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A Highly Accurate Collocation Trefftz Method for
Solving the Laplace Equation in the Doubly
Connected Domains
Chein-Shan Liu
Department of Mechanical and Mechatronic Engineering, Taiwan Ocean University,
Keelung, Taiwan
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A highly accurate new solver is developed to deal with the Dirichlet problems for the 2D Laplace equation
in the doubly connected domains. We introduce two circular artificial boundaries determined uniquely by
the physical problem domain, and derive a Dirichlet to Dirichlet mapping on these two circles, which are
exact boundary conditions described by the first kind Fredholm integral equations. As a direct result, we
obtain a modified Trefftz method equipped with two characteristic length factors, ensuring that the new
solver is stable because the condition number can be greatly reduced. Then, the collocation method is used
to derive a linear equations system to determine the unknown coefficients. The new method possesses several
advantages: mesh-free, singularity-free, non-illposedness, semi-analyticity of solution, efficiency, accuracy,
and stability. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 00: 000–000, 2007

Keywords: artificial circles; characteristic length factors; doubly connected domain; Fredholm integral
equation; Laplace equation; meshless method

I. INTRODUCTION

Numerical methods are required inevitably to solve the engineering problems governed by the

AQ1

partial differential equations defined in the complicated domains, since under these situations the
analytical solutions are usually not available. For the solutions of engineering problems, many
well-developed numerical methods such as finite difference method (FDM), finite element method
(FEM), and boundary element method (BEM) are widely used. Because the BEM can reduce the
dimensionality of the considered problems, it has become an efficient alternative calculational
tool to replace the domain-based FDM and FEM. However, there are pitfalls to hamper its effi-
cient implementation. The major disadvantage of BEM originates from its singularities: weak
singularity of kernel function, Cauchy principal value singularity, and hypersingularity.

Correspondence to: Chein-Shan Liu, Department of Mechanical and Mechatronic Engineering, Taiwan Ocean University,
Keelung, Taiwan (email: csliu@mail.ntou.edu.tw)

© 2007 Wiley Periodicals, Inc.
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2 LIU

For a complicated shape of the problem domain those standard methods usually require a large
number of nodes and elements to match the geometrical shape. To overcome those difficulties,
the meshless numerical methods are proposed, which are meshes free and only boundary nodes
are necessary. Recently, the meshless local boundary integral equation (LBIE) method [1], and
the meshless local Petrov–Galerkin (MLPG) method [2] are proposed. Both methods use local
weak forms and the integrals can be easily evaluated over circles in 2D problems and spheres in
3D problems.

For problems with complicated domains, the algorithms based on the discretizations of integral
equations are often attractive because of the reduced complexity of discretization when compared
with the competing approach such as FEM. For this reason there were many researchers devoted
to overcome the difficulties arised from the perplexing singularities in the boundary integral equa-
tions. At the first, Landweber and Macagno [3] have proposed a method to get rid of the singularity
by substracting a function from the integrand so that the kernel becomes nonsingular, and then
adding back an accurate integration of the function to the integral equation. This method was mod-
ified and referred to as the nonsingular boundary integral method in [4, 5], or the desingularized
boundary integral method in [6].

Another way to avoid the singularity was proposed in [7–9], which move the computing nodes
away from the boundary and outside the real domain of the problem. Even, this new approach can
overcome the difficulties of singular integrals, it has another problem of ill-posedness due to the
appearence of the first-kind Fredholm integral equations. Alternatively, Young [10] and Young
et al. [11] have applied the desingularized boundary integral equation method to the potential
problems. In these approaches the source points are located in the real boundary, and they regu-
larized the singular integrals by using the Gauss’ flux theorem and other property derived from
the potential theory.

Our starting point is similar to the Trefftz method by using the eigenfunctions expansion. The
Trefftz method satisfies the governing equation and the unknown coefficients are determined by
satisfying the boundary conditions in some manners as by means of the collocation, the least
square or the Galerkin method, etc. [12]. The Trefftz methods are truly meshless, since they can
be implemented without either domain or surface meshing.

