (ξ , t) + (ξ − 1)
∂T (x, t)

∂x

∣∣∣∣
x=1

= −
∫ 1

ξ

|x − ξ |
[
R2(t)

∂T (x, t)

∂t
− xR(t)

dR(t)

dt

∂T (x, t)

∂x

]
dx. (8)

Taking the difference between (7) and (8) and using the boundary condition at x = 1 in (4) give

2T (ξ , t) − T (0, t) − ξ
∂T (x, t)

∂x

∣∣∣∣
x=0

− (ξ − 1)
∂T (x, t)

∂x

∣∣∣∣
x=1

= R2(t)

∫ 1

0
|x − ξ |∂T (x, t)

∂t
dx −

∫ 1

0
x|x − ξ |R(t)

dR(t)

dt

∂T (x, t)

∂x
dx. (9)

Performing an integration by part on the second integral in (9) (to remove the first-order spatial
derivative of T ), one may derive the integro-differential equation

2T (ξ , t) = T (0, t) + ξθ0(t) + (ξ − 1)θ1(t) + R2(t)

∫ 1

0
|x − ξ |∂T (x, t)

∂t
dx

+ R(t)
dR(t)

dt

[∫ ξ

0
(ξ − 2x)T (x, t)dx +

∫ 1

ξ

(2x − ξ)T (x, t) dx

]
, (10)
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where θ0(t) and θ1(t) are the flux functions defined by

θ0(t) = ∂T (x, t)

∂x

∣∣∣∣
x=0

and θ1(t) = ∂T (x, t)

∂x

∣∣∣∣
x=1

. (11)

Similar integro-differential equations were used to obtain numerical methods for solving
one-dimensional heat and wave equations in Ang [12, 13].

The one-dimensional Stefan problem stated in Section I may now be reformulated as one which
requires solving for T (x, t), θ0(t), θ1(t), and R(t) from (10) together with (2) subject to the initial
conditions (3) and the boundary condition at x = 0 in (4). In view of (11), one may rewrite the
Stefan condition (2) as

R(t)
dR(t)

dt
= −Ste θ1(t) for t ≥ 0. (12)

III. APPROXIMATION OF T (x, t)

As in Ang [12, 13], the temperature T (x, t) is approximated using

T (x, t) �
N∑

m=1

Tm(t)

N∑
n=1

cnmσn(x), (13)

where Tm(t) = T (ξm, t), ξ1, ξ2, . . . , ξN−1 and ξN are N distinct well-spaced nodes selected from
the interval [0, 1] with ξ1 = 0 and ξN = 1, σn(x) = 1 + |x − ξn|3/2 is the local interpolating
function centred about ξn and cnm are constant coefficients defined by

N∑
k=1

σn(ξk)cpk =
{

1 if n = p,
0 if n �= p.

(14)

Equation (14) implies that [cpk] is the inverse matrix of [aij ], where aij = σj (ξi).
Note that the choice of the local interpolating function σn(x) in (13) is not unique. The function

σn(x) = 1 + |x − ξn|3/2 may be regarded as a one-dimensional analogue of the local interpolat-
ing function proposed in Zhang and Zhu [15] for use in the dual-reciprocity boundary element
method.

From (4), TN(t) is known, i.e., TN(t) = 0. In general, the functions T1(t), T2(t), . . . , TN−2(t)

and TN−1(t) may be regarded as unknowns yet to be determined.

IV. AN INITIAL-VALUE PROBLEM

If one substitutes (13) into (10) and lets ξ = ξr for r = 1, 2, . . . , N , one obtains

2Tr(t) = T1(t) + ξrθ0(t) + (ξr − 1)θ1(t) + R2(t)

N−1∑
m=1

Frm

dTm(t)

dt

+ R(t)
dR(t)

dt

N−1∑
m=1

GrmTm(t) for r = 1, 2, . . . , N , (15)
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where

Frm =
N∑

n=1

cnm

(
1

2

[
(1 − ξr)

2 + ξ 2
r

] + 2

5

[
(1 − ξr)(1 − ξn)

5/2 + ξrξ
5/2
n

]

− 4

35

[
(1 − ξn)

7/2 + ξ 7/2
n

] + 8

35
|ξr − ξn|7/2

)
, (16)

Grm =
N∑

n=1

cnm

(
1 − ξr + 4

7

[
(1 − ξn)

7/2 − 2|ξr − ξn|7/2
]

+
(

4

5
ξn − 2

5
ξr

) [
(1 − ξn)

5/2 − 2 sgn(ξr − ξn)|ξr − ξn|5/2
] − 8

35
ξ 7/2
n + 2

5
ξ 5/2
n ξr

)
. (17)

