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An Alternative BEM for Fracture Mechanics

G. Davı̀1 and A. Milazzo1

Abstract: An alternative single domain boundary ele-
ment formulation and its numerical implementation are
presented for the analysis of two-dimensional cracked
bodies. The problem is formulated employing the clas-
sical displacement boundary integral representation and
a novel integral equation based on the stress or Airy’s
function. This integral equation written on the crack pro-
vides the relations needed to determine the problem so-
lution in the framework of linear elastic fracture mechan-
ics. Results are presented for typical problems in terms
of stress intensity factors and they show the accuracy and
efficiency of the approach.
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1 Introduction

Computational analysis and simulation of fracture me-
chanics problems is a generally established practice to
ensure reasonable costs in design and maintenance of
aerospace structures. Indeed numerical methods repre-
sent the only acceptable alternative for many fracture me-
chanics applications because of the analytical difficulties
related to the solid body complex forms. The finite ele-
ment method has been widely used to determine fracture
mechanics parameters as stress intensity factors (SIFs),
crack opening displacements (COD), energy release rate
or J-integral. In case of standard finite element method,
a significant refinement of the mesh near the crack tip is
necessary to obtain accurate results and this leads to high
computational costs [Ingraffea and Wawrzynek (2003)].
When special finite elements with correct stress singular-
ity [Ingraffea and Wawrzynek (2003), Pian (1975)] are
employed the computational effort is reduced neverthe-
less some complications are introduced in the method.
The boundary element method (BEM) is particularly
well suited and efficient to analyse problems charac-
terised by stress concentrations. The main advantages
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of BEM are given by the pointwise representation of the
solution and the computational gain associated with the
reduction in dimensionality due to boundary discretiza-
tion [Banerjee and Butterfield (1981), Hong and Chen
(1988), Aliabadi (2002)]. These features give meaning-
ful advantages in the modelization of crucial problems in
structures like those involved in fracture mechanics, e.g.
presence of inclusions or cracks. In the framework of
fracture mechanics, different BEM approaches have been
proposed: Green functions, multidomain approach and
the Dual Boundary Element Method (DBEM) [Aliabadi
(1997), Aliabadi, (2003)]. The Green function method
is very accurate but it can be employed only for sim-
ple cases whereas the other two approaches are general
methods. The multidomain boundary element method
(MBEM) allows to model any crack problem but its im-
plementation scheme gives rise to additional degrees of
freedom and then the resolving system has a greater or-
der with the consequent computational effort [Blandford,
Ingraffea and Ligget (1981), Davı̀ and Milazzo (2001)].
The Dual Boundary Element Method (DBEM) is based
on the use of the traction integral equations and this leads
to a system of integral equations involving hypersingu-
lar integrals [Portela, Aliabadi and Rooke (1992), Gray,
Martha and Ingraffea (1990)]. In this paper, a novel sin-
gle domain approach is presented to overcome the draw-
backs of MBEM and DBEM. It is based on the employ-
ment of the Airy stress function to educe the integral
equations needed to the solution of the crack problem.
The approach preserves the computational advantages of
single domain formulations without involving hypersin-
gular kernels so that the treatment of the integral equa-
tions of the model requires no particular care. The nu-
merical results show the accuracy and effectiveness of
the proposed approach.

2 The Boundary Element Method for Fracture Me-
chanics

The Somigliana identity is the fundamental relation giv-
ing the boundary integral representation of the elastic re-
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sponse in the elastic domain Ω having contour Γ. Indeed
it links the displacements at the point P0 to the displace-
ments u and tractions p on the boundary through a fic-
titious elastic system due to a concentrated body force
acting at the point P0. Denoting by u jand p jthe displace-
ments and tractions of the fictitious system, respectively,
the Somigliana identity is written [Banerjee and Butter-
field (1981), Hong and Chen (1988)]

u(P0) =
Z

Γ

(
uT

j p−pT
j u

)
dΓ+

Z
Ω

uT
j fdΩ (1)

where f are the body forces applied in the domain. The
Eq. (1) is the boundary integral representation of the dis-
placement field inside the continuum Ω. If the point P0

belongs to the boundary Γ, by a suitable limit procedure
[Banerjee and Butterfield (1981)], one obtains the bound-
ary integral equation which, taking the prescribed bound-
ary conditions into account, allows the solution of the
elastic problem in terms of displacements and tractions
on the boundary [Banerjee and Butterfield (1981), Hong
and Chen (1988)]. One has

cu(P0) =
Z

Γ

(
uT

j p−pT
j u

)
dΓ+

Z
Ω

uT
j fdΩ (2)

where the coefficient matrix c is given by

c = −
Z

Γ
pT

j dΓ (3)