On the other hand, the method of fundamental solutions (MFS) [13] approximates the solution
by a linear combination of fundamental solutions with singularities known as the source points
located on a fictitious boundary outside the problem domain. Because the MFS is an inherently
meshless boundary method and has exponential convergence property for smooth solutions, it
has been used extensively for solving the Laplace equation [14]. Although the MFS can avoid the
difficulities associated with the BEM, it still has the problem that the resulting linear equations
system may become highly ill-conditioned when the number of source points is increased [15] or
when the distances of source points are increased [16].

An improved method than the MFS is the so-called boundary knot method [17, 18] or the
boundary collocation method [19,20]. Instead of the singular fundamental solutions, these meth-
ods employed the nonsingular kernels to evaluate the homogeneous solutions. However, as pointed
out by Young et al. [11] the introduction of nonsingular kernels as the radial basis functions may
jeopardize the accuracy of solutions as compared with the MFS.

This paper will formulate the Laplace equation in the doubly connected domain by a modi-
fied collocation Trefftz method. Many boundary-type methods are inefficient for the non-smooth
boundary curves; however, the new method is still applicable for such type boundary curves.
Owing to these good properties the new method by using the modified Trefftz functions and the
collocation method to determine unknown coefficients can be easily used to derive the meshless
numerical method of the semi-analytical type.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



J_ID: z8x Customer A_ID: 1219 Cadmus Art: NUM20257 KGL ID: 070050 — 2007/3/30 — page 3 — #3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HIGHLY ACCURATE COLLOCATION TREFFTZ METHOD 3

II. THE PROBLEM IN DOUBLY CONNECTED DOMAIN

The problem of Laplace equation in a doubly connected domain is formulated by imposing the

AQ2

Dirichlet data at an exterior boundary and at an interior boundary:

�u = urr + 1

r
ur + 1

r2
uθθ = 0, (1)

u(r3, θ) = h3(θ), 0 ≤ θ ≤ 2π , (2)

u(r4, θ) = h4(θ), 0 ≤ θ ≤ 2π , (3)

where h3(θ) and h4(θ) are given functions, and both r3 = r3(θ) and r4 = r4(θ) are simple curves
with r4 = r4(θ) inside r3 = r3(θ), i.e., r4(θ) < r3(θ), 0 ≤ θ < 2π . Let �3 := {(r , θ)|r = r3(θ),
0 ≤ θ < 2π} and �4 := {(r , θ)|r = r4(θ), 0 ≤ θ < 2π}. Here, we do not need to impose any
smooth requirement on the boundary curves �3 and �4.

We replace Eqs. (2) and (3) by the following boundary conditions:

u(r1, θ) = g(θ), 0 ≤ θ ≤ 2π , (4)

u(r2, θ) = f (θ), 0 ≤ θ ≤ 2π , (5)

where both g(θ) and f (θ) are unknown functions to be determined, and r2 < r1 are constants.
The requirement is that the annular with radii r2 and r1 can cover the entire doubly connected
region, i.e., r2 ≤ r4 < r3 ≤ r1. The arrangement of these two artificial circles is schematically
shown in Fig. 1. For this new setting, we may have a series solution F1

u(r , θ) = ā0 + b̄0 ln r +
∞∑

k=1

[(ākr
k + b̄kr

−k) cos kθ + (c̄kr
k + d̄kr

−k) sin kθ ], (6)

where the coefficients are fully determined by the boundary conditions (4) and (5) in terms of
f (θ) and g(θ).

By imposing the conditions (2) and (3) on Eq. (6) we can obtain two first kind Fredholm
integral equations [21]:

∫ 2π

0
K3

1 (θ , ξ)f (ξ)dξ −
∫ 2π

0
K3

2 (θ , ξ)g(ξ)dξ = h3(θ), (7)

∫ 2π

0
K4

1 (θ , ξ)f (ξ)dξ −
∫ 2π

0
K4

2 (θ , ξ)g(ξ)dξ = h4(θ), (8)

where

K3
1 (θ , ξ) = ln r1 − ln r3

2π(ln r1 − ln r2)
+

∞∑
k=1

B3
k cos k(θ − ξ), (9)

K3
2 (θ , ξ) = ln r2 − ln r3

2π(ln r1 − ln r2)
+

∞∑
k=1

A3
k cos k(θ − ξ), (10)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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4 LIU

FIG. 1. Introducing two artificial circles in the plane domain, where the boundary conditions on these two
circles are unknown to be determined.

