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Considerations

1
» Is it suitable for engineering applications, such
as arbitrary geometry?

[s it efficient? (CPU)

[s it accurate?

[s the theory easy to understand?

[s it easy to program?

[s it general enough to solve linear or nonlinear,
homogeneous or inhomogeneous, constant or

variable coefficients, and all kinds of governing
equations?
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I
» Are commercial software widely available?

» Is there inertia?



Point Collocation Methods

I
» Radial basis function collocation

» Method of fundamental solutions
» Trefftz method



Why Collocation Method?

!
» Accuracy

» Simplicity

» Meshless

» Solve ill-posed BVP without iteration
» Solve n-dimensional problem (RBF)
» Boundary method (MFS, Trefftz)






Intuitive Derivation

N
» Governing equation

L(U)=f(x), xeQ

» Boundary condition

FU)=9g(x), xel



Approximate Solution

N
» Assume approximate solution is given by

000 =Y (9

where ¢ (X) are basis functions and ¢
are constants to be determined.



#(X)

Choices of Basis Functions

1
» Monomial (X)

» Chebyshev polynomial (X)

» Fourier series (X)
» Wavelet (X)

A YY)

» Non-singular general solution (Trefftz)
» Radial basis function (RBF)
* “X” requires regular domain



Example: Multiquadric
1 |

» Inverse multiquadric

where

I = \/(X— X))+ (y—-vy) +(z-12)°




Point Collocation

N
> Select n; points, {X, X;, -+, X, }€Q , on which
the governing equation is satisfied.

f(ﬁ(xj))zf(iaiqﬁi(xj)j

each is a linear equation in «,



1
> Select n,, points, {X, .1, X, .. X, }€’, on
which the boundary conditions are satisfied.

ﬁ(a(xj)):ﬁ)(iai ﬁ(xj)j

i (¢(X )) g(x;); for J=n+1...,n



E—
» Linear solution system

[Al{a}=1b}

» Once {a} is solved, the solution is a

f‘f\“"‘I“IIf\II(‘ 11“[‘ II\“
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U(X) = Za \/
f

» The function is 1nf1n1tely smooth







Well- and IlI-Posed Boundary Value

Problems
I e

» Governing equation
VAR X < O
» Boundary conditions
U= GhGgE S
ou
D X), Xxel
N N
» Interior condition

u(x;)=u;, Jj=L...m, X e€Q



Difference between well-posed

and ill-posed problems
] |

» Well-posed problem
B UL o= E [Nl =9
P e= 2 m=0

» Ill-posed problem
BN Fpnly #0

m=0






How Accurate?

]
» Its accuracy is impossible to match by FEM

or FDM.

» In an example solving Poisson equation, an

accuracy of the order 10-1¢ is reached using
a 20x20 grid.



To Make It Dramatic

\ 4

N YA =

Assume that in an initial mesh, FEM /FDM can solve to an
accuracy of 1%.

Using a quadratic element or central difference, the error
estimate is h?

To reach an accuracy of 10-1°, h needs to be refined 107 fold

In a 3D problem, this means 102! fold more degrees of
freedom

The full matrix is of the size 10%2

The effort of solution could be 1093 fold

If the original CPU is 0.01 sec, this requires 10°* years
The age of universe is 2 x 101 years






Collocation Method as Method of Weighted

Residuals

I
» Zienkiewicz in his FEM book has discussed

collocation method as a special case of
method of weighted residuals. In an
example, he found Galerkin method to be
the most accurate.



Method of Weighted Residuals

N
» Governing equation

L(u(x)) = f(x), x €,

» Essential and natural boundary conditions

Sux)) = gi1(x), x€eTls,
N(u(x)) = g2(x), x€ly,



Minimizing Weighted Residual

] |
» Approximation

u(x) = u(x) = Z a; N; (x), x €€,
=1

» Satisfying governing equation

R(x) w;(x) dx = | [L(4(x)) — f(x)] w;(x) dx = 0,
(2 2

» Satisfying boundary conditions

/1“ S (i(x)) — g1(x)] w; (x) dx+ (N (6(x)) — g2 (x)] w; (x) dx = 0.