Note that if R(t) is known then (15) constitutes a system of N linear algebraic-differential
equations containing (N + 1) unknown functions of t . The unknown functions are θ0(t), θ1(t),
T1(t), T2(t), . . . , TN−2(t) and TN−1(t). To obtain another equation, the boundary condition at x = 0
in (4) is written as

αT1(t) + βθ0(t) = f (t). (18)

Thus, the Stefan problem under consideration is now approximately reduced to an initial-value
problem which requires solving (12), (15), and (18) subject to

R(0) = 0 and Tr(0) = 0 for r = 1, 2, . . . , N − 1. (19)

Note that (19) is obtained from (3). Mathematically, initial values of θ0(t) and θ1(t) are not
required, as (15) does not contain any time derivative of these functions. Nevertheless, if needed,
they may be deduced from the initial condition T (x, 0) = 0 in (3) to be given by θ0(0) = 0 and
θ1(0) = 0.

V. NUMERICAL METHOD

The unknown functions Tn(t)(n = 1, 2, . . . , N − 1) are approximated as cubic functions of time
t over the interval [τ , τ + 3	t], that is (as in Ang [12]),

Tn(t) � 1

(	t)3

[
−1

6
(t − τ − 	t)(t − τ − 2 	t)(t − τ − 3 	t)Tn(τ )

+ 1

2
(t − τ)(t − τ − 2 	t)(t − τ − 3 	t)Tn(τ + 	t)

− 1

2
(t − τ)(t − τ − 	t)(t − τ − 3	t)Tn(τ + 2 	t)

+ 1

6
(t − τ)(t − τ − 	t)(t − τ − 2 	t)Tn(τ + 3 	t)

]

for t ∈ [τ , τ + 3 	t], (20)
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Differentiation of (20) with respect to t gives

dTn(t)

dt
� 1

(	t)3

[
−

(
1

2
[t − τ ]2 − 2[t − τ ] 	t + 11

6
[	t]2

)
Tn(τ )

+
(

3

2
[t − τ ]2 − 5[t − τ ] 	t + 3[	t]2

)
Tn(τ + 	t)

−
(

3

2
[t − τ ]2 − 4[t − τ ] 	t + 3

2
[	t]2

)
Tn(τ + 2	t)

+
(

1

2
[t − τ ]2 − [t − τ ] 	t + 1

3
[	t]2

)
Tn(τ + 3	t)

]

for t ∈ [τ , τ + 3	t]. (21)

If one lets t = τ + j	t (for j = 1, 2, 3) in (15), after using (21), one obtains

2Tr(τ + j	t) − T1(τ + j	t) = ξrθ0(τ + j	t) + (ξr − 1)θ1(τ + j	t)

+ R(τ + j	t)
dR

dt

∣∣∣∣
t=τ+j	t

N−1∑
m=1

GrmTm(τ + j	t)

+ R2(τ + j	t)

	t

N−1∑
m=1

Frm

[
−

(
1

2
j 2 − 2j + 11

6

)
Tm(τ)

+
(

3

2
j 2 − 5j + 3

)
Tm(τ + 	t)

−
(

3

2
j 2 − 4j + 3

2

)
Tm(τ + 2	t)

+
(

1

2
j 2 − j + 1

3

)
Tm(τ + 3	t)

]

for r = 1, 2, . . . , N and j = 1, 2, 3. (22)

In a similar manner, (18) gives

αT1(τ + j	t) + βθ0(τ + j	t) = f (τ + j	t) for j = 1, 2, 3. (23)

Integrating (12) with respect to t over the interval [τ , τ + j	t] (for j = 1, 2, 3) gives

R2(τ + j	t) − R2(τ ) = −2Ste

∫ τ+j	t

τ

θ1(t) dt for j = 1, 2, 3. (24)
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If θ1(t) is approximately given by

θ1(t) � 1

(	t)3

[
−1

6
(t − τ − 	t)(t − τ − 2	t)(t − τ − 3	t)θ1(τ )

+ 1

2
(t − τ)(t − τ − 2	t)(t − τ − 3	t)θ1(τ + 	t)

− 1

2
(t − τ)(t − τ − 	t)(t − τ − 3	t)θ1(τ + 2	t)

+ 1

6
(t − τ)(t − τ − 	t)(t − τ − 2	t)θ1(τ + 3	t)

]

for t ∈ [τ , τ + 3	t], (25)

then

R2(τ + j	t) − R2(τ ) � −2Ste(	t)

[(
− 1

24
j 4 + 1

3
j 3 − 11

12
j 2 + j

)
θ1(τ )