K4
1 (θ , ξ) = ln r1 − ln r4

2π(ln r1 − ln r2)
+

∞∑
k=1

B4
k cos k(θ − ξ), (11)

K4
2 (θ , ξ) = ln r2 − ln r4

2π(ln r1 − ln r2)
+

∞∑
k=1

A4
k cos k(θ − ξ) (12)

are kernel functions, and

A3
k := ek

(
r−k

3 rk
2 − rk

3 r−k
2

)
, B3

k := ek

(
r−k

3 rk
1 − rk

3 r−k
1

)
, (13)

A4
k := ek

(
r−k

4 rk
2 − rk

4 r−k
2

)
, B4

k := ek

(
r−k

4 rk
1 − rk

4 r−k
1

)
(14)

are all functions of θ because of r3 = r3(θ) and r4 = r4(θ). In the above ek is defined by

ek := 1

π

[(
r1
r2

)k −
(

r2
r1

)k
] . (15)

III. AN EFFECTIVE COLLOCATION TREFFTZ METHOD

Eqs. (7) and (8) provide the Dirichlet to Dirichlet mappings on the two artificial circles. They
are exact boundary conditions; however, it is difficult to directly inverse these two equations to
obtain the exact boundary functions f (θ) and g(θ). Liu [21] has applied the regularization integral
equation method to solve Eqs. (7) and (8), but in this paper, we are going to directly solve a variant
of Eq. (6) to obtain the unknown coefficients.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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HIGHLY ACCURATE COLLOCATION TREFFTZ METHOD 5

For this purpose we let

a0 = ā0, ak = ākr
k
1 , bk = b̄kr

−k
2 , (16)

b0 = b̄0, ck = ākr
k
1 , dk = d̄kr

−k
2 , (17)

and thus Eq. (6) can be expressed as

u(r , θ) = a0 + b0 ln r +
∞∑

k=1

[(
ak

(
r

r1

)k

+ bk

( r2

r

)k

)
cos kθ

+
(

ck

(
r

r1

)k

+ dk

( r2

r

)k

)
sin kθ

]
, (18)

where

r1 ≥ max
θ∈[0,2π ]

r3(θ), (19)

r2 ≤ min
θ∈[0,2π ]

r4(θ). (20)

Usually, one may take r1 = max r3(θ) and r2 = min r4(θ).
The numerical examples given in the next section will explain why the new method is work-

able. The series expansion in Eq. (18) is well suited to the entire solution domain. Hence, the
following admissible functions with finite terms can be used:

u(r , θ) = a0 + b0 ln r +
m∑

k=1

[
Ar

kak + Br
kbk + Cr

kck + Dr
kdk

]
, (21)

where

Ar
k =

(
r

r1

)k

cos kθ , (22)

Br
k =

( r2

r

)k

cos kθ , (23)

Cr
k =

(
r

r1

)k

sin kθ , (24)

Dr
k =

( r2

r

)k

sin kθ . (25)

In Eq. (21) there are totally 4m+2 unknown coefficients. Eq. (21) is imposed at different collo-
cated points on two different boundaries with [r3(θi), θi] ∈ �3 and [r4(θi), θi] ∈ �4 to pointwisely
match the boundary conditions (2) and (3):

a0 + b0 ln r3(θi) +
m∑

k=1

[
A

r3
k (θi)ak + B

r3
k (θi)bk + C

r3
k (θi)ck + D

r3
k (θi)dk

] = h3(θi), (26)

a0 + b0 ln r4(θi) +
m∑

k=1

[
A

r4
k (θi)ak + B

r4
k (θi)bk + C

r4
k (θi)ck + D

r4
k (θi)dk

] = h4(θi). (27)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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6 LIU

When the index i in Eqs. (26) and (27) runs from 1 to 2m+ 1 we obtain a linear equations system
with dimensions n = 4m + 2:⎡
⎢⎢⎢⎢⎢⎣

1 ln r3(θ1) A
r3
1 (θ1) B

r3
1 (θ1) C

r3
1 (θ1) D

r3
1 (θ1) . . .

1 ln r4(θ1) A
r4
1 (θ1) B

r4
1 (θ1) C

r4
1 (θ1) D

r4
1 (θ1) . . .

...
...

...
...