'y



Galerkin Method

1
» Weight:

W;=N,
» Satisfying governing equation

[ 1£Gi60) = 760 i (x) dx =
()

/ L (Z ﬂij(X)) — f(x)| Ni(x) dx =0,
L=t ]




Collocation Method

1
» Weight

w; (x) = d(x — x;)

» Collocate for governing equation

E(ﬂ(}{i)) — f(x.;), x; € ().

» Collocate for boundary condition

S(u(x;)) = gi(x;), x;€Tly,
N(i(x;)) = g2(xi), x;€ln.



A Simple Example

d°h H,—h
+
dx? A

h(0) = hy and h(L) = he,

| o~ [Tz
C Water table
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Figure 8.3.1: Flow in a leaky aquifer.



Solution Strategy

]
» Approximate solution

h~h=ay+ aix + ﬂ,gﬂﬁ'Q + !’L3fﬂ3 + a4:ﬂ4.

» Solved by collocation, subdomain, and

(1Al

Arl-in m
udadicil

1 fay
N1l 11iC

» Integration performed exactly
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Figure 8.3.3: Comparison of error of the approximate three solutions. Short
dash line: collocation method; medium dash line: subdomain method; and
long dash line: Galerkin method.



Lessons Learned

N
» We observe that Galerkin method is the
most accurate, and collocation the least.

» Integration distributes the error and point
collocation concentrates the error.

» So integration using distributed weight is
better.

» So why do we claim point collocation is the
best?



Answer

1
» Because in a practical problem, Galerkin method
cannot be applied as such (using global basis
function and exact integration), certain
approximation needs to be done.

» For a general two- or three-dimensional, irregular
geometry, analytical integration cannot be
performed. The domain has to be divided into
integration cells (or differentiation grids).

» Local, piecewise continuous interpolation, instead of
global interpolation is used.

» Both approximations are O(h") operations. The
original accuracy is lost!



Errors

N
> Geometric approximation error O(h*),
k=1,2,... (approximating boundary by
straight line segments, flat planes, quadratic
curves, ...)

» Approximation (truncation) error O(h")

£ TIT IR

due to low degree polynomial, other
weighted residual methods, such as BEM,
MFS, Trefftz, cannot, depending on the
weighing function)



Lessons Learned

I
» Do not subdivide the domain into elements,
to avoid approximating the domain
geometry.

» Do not integrate (or integrate analytically),
to avoid quadrature error.

» Use continuous, global basis functions, not
piece-wise continuous, local functions






Point Collocation

N
» No geometric approximation error.

» No quadrature error.

» Global basis function with exponential error
convergence,

el O(/Il”‘k); 0<A<l

» Convergence is the best if we make the
interpolants as flat as possible.






Test Problem
I e

7517? 7 3 5)
Vu(z,y) — — " sin 22 sin 222 gin 274 gip 279

144 6 1 1 al

Tr? T Tmx . 3wy . bmy
+—— cos — cos —— sin —— sin ——

12 6 4 4 4

1572 7wz | Trx 3Ty by
sin sin COS CoS

6 1 1 4

subject to the Dirichlet type boundary conditions

u(0,y) = 0, (8a)
T T . 3Ty 5%

u(l,y) = sin g sin —- sin —= sin — =, (8b)

u(xa 0) =0, (SC)
T Trr | 3w 5%

u(x, 1) = sin 5 Sin—— sin—- sin—- (8d)

Tx | Imxr . 3my . STy




Exact Solution




Solution method

1
» Approximation by inverse multiquadric

) 1
T = (k.
Z ﬁ\/?_z_ﬂ:g
:

Watch out for the “c”



What Is the Role of ¢?

I
» People observe that as c increases, error
decreases

» It is generally believed that as ¢ —o, € =0

» [f this is true, we have a dream method:
higher and higher precision without paying
a price

» However, matrix ill-condition gets in the
way; the dream cannot be fulfilled.



- ] |
» What if we can compute with infinite

precision?
» Then, is it true that as ¢ >, € =07
» (Or, is it true that for MFS, as R —o0, € —>07?)