+
(

1

8
j 4 − 5

6
j 3 + 3

2
j 2

)
θ1(τ + 	t)

+
(

−1

8
j 4 + 2

3
j 3 − 3

4
j 2

)
θ1(τ + 2	t)

+
(

1

24
j 4 − 1

6
j 3 + 1

6
j 2

)
θ1(τ + 3	t)

]

for j = 1, 2, 3. (26)

Letting t = τ + j	t (for j = 1, 2, 3) in (12) gives

R(τ + j	t)
dR(t)

dt

∣∣∣∣
t=τ+j	t

= −Ste θ1(τ + j	t) for j = 1, 2, 3. (27)

Assuming that R(τ), θ1(τ ), Tm(τ) (m = 1, 2, 3, . . . , N − 1) are known, one may solve for the
unknowns R(τ +j	t), θi(τ +j	t), and Tm(τ +j	t) (j = 1, 2, 3; i = 0, 1; m = 1, 2, . . . , N −1)

by using a predictor–corrector procedure which iterates between (22)–(23) and (26)–(27).
More specifically, the procedure starts off with an initial guess of R2(j	t) and R(j	t)R′(j	t)

(j = 1, 2, 3). With this initial guess and τ = 0, (22) and (23) may be solved as a system of
3(N + 1) linear algebraic equations for the 3(N + 1) unknowns given by θi(j	t) and Tm(j	t)

(j = 1, 2, 3; i = 0, 1; m = 1, 2, . . . , N − 1). From (3), one may use R(0) = 0 and Tm(0) = 0
(m = 1, 2, . . . , N − 1) in (22)–(23) and (26)–(27) when τ = 0. Once these unknowns are deter-
mined, R(j	t)R′(j	t) and R2(j	t) (j = 1, 2, 3) are calculated from (26) and (27) respectively,
with τ = 0, using the values of θ1(j	t) (j = 1, 2, 3) just obtained. The newly updated val-
ues of R(j	t)R′(j	t) and R2(j	t) (j = 1, 2, 3) are checked for convergence against those
values from the initial guess. If the two sets of values do not agree to within a prescribed
level, one returns to (22) and (23) (still with τ = 0), solve again for θi(j	t) and Tm(j	t)

(j = 1, 2, 3; i = 0, 1; m = 1, 2, . . . , N −1), applies (26) and (27) with the latest values of θ1(j	t)

(j = 1, 2, 3) to recompute R(j	t)R′(j	t) and R2(j	t) (j = 1, 2, 3) respectively, and checks
again for convergence in the values of R(j	t)R′(j	t) and R2(j	t) (j = 1, 2, 3). The iteration

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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between (22)–(23) and (26)–(27) for τ = 0 continues until the values of R(j	t)R′(j	t) and
R2(j	t) (j = 1, 2, 3) converge to within the prescribed level.

The iterative process above may be repeated by letting τ = 3	t and using R2(j	t)

and R(j	t)R′(j	t) (as computed with τ = 0) as starting values for R2((3 + j)	t) and
R((j + 3)	t)R′((j + 3)	t)(j = 1, 2, 3) respectively, in order to solve for R((j + 3)	t),
θi((j + 3)	t) and Tm((j + 3)	t) (j = 1, 2, 3; i = 0, 1; m = 1, 2, . . . , N − 1). Once convergence
is achieved for τ = 3	t , the process is repeated with τ = 6	t , 9	t , 12	t , . . . (consecutively)
to solve for the unknowns at higher and higher time levels.

VI. TEST PROBLEMS

The numerical method proposed above is applied here to solve two specific test problems. In both
problems, the predictor–corrector procedure which iterates between (22)–(23) and (26)–(27) is
stopped once R2(t) and R(t)R′(t) at the relevant time levels achieve a convergence of 9 significant
figures.

Problem 1. In (4), take α = 1, β = −1, f (t) = −1 + exp(t) + t exp(t) and Ste = 1.
With Ste = 1, one may verify that the analytic solution to this problem is given by

T (x, t) = −1 + exp(t[1 − x]) and R(t) = t . (28)

In Table I, the numerical values of the temperature T (x, t) at selected points and at time
t = 0.90, obtained using N = 11 and 	t = 0.10, are found to be in good agreement with
the exact solution in (28). Convergence of the numerical values to the exact ones is obviously
observed when the calculation is refined using N = 51 and 	t = 0.01, i.e., significantly more
accurate numerical values of the temperature are obtained when the number of collocation points
is increased by more than 4 times and the time-step reduced by 10 times. To obtain the numerical
values using N = 11 and 	t = 0.10, the predictor–corrector procedure requires no more than
19 iterations. For the refined calculation using N = 51 and 	t = 0.01, less than 11 iterations are
needed. (Note that the criterion for convergence used here is rather stringent. At any particular
time level, the functions R2(t) and R(t)R′(t) are required to converge to at least 9 significant
figures. If a less stringent criterion is used instead, much fewer iterations are required in the
numerical calculation.)