...
...

...
1 ln r3(θ2m+1) A

r3
1 (θ2m+1) B

r3
1 (θ2m+1) C

r3
1 (θ2m+1) D

r3
1 (θ2m+1) . . .

1 ln r4(θ2m+1) A
r4
1 (θ2m+1) B

r4
1 (θ2m+1) C

r4
1 (θ2m+1) D

r4
1 (θ2m+1) . . .

A
r3
m (θ1) B

r3
m (θ1) C

r3
m (θ1) D

r3
m (θ1)

A
r4
m (θ1) B

r4
m (θ1) C

r4
m (θ1) D

r4
m (θ1)

...
...

...
...

A
r3
m (θ2m+1) B

r3
m (θ2m+1) C

r3
m (θ2m+1) D

r3
m (θ2m+1)

A
r4
m (θ2m+1) B

r4
m (θ2m+1) C

r4
m (θ2m+1) D

r4
m (θ2m+1)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

b0

a1

b1

c1

d1

...
am

bm

cm

dm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

h3(θ1)

h4(θ1)
...

h3(θ2m+1)

h4(θ2m+1)

⎤
⎥⎥⎥⎥⎥⎦ . (28)

We denote the above equation by

Re = b1,

where e = [a0, b0, a1, b1, c1, d1, . . . , am, bm, cm, dm]T is the vector of unknown coefficients. The
conjugate gradient method can be used to solve the following normal equation:

Ae = b, (29)

where

A := RTR, b := RTb1. (30)

Inserting the calculated e into Eq. (21) we thus have a semi-analytical solution of u(r , θ):

u(r , θ) = e1 + e2 ln r +
m∑

k=1

[(
e4k−1

(
r

r1

)k

+ e4k

( r2

r

)k

)
cos kθ

+
(

e4k+1

(
r

r1

)k

+ e4k+2

( r2

r

)k

)
sin kθ

]
, (31)

where (e1, . . . , en) are the components of e.

IV. NUMERICAL TESTS AND COMMENTS ON THE NEW METHOD

A. Example 1

We consider a kite-shape outer boundary with the parameterization given by

r3 =
√

(0.6 cos θ + 0.3 cos 2θ − 0.2)2 + (0.6 sin θ)2, (32)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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HIGHLY ACCURATE COLLOCATION TREFFTZ METHOD 7

x3(θ) = r3 cos θ , y3(θ) = r3 sin θ . (33)

For the inner boundary we consider an apple shape described by

r4 = 0.5 + 0.2 cos θ + 0.1 sin 2θ

1.5 + 0.7 cos θ
, (34)

x4(θ) = r4 cos θ , y4(θ) = r4 sin θ . (35)

The above two curves are shown in the inset of Fig. 2. F2

To test our method we consider an exact solution

u(r , θ) = x2 − y2 = r2 cos 2θ , (36)

FIG. 2. For Example 1: (a) comparing the numerical and exact solutions, and (b) plotting the numerical
error.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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8 LIU

which however led to very complicated boundary conditions given as follows:

h3(θ) = u(r3, θ) = [(0.6 cos θ + 0.3 cos 2θ − 0.2)2 + (0.6 sin θ)2] cos 2θ , (37)

h4(θ) = u(r4, θ) = r2
4 cos 2θ =

(
0.5 + 0.2 cos θ + 0.1 sin 2θ

1.5 + 0.7 cos θ

)2

cos 2θ . (38)

Under the parameters r1 = max r3, r2 = min r4, and m = 15, we solve this problem by the
method in Section III, whose result along a circle with the radius r = max r4 is shown in Fig. 2(a).
Through 546 iterations the solution of e by Eq. (29) is obtained under a stopping criterion 10−15.
The numerical error of u is shown in Fig. 2(b), which can be seen is smaller than 3 × 10−12. A
highly accurate result is obtained as compared with the exact solution.

When we apply the Trefftz method on this problem by using r1 = 1, r2 = 1, and m = 15, we
find that the solution is unstable as shown in Fig. 2(a) by the dashed-dotted line.