The Eq. (2) is the basis for the numerical solution of the
problem by the Boundary Element Method; However, in
the framework of Fracture Mechanics when cracks are
located in the domain, the Eq. (2) needs to be revised
by taking the unknown relative displacements along the
cracks into account; assuming a traction free crack the
Eq. (2) becomes [Aliabadi (2002), Aliabadi (1997), Sny-
der and Cruse (1975)]

cu(P0) =
Z

Γ

(
uT

j p−pT
j u

)
dΓ

−
Z

Γ f

pT
j Δu dΓ+

Z
Ω

uT
j fdΩ (4)

where Γ f is the boundary representative of the crack and
Δu are the relative displacements along it. It straight
away appears that Eq. (4) in its numerical application
originates a system with more unknowns than equations.
To overcome this drawback many approaches have been
proposed among which there are the Green’s function,

the multidomain method and the Dual Boundary Ele-
ment Method (DBEM) [Aliabadi (1997)]. The Green’s
function method even is very accurate is limited to very
simple problems [Snyder and Cruse (1975)], whereas the
other two approaches are general and therefore they are
the most employed. The multidomain method requires a
partition of the investigated domain into suitable subre-
gions so that each face of the crack belongs to the bound-
ary of distinct subregions. Restoring the continuity con-
ditions between the considered subregions the number of
integral equations written is equal to the number of un-
knowns and the problem can be modelled without lim-
itations [Blandford, Ingraffea and Ligget (1981), Davı̀
and Milazzo (2001)]. Nevertheless the resolving system
arising from the multidomain approach has higher order
than that strictly needed to solve the problem with the
consequent higher computational effort required. On the
other hand the Dual Boundary Element Method (DBEM)
does not require any partition of the investigated domain
[Portela, Aliabadi and Rooke (1992)]; it recovers the fur-
ther equations for the problem solution by expressing the
tractions acting on the crack faces by means of the rel-
ative boundary integral representations. The main diffi-
culty of this single domain approach is due to the hyper-
singular kernels occurring in the traction integral equa-
tion which need particular care in their numerical inte-
gration [Gray, Martha and Ingraffea (1990)].

3 Stress function approach

For an homogeneous, isotropic two-dimensional body
the stress field can be derived from a single function, the
so-called stress function or Airy function Φ = Φ (x, y), so
that the equilibrium equations are trivially fulfilled. As-
suming that the body force field f is conservative there
exists a potential function Ψ such that

f =
[

∂Ψ
∂x

∂Ψ
∂y

]T
(5)

and one has [Chou and Pagano (1992)]

σ =
[

σxx σyy σxy
]T = CΦ− ĨΨ (6)

where

CT =
[

∂2

∂y2
∂2

∂x2 − ∂2

∂x ∂y

]
(7)

ĨT =
[

1 1 0
]

(8)
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Besides, the compatibility condition requires that the
stress function Φ satisfies the following governing equa-
tion

CT E−1CΦ−CT E−1ĨΨ = 0 (9)

where E denotes the elasticity matrix. For problems with
no body forces from Eq. (9) one deduces that the stress
function Φ is biharmonic. Once the stress function is
introduced the displacement field can be expressed by

u = v− 1
2G

SΦ (10)

where S =
[

∂
/

∂x ∂
/

∂y
]T

is the gradient operator; G
is the shear modulus and v is a vector, whose compo-
nents v1 and v2 are conjugate harmonic functions. The
boundary tractions p are expressed by the following rela-
tionship

p =
∂
∂s

HS Φ−nΨ (11)

where ∂
/

∂s indicates the tangent derivative, n is the
boundary unit normal vector, whereas the matrix H is
defined by

H =
[

0 1
−1 0

]
(12)

In terms of stress function the integral equation (4) be-
comes

cv(P0)− 1
2G

cSΦ (P0)

=
Z

Γ

(
uT

j p−pT
j u

)
dΓ−

Z
Γ f

pT
j ΔudΓ+

Z
Ω

uT
j fdΩ

(13)

Given that the components of v are harmonic functions,
applying the Green theorem one has

cv(P0) =
Z

Γ

(
ϕ

∂v
∂n

− ∂ϕ
∂n

v
)

dΓ (14)

where

ϕ = ln r (P, P0) (15)

and r (P, P0) is the distance between the domain point P
and the point P0. Remembering that v1 and v2 are conju-
gate and taking Eq. (10) into account, Eq. (12) becomes

cv(P0) =
Z

Γ
(u∗ p−p∗ u)dΓ

− 1
2G

Z
Γ

SΦ
∂ϕ
∂n

dΓ+
Z

Γ
u∗nΨdΓ (16)

where

u∗ =
1

2G

[
ϕ 0
0 ϕ

]
(17)

p∗ =

[
∂ϕ
∂n −∂ϕ

∂s
∂ϕ
∂s

∂ϕ
∂n

]
(18)

Finally, by using Eq. (14), the integral equation (11) is
written as

1
2G

cSΦ (P0) =
Z

Γ

(
pT

j u−uT
j p

)
dΓ+

Z
Γ f

pT
j ΔudΓ

+
Z

Γ
(u∗ p−p∗ u)dΓ−

Z
Γ f

p∗ ΔudΓ

− 1
2G

Z
Γ

SΦ
∂ϕ
∂n

dΓ +
Z

Γ
u∗nΨdΓ−

Z
Ω

uT
j fdΩ (19)