TABLE I. A comparison of numerical values of T (x, 0.90) with the exact solution at selected points
(Problem 1).

x
N = 11

	t = 0.10
N = 51

	t = 0.01 Exact

0 1.459215 1.459591 1.459603
0.10 1.247512 1.247896 1.247908
0.20 1.054071 1.054422 1.054433
0.30 0.877280 0.877601 0.877611
0.40 0.715709 0.715998 0.716007
0.50 0.568046 0.568304 0.568312
0.60 0.433094 0.433322 0.433329
0.70 0.309759 0.309958 0.309965
0.80 0.197043 0.197212 0.197217
0.90 0.094025 0.094169 0.094174

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 1. A graphical comparison between the numerical and the exact of the function R(t) (which describes
the moving front) over the time interval 0 ≤ t ≤ 0.90 (Problem 1). [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

A graphical comparison between the numerical and the exact R(t) over the interval 0 ≤ t ≤
0.90 is made in Figure 1. The numerical R(t) is calculated using N = 21 and 	t = 0.10. Since
the numerical and the exact values agree to at least 4 significant figures, the two graphs in Figure 1
are visually indistinguishable.

Problem 2. In (4), take α = 1, β = 0, and f (t) = 1 − exp(−t).
For this particular problem, no analytic solution is apparently available, but it may be shown

that (Özişik [16])

T (x, t) � 1 − erf(λx)

erf(λ)
and R(t) �

√
4λ2(t − tlarge) + R2(tlarge) for t ≥ tlarge, (29)

where erf(x) is the error function, tlarge is sufficiently large positive number, and the value of λ is
obtained from

√
πλ exp(λ2) erf(λ) = Ste. (30)

For the purpose of carrying out numerical calculation, the Stefan number Ste is taken to
be 1. (With Ste = 1, the constant λ in (29), obtained from solving (30) numerically, is given by
0. 620063.) The calculation is carried out using N = 21 and 	t = 0.05. Less than 14 iterations
are required to satisfy the criterion for convergence in the predictor–corrector procedure. A plot
of the numerical T (0.50, t) against t over the interval 0 ≤ t ≤ 6.0 is given in Figure 2. As pointed
out earlier on, the problem does not have any known exact solution. One may view the first for-
mula in (29) as a time-independent asymptotic solution which T (x, t) should approach as time
t increases. According to (29), the numerical value of T (0.50, t) should tend to the asymptotic
value 0.452845 as t → ∞. This is observed in Figure 2.

To check the numerical R(t) against the approximate formula in (29), tlarge is selected to
be 6.0. From the numerical calculation itself, R(tlarge) = R(6) is found to be 2.775477336

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 2. A plot of the numerical temperature T (0.50, t) (solid line) and the large time asymptotic solution
in (29) (dashed line) over the time interval 0 ≤ t ≤ 6 (Problem 2). [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

(approximately). A graphical comparison of the numerical R(t) and the one given in (29) is
given over the time interval 6.0 ≤ t ≤ 12.0 in Figure 3. Over the given time interval, the two sets
of approximate values of R(t) agree to least three significant figures.

VII. FINAL REMARKS

The partial differential equation (1) which governs the one-dimensional Stefan problem under con-
sideration here is reduced to the integro-differential equation (10). The integro-differential equa-
tion is used to derive a numerical procedure for solving the Stefan problem. No approximation of
the boundary heat flux is necessary. If the boundary heat flux is not known, it appears as an unknown

FIG. 3. A graphical comparison between the numerical R(t) and the asymptotic formula in (29) over the
interval 6 ≤ t ≤ 12 (Problem 2). [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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function of time to be solved directly. Furthermore, the integro-differential formulation does not
contain any spatial derivative of the temperature in the interior of the solution domain. It is not
necessary to approximate any spatial derivative of the temperature through the use of finite-
difference formulae.

The numerical procedure is implemented on the computer to solve some test problems. Numeri-
cal results obtained indicate that the numerical procedure can be used to obtain accurate solution
for the Stefan problem. Other numerical results like those in Table I and Figures 1–3 have also
been obtained for other values of the Stefan number but are not presented here. A more refined
computation (with higher number N of collocation points and smaller time-step 	t) is necessary
to achieve a certain level of accuracy for a larger value of the Stefan number Ste.
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