All the computations in this paper are carried out in a PC-586 with pentium-100. For this
example, the computations both by the Trefftz method and our new method spent the CPU time
smaller than one second. Basically, the most time is spent in the solution of Eq. (29). Under the
same stopping criterion, through 467 iterations the solution of e by Eq. (29) is obtained for the
Trefftz method. Because of the small difference of the numbers of iterations of these two methods,
the computational times are almost the same. Indeed, the new method does not require any extra
effort to prepare a new program; both two methods can use the same program, but with different
input parameters of r1 and r2 fed in the program.

To observe the stable phenomenon of the new method and the unstable behavior of the Trefftz
method we plot the condition number of A with different number of bases in Fig. 3, which isF3

defined by

Cond(A) = ‖A‖‖A−1‖. (39)

The norm used for A is the Frobenius norm. Therefore, we have

1

n
Cond(A) ≤ λmax(A)

λmin(A)
≤ Cond(A). (40)

where λ is the eigenvalue of A. Conventionally, λmax(A)/λmin(A) is used to define the condition
number of A. For the present study we use Eq. (39) to define the condition number of A.

As mentioned by Kita et al. [12] when one uses the Trefftz boundary type method, the condition
number may increase fast as the numer of elements increases. It can be seen that the present method
can greatly reduce the condition number. Therefore, when the new method is very accurate, the
Trefftz method leads to a bad numerical result as shown in Fig. 2(a).

B. Comments on the New Method

After showing the effect of the new method through a numerical example and comparing the
condition numbers for the new method and the Trefftz method, it is now a good position to give
some comments on the new method.

It is known that for the Laplace equation in the two-dimensional doubly connected domain the
set

{1, ln r , r±k cos kθ , r±k sin kθ , k = 1, 2, . . .} (41)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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HIGHLY ACCURATE COLLOCATION TREFFTZ METHOD 9

FIG. 3. For Example 1 we comparing the condition number with respect to m for the Trefftz method and
the new method.

forms the T-complete functions, and the solution can be expanded by these bases [12, 22]:

u(r , θ) = a0 + b0 ln r +
∞∑

k=1

[(akr
k + bkr

−k) cos kθ + (ckr
k + dkr

−k) sin kθ ]. (42)

This method is named the Trefftz method. It can be seen that the new method is an extension of
the Trefftz method. Inserting r1 = r2 = 1 into Eq. (18), we can recover to the Trefftz method.

Our starting point in Eq. (18) is similar to the Trefftz method. However, the present modification
is suggested to use a new set of T-complete bases by

{
1, ln r ,

(
r

r1

)k

cos kθ ,

(
r

r1

)k

sin kθ ,
( r2

r

)k

cos kθ ,
( r2

r

)k

sin kθ , k = 1, 2, . . .

}
. (43)

The above set is a very natural result from the concept of the artificial circles with radii r1 and r2,
where two exact boundary conditions can be established by solving Eqs. (7) and (8). The factors
of r1 and r2 indeed play a major role to stabilize the conventional Trefftz method.

For the Trefftz method the numerical instability is an inherent property, which uses the power
functions rk and (1/r)k in the bases, a main reason to cause the numerical instability, because
r may be greater than 1 or may be smaller than 1. When the problem domain has a larger size
with its largest length of the boundary points to the origin being greater than 1, the powers rk are
divergent, and similarly, when the problem domain has a smaller size with its smallest length of

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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10 LIU

the boundary points to the origin being smaller than 1, the powers (1/r)k are divergent. They are
thus inevitably led to the numerical instability.

But in our modification the situation is drastically different. For the doubly connected problem
its domain is r4 < r < r3. Thus the power functions (r/r1)

k in Eq. (43) are always smaller than
1 because of Eq. (19), and similarly, the power functions (r2/r)

k in Eq. (43) are always smaller
than 1 because of Eq. (20).

It has been clear that the factors of characteristic lengths r1 and r2 ensure the stability of the
modified Trefftz method. Through this new modification the condition number of the linear equa-
tions system can be greatly reduced as already shown in Fig. 3 for Example 1. For the following
other examples this is also true.

To our best knowledge, the new concept does not appear in the literatue of the Trefftz method;
see, e.g., Kita and Kamiya [12] and Li et al. [22].