» We can find out about these by using the
infinite (arbitrary) precision computation
capability of Mathematica and high
precision capability of Fortran



» Use 6x6 mesh (h = 0.2, 4x4 interior collocation)

collocation nodes (x-governing egn, o-bc)
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Result: h=1/5

h C £max Erms Condition Number
0.2 0.1 4.36x107"" 140 x 107" 4.95 x 10702
0.2 1.1 249 x 107 9.08 x 107 8.89 x 10707
0.2 127 1.92x107% 6.93 x 107% 2.94 x 10198
02 1.3 194x107% 5.12x107% 9.22 x 10108
0.2 147 1.99 x 10792 4.24 x 107% 2.76 x 1010
02 1.5 208x107%% 4.94x107% 7.92 x 10709
0.2 2.0% 337x107% 1.85x 107" 8.49 x 10t
0.2 3.0 9.64x107%% 5.84 x107% 1.09 x 10T1°
0.2 100 6.10 x 1079 4.19 x 10~% 6.38 x 10124
0.2 1000 1.11x10° 7.82x 107" 9.15 x 10142




Result: h=1/10

h c € max Erms Condition Number
0.1 0.1 867x107%% 289 x 107" 2.19 x 10703
0.1 25 6.88x 107 1.74 x 107 2.88 x 10747
0.1 4.01 1.88x107% 6.23 x 1077 6.40 x 10134
0.1 4.17* 221 x107%  6.09 x 10797 1.57 x 10135
0.1 100 1.5x107° 1.11x10™™ 4.82 x 10749
0.1 100.0  6.24 x 10°  4.56 x 10° 3.49 x 10187




Result: h=1/20

Srms

7.0
7.9
7.7

8.0

9.0

2.22 x 10715
1,91 x 10719
2.37 x 10~15
2.88 % 10715
3.58 x 10710
3.75 x 10715

7.86 x 10716
9.60 x 10710
9.26 x 10716
8.87 x 1016
1.06 x 1071
41.2 x 10715




Find Error Estimate Constants by Data Fitting

I
10° ! . -
" - original data
- original data fitting
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Fig. 2. Fitting for error estimate for IMQ solution of Poisson equation: composite
plot of a large number of cases with different h and ¢ values.
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Error Estimate
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Fig. 5. Validating (15), second example.



Our Findings: Error Estimate
1 |

£ o O(eaCB/QAcl/Eh—l).

» 0<A<1l,a>0



Optimal ¢

I
» If the error estimate

£~ O NPT,



Revised Error Estimate

I
» If we can always use optimal ¢ with a given
mesh, what is the new error estimate?

e~ O,

(}\ 6—111)«/3) \/T»Wa

"}f o

0 <y <1



Effective Error Estimate

fige = olsilseq
]

> h=1/5,&~ 102
> h=1/10,& ~ 106
> h=1/20,&~ 1015






Madych

]
» Madych (1992): For the interpolation of a
class of “essentially analytic functions”,
which are “band limited”, using a class of
interpolants that include the multiquadric,
Gaussian, ..., he proved

gzo(ea%““); 0<Ai<l a>0

> This means,as C—> o, & —0



I
» Is this possible?

» Whatis such function?

» If we are given one such function, and we
use infinite precision computation, can be
demonstrate that C >, &—>07?

> Or, do we anticipate that C—> o, &=#0

and there exists C,, =C, () where
& = gmin %



» Madych also stated that for a “non-band-
limited” function,

gzo(eacz/i‘:’“); 0<Ai<l a>0
In A
2ah

» In this case, there exista Coypt =

where g = go

> If we can use the ¢ then ¢ oY h2)



I
» Is this true for all smooth functions?

» Can we test this by high precision
computation?






Methods

I
» Radial basis function collocation

> MFS
» Trefftz



Issues

1
» Error estimate

» Stability (condition number)
» High precision computation



MFS: Theoretical Result

N
» Bogomolny

» Schaback
» Jeng-Tzong Chen
» Zi-Cai Li, et al.



Trefftz Error Analysis

- ] |
» Harmonic polynomials in Cartesian form

» Harmonic polynomials in polar form

» Real part of any analytic function with
translation



Discontinuity and Singularity

I
» Particular solution
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