Recalling that the components of the resultant of the trac-
tions applied between the point P0 and a generic point PA

are defined as

R =
Z PA

P0

pdΓ (20)

by integration of the Eq. (11) one obtains

SΦ = H−1
(

R+
Z PA

P0

nΨdΓ
)

+k = H−1F+k (21)

where k is a vector whose components are arbitrary con-
stants. For a point P0 belonging to the crack line the in-
tegral equation (19) becomes

1
G

ck =
Z

Γ

(
pT

j u−uT
j p

)
dΓ+

Z
Γ f

pT
j ΔudΓ

+
Z

Γ
(u∗ p−p∗ u)dΓ−

Z
Γ f

p∗ ΔudΓ

− H−1

2G

Z
Γ

F
∂ϕ
∂n

dΓ +
Z

Γ
u∗nΨ dΓ−

Z
Ω

uT
j fdΩ (22)

This equation allows the problem solution through the
boundary element method. After the discretization by
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boundary elements of the boundaries Γ and Γ f [Aliabadi
(2002)], one obtains the resolving system by collocating
the Eq. (4) at the nodes on the boundary Γ and the Eq.
(22) at the points belonging to Γ f needed to determine
the unknowns Δu and the constants k. Once the dis-
placements u and the tractions p on the boundary Γ and
the relative displacements Δu along Γ f are determined,
the stress intensity factors are calculated by the displace-
ment extrapolation method [Aliabadi (2002), Blandford,
Ingraffea and Ligget (1981), Cruse (1972)].

4 Applications
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Figure 1 : Finite rectangular plate with central crack.

To validate the proposed approach and prove its efficacy
and potentiality some numerical results are presented
for classical fracture mechanics problems. The analy-
ses have been performed with a discretization consisting
of 32 linear boundary elements for the contour Γ and 18
linear boundary elements for the crack line Γ f . The col-
location point for Eq. (20) on Γ f have been set at the
element mid-point. The first application deals with the
computation of the stress intensity factors for a crack of
length 2a embedded in an infinite domain. The results for
horizontal and 45 ˚ inclined crack are shown in Table 1
where the comparison with the analytical solution is also
presented. This comparison clearly shows the accuracy
of the proposed approach to compute the stress intensity
factor. In the second example a rectangular panel having

a
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Figure 2 : Finite rectangular plate with edge crack.

Table 1 : KI/
(
σyy/

√
πa

)
for horizontal and 45 ˚ inclined

crack in an infinite domain.
 Stress Intensity Factor (SIF) 

 SIF Present Analytic 

yy

I yyK a 1.00 1.00 

yy

I yyK a

II yyK a

0.50

0.50

0.50

0.50

Table 2 : KI/
(
σyy/

√
πa

)
for a 45 ˚ central crack embed-

ded in a finite rectangular plate with h/w = 2.

a w Presente Aliabadi 

(2002)

Civelek and 

Erdogan (1982) 

0.2 0.51 0.53 0.52 

0.3 0.52 0.55 0.54 

0.4 0.56 0.59 0.57 

0.5 0.60 0.63 0.61 

0.6 0.65 0.69 0.66 

h
/

w = 2 with a central crack inclined of 45 ˚ is analysed
(see Figure 1). The results obtained in terms of stress
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Table 3 : KII/
(
σyy/

√
πa

)
for a 45 ˚ central crack embed-

ded in a finite rectangular plate with h/w = 2.

a w Present Aliabadi 

(2002)

Civelek and 

Erdogan (1982) 

0.2 0.49 0.52 0.51 

0.3 0.50 0.53 0.52 

0.4 0.52 0.54 0.53 

0.5 0.54 0.56 0.55 

0.6 0.56 0.58 0.57 

Table 4 : KI/
(
σyy/

√
πa

)
for finite rectangular plate hav-

ing h/w = 0.5 with edge crack.

a w Present
Aliabadi 

(2002)

Civelek and 

Erdogan (1982) 

0.2 1.48 1.57 1.49 

0.3 1.86 1.96 1.85 

0.4 2.34 2.23 2.32 

0.5 3.04 3.27 3.01 

intensity factor for different crack length are given in Ta-
bles 2 and 3. Again the comparison of the present results
with those found in the literature shows the accuracy and
efficiency of the proposed method. Finally a finite rect-
angular plate h

/
w = 0.5 with an edge crack of length a

has been analyzed (see Fig. 2). The calculated stress
intensity factors are given in Table 4. Once again the
comparison between the present results and those found
in the literature confirms the soundness of the method for
both its accuracy and efficiency.

5 Conclusions

A single domain boundary element method for two di-
mensional elastic solids has been presented with the aim
of overcoming the computational drawbacks of classical
BEM approaches for fracture mechanics. The method
rests on the use of additional integral equations deduced
in terms of stress function which collocated on the crack
provide the relations needed to determine the solution.
These integral equations do not involve hypersingular in-
tegrals with the resulting simplification in numerical im-
plementation. The numerical results obtained show the
accuracy, efficiency and usefulness of the proposed ap-
proach to determine the characteristic parameters of frac-

ture mechanics
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