FIG. 4. For Example 2: (a) comparing the exact solution and the numerical ones of Trefftz method and
new method, and (b) plotting the numerical errors.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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HIGHLY ACCURATE COLLOCATION TREFFTZ METHOD 11

C. Example 2

Next we replace the outer boundary by a complex epitrochoid boundary shape

r3(θ) = √
(a + b)2 + 1 − 2(a + b) cos(aθ/b), (44)

x(θ) = r3 cos θ , y(θ) = r3 sin θ (45)

with a = 4 and b = 1. The inner boundary is four times large of the above kite. The above two
curves are shown in the inset of Fig. 4. F4

Under the parameters r1 = max r3, r2 = min r4, and m = 13, we solve this problem by
the method in Section III, whose result along a circle with the radius r = max r4 is shown in
Fig. 4(a) by the dashed line. The numerical error of u is shown in Fig. 4(b), which can be seen is
smaller than 5 × 10−11. A highly accurate result is obtained as compared with the exact solution
u(x, y) = x2 −y2. However, when we apply the Trefftz method on this case under the parameters
r1 = 1, r2 = 1 and m = 13, the solution as shown in Fig. 4(a) by the dashed-dotted line slightly
deviates from the exact solution. It is not accurate when comparing with the new method. The

FIG. 5. For Example 3: (a) comparing the exact solution and the numerical ones of Trefftz method and
new method, and (b) plotting the numerical errors.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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12 LIU

present method can largely improve the accuracy about ten orders than the Trefftz method when
it is applicable. For this example both two methods spent the CPU time smaller than one second.

D. Example 3

We consider the same boundaries as that used in the previous example but with the following
closed form solution

u(r , θ) = ex cos y = er cos θ cos(r sin θ). (46)

The boundary conditions are very complicated for this example.
Under the parameters r1 = max r3, r2 = min r4, and m = 20, we solve this problem by the

method in Section III, whose result along a circle with the radius r = 2 is shown in Fig. 5(a) byF5

the dashed line. The numerical error of u is shown in Fig. 5(b), which can be seen is smaller than

FIG. 6. For Example 4: (a) comparing the exact solution and the numerical ones of Trefftz method and
new method, and (b) plotting the numerical errors.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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HIGHLY ACCURATE COLLOCATION TREFFTZ METHOD 13

10−6. However, when we apply the Trefftz method on this example under the parameters r1 = 1,
r2 = 1 and m = 10, the solution as shown in Fig. 5(a) by the dashed-dotted line slightly deviates
from the exact solution. The numerical error of u is very large in the order of 1. For this example
both two methods spent the CPU time smaller than one second.

E. Example 4

In this example we consider the Laplace equation in an eccentric annular domain as shown in
the inset of Fig. 6, where the inner boundary is simply a unit circle with r4 = 1, and the outer F6

boundary is described by

r3(θ) = cos θ + √
cos2 θ + 21/4. (47)

Under the boundary conditions

u(r4, θ) = 0, u(r3, θ) = 1, (48)

we have a closed-form solution

u(r , θ) = 1

ln 4
ln

(
16r2 + 1 + 8r cos θ

r2 + 16 + 8r cos θ

)
. (49)

Under the parameters r1 = 4, r2 = 0.8 and m = 20, we solve this problem by the method
in Section III, whose result along a circle with the radius r = 1.4 is shown in Fig. 6(a) by the
dashed line, while the exact solution calculated from Eq. (49) is represented by the solid line. The
numerical error of u is shown in Fig. 6(b), which can be seen is smaller than 5 × 10−7. When we
apply the Trefftz method on this case under the parameters r1 = 1, r2 = 1 and m = 11 (m = 20
cannot be applicable), the solution as shown in Fig. 6(a) by the dashed-dotted line largely deviates
from the exact solution. For this example both two methods spent the CPU time smaller than one
second.

V. CONCLUSIONS

In this paper we have proposed a new meshless method to calculate the solutions of Laplace
equation in the arbitrary doubly connected plane domains. To tackle of the ill-conditioning of
the Trefftz method, we have employed two characteristic length factors into the basis functions.
This type formulation is a very natural result in terms of the concept of artificial circles. The
numerical examples show that the present method is highly accurate; for example, for the first
two examples the accuracy can be achieved is upto 10−11 of the absolute error. The new method
possesses several advantages, including mesh-free, singularity-free, non-illposedness, accuracy
and stability, deserved its extension to other elliptic type boundary-value problems.
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